Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
J Neural Transm (Vienna) ; 131(8): 971-986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874765

RESUMO

Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phenol commonly found in grapes and wine, has been associated as protective in experimental models involving alterations in different neurotransmitter systems. However, studies are reporting that resveratrol could have adverse effects. This study evaluated if the association of a low dose of ketamine and resveratrol could induce behavioral manifestations associated with biochemical alterations. Moreover, the effects of treatment with resveratrol and/or ketamine on monoamine oxidase (MAO) activity, oxidative stress markers, and IL-6 levels in the brain were also investigated. Male Swiss mice received a low dose of ketamine (20 mg/kg) for 14 consecutive days, and resveratrol (10, 30, or 100 mg/kg) from day 8 up to day 14 of the experimental period, intraperitoneally. Locomotor, stereotyped behavior, Y-maze, novel recognition object test (NORT), and social interaction were quantified as well as ex vivo analysis of MAO activity, IL-6 levels, and oxidative stress markers (TBARS and total thiol levels) in brain tissues. Ketamine per se reduced the number of bouts of stereotyped behavior on day 8 of the experimental period. Resveratrol per se reduced the locomotor and exploratory activity in the open field, the time of exploration of new objects in the NORT, MAO-A activity in the striatum and increased the IL-6 levels in the cortex. These effects were attenuated when the mice were co-treated with ketamine and resveratrol. There was a decrease in MAO-A activity in the cortex of mice treated with ketamine + resveratrol 100 mg/kg. No significant alterations were found in oxidative stress markers. Resveratrol does not appear to cause summative effects with ketamine on behavioral alterations. However, the effect of resveratrol per se, mainly on locomotor and exploratory activity, should be better investigated.


Assuntos
Ketamina , Monoaminoxidase , Estresse Oxidativo , Resveratrol , Animais , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Ketamina/farmacologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Monoaminoxidase/metabolismo , Monoaminoxidase/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Interleucina-6/metabolismo , Comportamento Estereotipado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Interação Social/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos
2.
Pharmacol Biochem Behav ; 213: 173333, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35065952

RESUMO

Dissociative-based new psychoactive substances (NPSs) are increasingly available through the Internet, and public health problems related to the recreational use of these substances have been increasing globally. Two such NPSs are deschloroketamine and diphenidine, which are primarily used recreationally as ketamine substitutes. However, there is little scientific evidence to describe the dependence liability of NPSs. This study aimed to evaluate the dependence liability of deschloroketamine and diphenidine via animal behavioral experiments. We evaluated the rewarding and reinforcing effects of these NPSs using the conditioned place preference (CPP) and the self-administration (SA) paradigms in mice. Psychomotor effects and behavioral features of these compounds were assessed by quantifying locomotor activity, stereotypic movements, and dopaminergic neurotransmission. Both deschloroketamine (10 mg/kg) and diphenidine (10-60 mg/kg) produced increased locomotor activation and stereotypy that were similar to the effects of ketamine (10 mg/kg). Both deschloroketamine (10 mg/kg) and diphenidine (10, 20 mg/kg) increased the animals' preference for the drug-paired compartment in the CPP testing. In the SA testing, deschloroketamine (1 mg/kg/infusion) increased the number of active lever presses and the number of infusions received, whereas diphenidine administration (1, 2 mg/kg/infusion) did not alter either of these. Furthermore, both deschloroketamine and diphenidine increased dopamine levels in PC-12 cells. Collectively, the data suggest that deschloroketamine may have both rewarding and reinforcing effects, whereas diphenidine only induced rewarding effect.


Assuntos
Ketamina/farmacologia , Piperidinas/farmacologia , Reforço Psicológico , Recompensa , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Dopamina/metabolismo , Ketamina/administração & dosagem , Ketamina/análogos & derivados , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Piperidinas/administração & dosagem , Psicotrópicos/farmacologia , Ratos , Autoadministração , Comportamento Estereotipado/efeitos dos fármacos
3.
Pharmacol Biochem Behav ; 207: 173224, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197844

RESUMO

Very few people are able to quit smoking, and therefore it is essential to know which factors contribute to the development of compulsive nicotine use. These studies aimed to investigate if early-adolescent nicotine exposure causes locomotor sensitization and affects anxiety-like behavior and the spontaneous acquisition of intravenous nicotine self-administration. Early-adolescent male and female rats were treated with nicotine from postnatal (P) days 24 to 42, and anxiety-like behavior and locomotor activity were investigated one day after the cessation of nicotine treatment and in adulthood (>P75). The spontaneous acquisition of nicotine self-administration was also investigated in adulthood. The rats self-administered 0.03 mg/kg/infusion of nicotine for six days under a fixed-ratio (FR) 1 schedule and four days under an FR2 schedule (3-h sessions). Repeated nicotine administration increased locomotor activity, rearing, and stereotypies in a small open field in adolescent male and female rats. One day after the last nicotine injection, the percentage of open arm entries in the elevated plus-maze test was decreased in the males and increased in the females. However, locomotor activity in the small open field was unaffected. Adolescent nicotine treatment did not affect anxiety-like behavior and locomotor activity in adulthood. During the 10-day nicotine self-administration period, the females had a higher level of nicotine intake than the males. Adolescent nicotine treatment decreased nicotine intake in the females. In conclusion, these findings indicate that repeated nicotine administration during adolescence causes robust behavioral sensitization and leads to lower nicotine intake in females throughout the acquisition period in adulthood in rats.


Assuntos
Locomoção/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Fatores Etários , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Teste de Labirinto em Cruz Elevado , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Wistar , Autoadministração , Fatores Sexuais , Comportamento Estereotipado/efeitos dos fármacos
4.
J Neurosci Res ; 99(10): 2706-2720, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34115897

RESUMO

Repetitive behavioral phenotypes are a trait of several neuropsychiatric disorders, including obsessive-compulsive disorder (OCD). Such behaviors are typified by complex interactions between cognitive and neurobiological processes which most likely contribute to the suboptimal treatment responses often observed. To this end, exploration of the adenosinergic system may be useful, since adenosine-receptor modulation has previously shown promise to restore control over voluntary behavior and improve cognition in patients presenting with motor repetition. Here, we employed the deer mouse (Peromyscus maniculatus bairdii) model of compulsive-like behavioral persistence, seeking to investigate possible associations between stereotypic motor behavior and cognitive flexibility as measured in the T-maze continuous alternation task (T-CAT). The effect of istradefylline, a selective adenosine A2A receptor antagonist at two doses (10 and 20 mg kg-1  day-1 ) on the expression of stereotypy and T-CAT performance in high (H) and non-(N) stereotypical animals, was investigated in comparison to a control intervention (six groups; n = 8 or 9 per group). No correlation between H behavior and T-CAT performance was found. However, H but not N animals presented with istradefylline-sensitive spontaneous alternation and stereotypy, in that istradefylline at both doses significantly improved the spontaneous alternation scores and attenuated the stereotypical expression of H animals. Thus, evidence is presented that anti-adenosinergic drug action improves repetitive behavior and spontaneous alternation in stereotypical deer mice, putatively pointing to a shared psychobiological construct underlying naturalistic stereotypy and alterations in cognitive flexibility in deer mice.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Transtorno Obsessivo-Compulsivo/metabolismo , Purinas/farmacologia , Receptor A2A de Adenosina/metabolismo , Comportamento Estereotipado/fisiologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/genética , Peromyscus , Purinas/uso terapêutico , Receptor A2A de Adenosina/genética , Comportamento Estereotipado/efeitos dos fármacos
5.
Psychopharmacology (Berl) ; 238(7): 1833-1845, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723660

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficits in social interaction and restrictive, repetitive, and stereotypical patterns of behavior. However, there is no pharmacological drug that is currently used to target these core ASD symptoms. Sodium phenylbutyrate (NaPB) is a well-known long-term treatment of urea cycle disorders in children. In this study, we assessed the therapeutic effects of NaPB, which is a chemical chaperone as well as histone deacetylase inhibitor on a BTBR T + Itpr3tf/J (BTBR) mice model of ASD. We found that acute and chronic treatment of NaPB remarkably improved, not only core ASD symptoms, including repetitive behaviors and sociability deficit, but also cognitive impairment in the BTBR mice. NaPB substantially induced histone acetylation in the brain of the BTBR mice. Intriguingly, the therapeutic effects of NaPB on autistic-like behaviors, such as repetitive behaviors, impaired sociability, and cognitive deficit also showed in the valproic acid (VPA)-induced mouse model of autism. In addition, pentylenetetrazole (PTZ)-induced seizure was significantly attenuated by NaPB treatment in C57BL/6J and BTBR mice. These findings suggest that NaPB may provide a novel therapeutic approach for the treatment of patients with ASD.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Asseio Animal/efeitos dos fármacos , Fenilbutiratos/uso terapêutico , Comportamento Social , Comportamento Estereotipado/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/psicologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Feminino , Asseio Animal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Fenilbutiratos/farmacologia , Comportamento Estereotipado/fisiologia , Ácido Valproico/toxicidade
6.
Pharmacol Biochem Behav ; 199: 173042, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32976859

RESUMO

Ketamine, a multimodal dissociative anesthetic drug, is widely used to treat various conditions including acute pain and treatment-resistant depression. We previously reported that subanesthetic doses of intravenous (i.v.) ketamine produced transient dissociative stereotypy and antinociception in male rats. However, sex-related differences in the effects of i.v. ketamine on these measures are not well characterized. Adult male and female Sprague-Dawley rats (10 weeks old) received an i.v. bolus saline or ketamine (2 and 5 mg/kg), and dissociative stereotypy (head weaving, ataxia, and circling) and natural behaviors (horizontal activity, rearing, and grooming) were quantified over a 10-min period. Ten minutes after the behavioral observation, antinociception was measured using a tail flick test. The i.v. ketamine administration increased head weaving, ataxia, circling, and horizontal activity while decreasing rearing and grooming behaviors in male and female rats. Following 5 mg/kg ketamine administration, ataxia was greater in female rats, while head weaving was greater in male rats. Among the female rats, head weaving was greater in the low estrogen group (diestrus phase) as compared to the high estrogen group (proestrus/estrus phase). Ketamine doses (2 and 5 mg/kg) produced antinociception in male and female rats, and female rats were more sensitive to the antinociceptive effects of 2 mg/kg ketamine. The current findings suggest that i.v. ketamine administration, a clinically relevant route of administration, may produce sex-related differences in dissociative behaviors and analgesia between males and females.


Assuntos
Analgesia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ketamina/administração & dosagem , Fatores Sexuais , Comportamento Estereotipado/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Injeções Intravenosas , Ketamina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
Behav Brain Res ; 391: 112708, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461129

RESUMO

Repetitive behaviors (e.g., stereotypic movements, compulsions, rituals) are common features of a number of neurodevelopmental disorders. Clinical and animal model studies point to the importance of cortical-basal ganglia circuitry in the mediation of repetitive behaviors. In the current study, we tested whether a drug cocktail (dopamine D2 receptor antagonist + adenosine A2A receptor agonist + glutamate mGlu5 positive allosteric modulator) designed to activate the indirect basal ganglia pathway would reduce repetitive behavior in C58 mice after both acute and sub-chronic administration. In addition, we hypothesized that sub-chronic administration (i.e. 7 days of twice-daily injections) would increase the functional activation of the subthalamic nucleus (STN), a key node of the indirect pathway. Functional activation of STN was indexed by dendritic spine density, analysis of GABA, glutamate, and synaptic plasticity genes, and cytochrome oxidase activity. The drug cocktail used significantly reduced repetitive motor behavior in C58 mice after one night as well as seven nights of twice-nightly injections. These effects did not reflect generalized motor behavior suppression as non-repetitive motor behaviors such as grooming, digging and eating were not reduced relative to vehicle. Sub-chronic drug treatment targeting striatopallidal neurons resulted in significant changes in the STN, including a four-fold increase in brain-derived neurotrophic factor (BDNF) mRNA expression as well as a significant increase in dendritic spine density. The present findings are consistent with, and extend, our prior work linking decreased functioning of the indirect basal ganglia pathway to expression of repetitive motor behavior in C58 mice and suggest novel therapeutic targets.


Assuntos
Comportamento Estereotipado/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Gânglios da Base/fisiologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Comportamento Compulsivo/tratamento farmacológico , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Vias Neurais/fisiologia , Neurônios/metabolismo , Fenetilaminas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Comportamento Estereotipado/fisiologia , Núcleo Subtalâmico/metabolismo
8.
Pediatrics ; 145(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015180

RESUMO

Phenotypic and biological characterization of rare monogenic disorders represents 1 of the most important avenues toward understanding the mechanisms of human disease. Among patients with SH3 and multiple ankyrin repeat domains 3 (SHANK3) mutations, a subset will manifest neurologic regression, psychosis, and mood disorders. However, which patients will be affected, when, and why are important unresolved questions. Authors of recent studies suggest neuronal SHANK3 expression is modulated by both inflammatory and hormonal stimuli. In this case series, we describe 4 independent clinical observations of an immunotherapy responsive phenotype of peripubertal-onset neuropsychiatric regression in 4 girls with pathogenic SHANK3 mutations. Each child exhibited a history of stable, mild-to-moderate lifelong developmental disability until 12 to 14 years of age, at which time each manifested a similar, subacute-onset neurobehavioral syndrome. Symptoms included mutism, hallucinations, insomnia, inconsolable crying, obsessive-compulsive behaviors, loss of self-care, and urinary retention and/or incontinence. Symptoms were relatively refractory to antipsychotic medication but improved after immunomodulatory treatment. All 4 patients exhibited chronic relapsing courses during a period of treatment and follow-up ranging from 3 to 6 years. Two of the 4 girls recovered their premorbid level of functioning. We briefly review the scientific literature to offer a conceptual and molecular framework for understanding these clinical observations. Future clinical and translational investigations in this realm may offer insights into mechanisms and therapies bridging immune function and human behavior.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Mutação da Fase de Leitura , Imunoterapia/métodos , Proteínas do Tecido Nervoso/genética , Comportamento Estereotipado , Adolescente , Agressão/efeitos dos fármacos , Antipsicóticos/uso terapêutico , Ansiedade , Catatonia/tratamento farmacológico , Criança , Comportamento Compulsivo/tratamento farmacológico , Choro , Feminino , Alucinações/tratamento farmacológico , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Imunossupressores/uso terapêutico , Humor Irritável/efeitos dos fármacos , Metilprednisolona/uso terapêutico , Mutismo/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Recidiva , Autocuidado , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Comportamento Estereotipado/efeitos dos fármacos , Síndrome , Incontinência Urinária , Retenção Urinária
9.
Behav Brain Res ; 384: 112552, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32057829

RESUMO

The apolipoprotein E (APOE) ε4 allele hastens cognitive decline, but other non-cognitive behaviours, as well as underpinning interactions with the cholinergic system, have not been systematically addressed. Both C57BL/6 and humanised apoE4 female mice were transiently exposed to subclinical doses (0 or 1 mg/kg body weight) of the cholinesterase inhibitor chlorpyrifos (CPF), a widely-used pesticide, from postnatal days 10-15. At 5 months of age, we assessed the impact of APOE4 genotype, postnatal CPF exposure and APOE4 x CPF interactions on anxiety (open field and light-dark tests), stereotypes (digging test) and neophobia (sucrose preference test), as well as on high-fat diet (HFD)-seeking and consumption (scheduled-feeding paradigm). We found that control APOE4 female carriers displayed a robust anxiety-like phenotype, which was accompanied by exaggerated stereotypes and a subtle neophobic response to rewarding foods. In parallel, we observed an amplified "wanting" response for HFD in these mice, which did not entail enhanced "liking". Notably, postnatal CPF ameliorated the anxiety-like and the heightened HFD-seeking responses in adult apoE4 female mice, while caused them to gain weight steadily compared to control peers. In turn, an early-life transient exposure to CPF fostered the over-consumption of HFD during adulthood without affecting how much this reward was "wanted" or the total caloric intake. These data reveal a role for CPF towards fostering "unhealthy" dietary choices. We conclude that the APOE4 genotype modulates non-cognitive behaviours and we provide support for an APOE4-dependent cholinergic dysfunction.


Assuntos
Ansiedade/fisiopatologia , Apolipoproteína E4/genética , Comportamento Animal/efeitos dos fármacos , Clorpirifos/farmacologia , Inibidores da Colinesterase/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Motivação/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos , Animais , Comportamento Animal/fisiologia , Dieta Hiperlipídica , Feminino , Preferências Alimentares/efeitos dos fármacos , Hiperfagia , Camundongos , Camundongos Transgênicos
10.
Neurotoxicol Teratol ; 77: 106838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31644948

RESUMO

Paracetamol (PAR) is an over-the-counter medicine used as analgesic or antipyretic by 40-50% of the pregnant women in different countries. Epidemiologic studies have been associating maternal use of PAR with neurodevelopmental disruption and special attention has been given to its potential to increase the odds for neurodevelopmental disorders, such as attention-deficit hyperactive disorder and autism spectrum disorder. Population-based research do not allow the establishment of causal relationships because variable control is weak. We aimed to evaluate the potential of PAR to induce developmental neurotoxicity in rats. Pregnant Wistar rats were gavaged with PAR (350 mg/kg/day) or water from gestational day 6 until delivery. General toxicity endpoints included dams' body weight and food intake as well as pups' body weight until weaning. Behavioral evaluation occurred at post-natal days 10 (nest seeking test), 27 (behavioral stereotypy), 28 (three chamber sociability test and open field) and 29 (hot plate and elevated plus-maze). Moreover, lipid hidroperoxide (LOOH), reduced glutathione (GSH) and brain derived neurotrophic factor (BDNF) levels were quantified in prefrontal cortex and hippocampus of 22-days-old rats. Gestational exposure to PAR impaired nest seeking behavior, augmented apomorphine-induced behavioral stereotypy and decreased rostral grooming in the elevated plus maze. Exposed female pups presented elevated vertical exploration in the open field test. No alterations were observed in LOOH, GSH or BDNF levels in the prefrontal cortex or hippocampus. Exposure regimen did not affect general toxicity parameters or pups' behavior in the hot plate and sociability tests. These data suggest PAR as a developmental neurotoxicant. Observed alterations may be relevant for neurodevelopmental disorders.


Assuntos
Acetaminofen/efeitos adversos , Apomorfina/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Asseio Animal/efeitos dos fármacos , Comportamento de Nidação/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/psicologia , Comportamento Estereotipado/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinergismo Farmacológico , Feminino , Glutationa/metabolismo , Hipocampo/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos
11.
Pharmacol Biochem Behav ; 181: 110-116, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31054946

RESUMO

Repetitive behaviors are diagnostic for autism spectrum disorder (ASD) and commonly observed in other neurodevelopmental disorders. Currently, there are no effective pharmacological treatments for repetitive behavior in these clinical conditions. This is due to the lack of information about the specific neural circuitry that mediates the development and expression of repetitive behavior. Our previous work in mouse models has linked repetitive behavior to decreased activation of the subthalamic nucleus, a brain region in the indirect and hyperdirect pathways in the basal ganglia circuitry. The present experiments were designed to further test our hypothesis that pharmacological activation of the indirect pathway would reduce repetitive behavior. We used a combination of adenosine A1 and A2A receptor agonists that have been shown to alter the firing frequency of dorsal striatal neurons within the indirect pathway of the basal ganglia. This drug combination markedly and selectively reduced repetitive behavior in both male and female C58 mice over a six-hour period, an effect that required both A1 and A2A agonists as neither alone reduced repetitive behavior. The adenosine A1 and A2A receptor agonist combination also significantly increased the number of Fos transcripts and Fos positive cells in dorsal striatum. Fos induction was found in both direct and indirect pathway neurons suggesting that the drug combination restored the balance of activation across these complementary basal ganglia pathways. The adenosine A1 and A2A receptor agonist combination also maintained its effectiveness in reducing repetitive behavior over a 7-day period. These findings point to novel potential therapeutic targets for development of drug therapies for repetitive behavior in clinical disorders.


Assuntos
Agonistas do Receptor A1 de Adenosina/uso terapêutico , Agonistas do Receptor A2 de Adenosina/uso terapêutico , Adenosina/análogos & derivados , Comportamento Compulsivo/tratamento farmacológico , Fenetilaminas/uso terapêutico , Comportamento Estereotipado/efeitos dos fármacos , Adenosina/administração & dosagem , Adenosina/química , Adenosina/uso terapêutico , Agonistas do Receptor A1 de Adenosina/administração & dosagem , Agonistas do Receptor A1 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/administração & dosagem , Agonistas do Receptor A2 de Adenosina/química , Análise de Variância , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/citologia , Quimioterapia Combinada , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neurônios/metabolismo , Óleo de Amendoim/química , Óleo de Amendoim/farmacologia , Fenetilaminas/administração & dosagem , Fenetilaminas/química , Fenótipo , Proteínas Proto-Oncogênicas c-fos/metabolismo
12.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834304

RESUMO

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by the repeated rise of concerns (obsessions) and repetitive unwanted behavior (compulsions). Although selective serotonin reuptake inhibitors (SSRIs) is the first-choice drug, response rates to SSRI treatment vary between symptom dimensions. In this study, to find a therapeutic target for SSRI-resilient OCD symptoms, we evaluated treatment responses of quinpirole (QNP) sensitization-induced OCD-related behaviors in mice. SSRI administration rescued the cognitive inflexibility, as well as hyperactivity in the lateral orbitofrontal cortex (lOFC), while no improvement was observed for the repetitive behavior. D2 receptor signaling in the central striatum (CS) was involved in SSRI-resistant repetitive behavior. An adenosine A2A antagonist, istradefylline, which rescued abnormal excitatory synaptic function in the CS indirect pathway medium spiny neurons (MSNs) of sensitized mice, alleviated both of the QNP-induced abnormal behaviors with only short-term administration. These results provide a new insight into therapeutic strategies for SSRI-resistant OCD symptoms and indicate the potential of A2A antagonists as a rapid-acting anti-OCD drug.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico , Purinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Resistência a Medicamentos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Transtornos Psicóticos/metabolismo , Quimpirol , Receptores de Dopamina D2/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
13.
Toxicology ; 418: 70-80, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30836164

RESUMO

Polybrominated diphenyl ethers (PBDEs) and lead (Pb) are common pollutants that co-exist in the environment. These chemicals may be associated with autism spectrum disorder (ASD), yet direct evidence is lacking. More importantly, how co-exposure of these chemicals might affect ASD has never been explored. For assessing the relationship between PBDE/Pb exposure and ASD, pregnant C57BL/6 J female mice were exposed to BDE209 (0.12 ng/day), Pb (1.2 ng/day), or a BDE209/Pb mixture from gestational day (GD) 9.5 to postnatal day (PND) 21 using ALZET osmotic pumps. Polyinosinic-polycytidylic acid (poly I:C) was included as a positive control, as its single dose injection (20 mg/kg.bw; i.p.) at mid-pregnancy (GD 12.5) produces ASD-like behaviors in mouse offspring. These ASD-like phenotypes include decreased preference for social novelty, increased marble burying behavior, and learning impairment. Similar to the poly I:C control, perinatal exposure to Pb or BDE209/Pb mixture elicited increased marble burying and learning impairment, but it had no effect on sociability. Consistent with these behavioral anomalies, Pb and BDE209/Pb co-exposure as well as poly I:C exposure increased the production of pro-inflammation cytokines interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor α (TNFα), interferon γ (IFNγ), and interleukin 17 A (IL-17 A) in the serum, and decreased neuronal cells in the CA1 and CA3 subregions of the hippocampus. The majority of these changes in the BDE209/Pb mixture group were due to the effect of Pb rather than BDE209. However, BDE209/Pb co-exposure elicited a synergistic increase in the production of IL-4, IL-6, TNFα, IFNγ, and IL-17A in the serum. BDE209 exposure alone also significantly affected spatial learning and increased the production of IL-10, TNFα, and IL-17 A in the serum of male offspring. Our work demonstrates that perinatal exposure to a low dose of Pb or the BDE209/Pb mixture, although it did not induce typical ASD-like symptoms, elicited restricted, repetitive patterns of behavior and affected learning in male offspring. In addition, the synergistic increase in the systemic inflammatory response in the BDE209/Pb co-exposure group underscores the importance of evaluating chemical mixtures in disease onset.


Assuntos
Transtorno do Espectro Autista/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Hipocampo/efeitos dos fármacos , Chumbo/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/sangue , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Morte Celular/efeitos dos fármacos , Citocinas/sangue , Feminino , Idade Gestacional , Asseio Animal/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Mediadores da Inflamação/sangue , Masculino , Exposição Materna/efeitos adversos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Gravidez , Comportamento Estereotipado/efeitos dos fármacos
14.
Sci Rep ; 9(1): 3041, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816216

RESUMO

Autism spectrum disorders (ASD) form a heterogeneous, neurodevelopmental syndrome characterized by deficits in social interactions and repetitive behavior/restricted interests. Dysregulation of mTOR signaling has been implicated in the pathogenesis of certain types of ASD, and inhibition of mTOR by rapamycin has been demonstrated to be an effective therapeutics for impaired social interaction in Tsc1+/-, Tsc2+/-, Pten-/- mice and valproic acid-induced ASD animal models. However, it is still unknown if dysregulation of mTOR signaling is responsible for the ASD-related deficit caused by other genes mutations. Contactin associated protein-like 2 (CNTNAP2) is the first widely replicated autism-predisposition gene. Mice deficient in Cntnap2 (Cntnap2-/- mice) show core ASD-like phenotypes, and have been demonstrated as a validated model for ASD-relevant drug discovery. In this study, we found hyperactive Akt-mTOR signaling in the hippocampus of Cntnap2-/- mice with RNA sequencing followed with biochemical analysis. Treatment with Akt inhibitor LY294002 or mTOR inhibitor rapamycin rescued the social deficit, but had no effect on hyperactivity and repetitive behavior/restricted behavior in Cntnap2-/- mice. We further showed that the effect of LY294002 and rapamycin on social behaviors is reversible. Our results thus identified hyperactive Akt-mTOR signaling pathway as a therapeutic target for abnormal social behavior in patients with dysfunction of CNTNAP2.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Comportamento Social , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Cromonas/administração & dosagem , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Hipercinese/genética , Masculino , Camundongos , Camundongos Knockout , Morfolinas/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/administração & dosagem , Comportamento Estereotipado/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
15.
Neuropharmacology ; 149: 27-34, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30731137

RESUMO

Ketogenic diets (KDs) are high fat, low carbohydrate formulations traditionally used to treat epilepsy; more recently, KDs have shown promise for a wide range of other neurological disorders. Drug addiction studies suggest that repeated exposure to drugs of abuse, including cocaine, results in a suite of neurobiological changes that includes neuroinflammation, decreased glucose metabolism, and disordered neurotransmission. Given that KDs positively regulate these factors, we addressed whether administration of a KD has potential as a novel therapy for drug addiction. In this study, male and female Sprague-Dawley rats were placed on a KD or a control diet (CD), beginning at five weeks of age and continuing through the end of behavioral testing. Three weeks after initiation of dietary treatments, rats received daily i.p. injections of cocaine (15 mg/kg) or saline vehicle for one week, were drug free for a subsequent week, and then all animals received a final challenge injection of 15 mg/kg cocaine. In the absence of cocaine injections, stereotyped locomotor responses were minimal and were unaffected by dietary treatment. In contrast, both males and females fed a KD exhibited decreased cocaine-induced stereotyped responses as compared to CD-fed rats. The sensitization of ambulatory responses was also disrupted in KD-fed rats. These results suggest that KDs directly impact dopamine-mediated behaviors, and hence may hold potential as a therapy for drug addiction.


Assuntos
Cocaína/farmacologia , Dietoterapia/métodos , Dieta Cetogênica/psicologia , Atividade Motora/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos , Ácido 3-Hidroxibutírico/sangue , Animais , Comportamento Animal , Peso Corporal , Dopamina , Feminino , Masculino , Metabolismo , Modelos Animais , Ratos , Ratos Sprague-Dawley
16.
Epilepsy Res ; 151: 1-6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30669043

RESUMO

Lycopene (LCP) is a carotenoid that protects against many diseases by alleviating oxidative stress. However, the effect of LCP on epileptic seizures has not been examined well in previous studies. In the current work, we employed kainic acid (KA) to induce experimental epileptic seizures in mice, and investigated the function of LCP during this process. We found that the onset and extent of KA-induced seizures were alleviated in LCP-pretreated mice. Nissl staining of hippocampus showed that the granule cell dispersion lesion induced by KA was improved by the LCP treatment. Additionally, we analyzed the oxidative stress levels in mice and found that LCP elevated SOD activity and suppressed MDA level in KA-induced seizures. Moreover, the expression of GABA receptors was influenced by LCP treatment. LCP suppressed the upregulation of gabrb2 and gabrb3 induced by KA, whereas it enhanced the expression of gabrb1. Results suggested that LCP plays a protective function in KA-induced seizures. Hence, it may be a potential functional food alternative for controlling and treating epileptic seizures.


Assuntos
Antioxidantes/administração & dosagem , Licopeno/administração & dosagem , Convulsões/prevenção & controle , Animais , Piscadela/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , Agonistas de Aminoácidos Excitatórios/toxicidade , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Ácido Caínico/toxicidade , Malondialdeído , Camundongos , RNA Mensageiro/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Convulsões/induzido quimicamente , Convulsões/patologia , Comportamento Estereotipado/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Tempo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30261217

RESUMO

Autism is a neurodevelopmental disorder that affects social cognitive abilities resulting in communication or sensory deficits, and stereotyped behaviors in millions of people worldwide. Oxidant-antioxidant imbalance contributes significantly to the neurobehavioral dysregulations and severity of symptoms in patients with autism, however it has not been explored earlier whether it affects autism-like behavior directly. Therefore, we investigated oxidant-antioxidant balance in peripheral immune cells (neutrophils and CD3+ T cells) and cerebellum of BTBR T + tf/J (BTBR) mice which show autism-like behavior and the social C57BL/6 J (C57) mice. Further, we utilized buthionine sulfoximine (BSO), a glutathione depleting agent to assess the impact of oxidant-antioxidant dysregulation on autism-like behavior. Our study shows that BTBR mice have increased lipid/protein oxidation products in cerebellum and neutrophils/CD3+ T cells along with increased NADPH oxidase (NOX2) and inducible nitric oxide synthase (iNOS) expression. This was concurrent with lower levels of glutathione and enzymatic antioxidants such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the cerebellum and peripheral immune cells. BSO administration led to further lowering of glutathione with a concurrent upregulation of iNOS, and NOX2 in cerebellum and peripheral immune cells. However, there was deficiency of an adaptive antioxidant response which was associated with exaggerated repetitive behaviors in BTBR mice. On the other hand, C57 mice also had increased oxidative stress after BSO treatment, however there was an enzymatic antioxidant response both in cerebellum and periphery. Overall, this study suggests that BTBR mice have increased oxidative stress with a deficient enzymatic antioxidant response that is associated with autism-like repetitive behaviors.


Assuntos
Transtorno Autístico/metabolismo , Cerebelo/metabolismo , Neutrófilos/metabolismo , Estresse Oxidativo/fisiologia , Comportamento Estereotipado/fisiologia , Linfócitos T/metabolismo , Animais , Antimetabólitos/farmacologia , Butionina Sulfoximina/farmacologia , Complexo CD3/metabolismo , Cerebelo/efeitos dos fármacos , Glutationa/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Comportamento Social , Especificidade da Espécie , Comportamento Estereotipado/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
18.
J Comp Neurol ; 526(13): 2133-2146, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007046

RESUMO

Dopamine (DA) neurons derived from human embryonic stem cells (hESCs) are a promising unlimited source of cells for cell replacement therapy in Parkinson's disease (PD). A number of studies have demonstrated functionality of DA neurons originating from hESCs when grafted to the striatum of rodent and non-human primate models of PD. However, several questions remain in regard to their axonal outgrowth potential and capacity to integrate into host circuitry. Here, ventral midbrain (VM) patterned hESC-derived progenitors were grafted into the midbrain of 6-hydroxydopamine-lesioned rats, and analyzed at 6, 18, and 24 weeks for a time-course evaluation of specificity and extent of graft-derived fiber outgrowth as well as potential for functional recovery. To investigate synaptic integration of the transplanted cells, we used rabies-based monosynaptic tracing to reveal the origin and extent of host presynaptic inputs to grafts at 6 weeks. The results reveal the capacity of grafted neurons to extend axonal projections toward appropriate forebrain target structures progressively over 24 weeks. The timing and extent of graft-derived dopaminergic fibers innervating the dorsolateral striatum matched reduction in amphetamine-induced rotational asymmetry in the animals where recovery could be observed. Monosynaptic tracing demonstrated that grafted cells integrate with host circuitry 6 weeks after transplantation, in a manner that is comparable with endogenous midbrain connectivity. Thus, we demonstrate that VM patterned hESC-derived progenitors grafted to midbrain have the capacity to extensively innervate appropriate forebrain targets, integrate into the host circuitry and that functional recovery can be achieved when grafting fetal or hESC-derived DA neurons to the midbrain.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/transplante , Mesencéfalo/cirurgia , Vias Neurais/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Transtornos Parkinsonianos/cirurgia , Prosencéfalo/fisiologia , Sinapses/fisiologia , Anfetamina/farmacologia , Animais , Inibidores da Captação de Dopamina/farmacologia , Feminino , Humanos , Hidroxidopaminas , Camundongos , Fibras Nervosas/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Ratos Nus , Transplante de Células-Tronco , Comportamento Estereotipado/efeitos dos fármacos
19.
Acta Neuropathol ; 136(4): 621-639, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046897

RESUMO

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of nigral dopamine neurons. The deposition of fibrillary aggregated α-synuclein in Lewy bodies (LB), that is considered to play a causative role in the disease, constitutes another key neuropathological hallmark of PD. We have recently described that synapsin III (Syn III), a synaptic phosphoprotein that regulates dopamine release in cooperation with α-synuclein, is present in the α-synuclein insoluble fibrils composing the LB of patients affected by PD. Moreover, we observed that silencing of Syn III gene could prevent α-synuclein fibrillary aggregation in vitro. This evidence suggests that Syn III might be crucially involved in α-synuclein pathological deposition. To test this hypothesis, we studied whether mice knock-out (ko) for Syn III might be protected from α-synuclein aggregation and nigrostriatal neuron degeneration resulting from the unilateral injection of adeno-associated viral vectors (AAV)-mediating human wild-type (wt) α-synuclein overexpression (AAV-hαsyn). We found that Syn III ko mice injected with AAV-hαsyn did not develop fibrillary insoluble α-synuclein aggregates, showed reduced amount of α-synuclein oligomers detected by in situ proximity ligation assay (PLA) and lower levels of Ser129-phosphorylated α-synuclein. Moreover, the nigrostriatal neurons of Syn III ko mice were protected from both synaptic damage and degeneration triggered by the AAV-hαsyn injection. Our observations indicate that Syn III constitutes a crucial mediator of α-synuclein aggregation and toxicity and identify Syn III as a novel therapeutic target for PD.


Assuntos
Neostriado/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/patologia , Sinapses/patologia , Sinapsinas/deficiência , alfa-Sinucleína/metabolismo , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Dependovirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/patologia , Neurônios/patologia , Comportamento Estereotipado/efeitos dos fármacos , Proteína 2 Associada à Membrana da Vesícula/metabolismo
20.
Behav Brain Res ; 349: 80-90, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29738804

RESUMO

Currently, an increasing proportion of adolescent ketamine users simultaneously consume alcohol. However, the potential behavioural and neurological alterations induced by such a drug combination and the underlying mechanisms have not been systematically examined. Therefore, in the present study, the behavioural and morphological changes and the underlying mechanisms were studied in adolescent rats after repeated alcohol and/or ketamine treatment. This study provided the first evidence that co-administration of alcohol (2 and 4 g/kg, i.g.) in adolescent rats significantly potentiated the neurotoxic properties of repeated ketamine (30 mg/kg, i.p.) treatments over 14 days, manifesting as increased locomotor activity, stereotypic behaviour, ataxia and morphological changes. This potentiation was associated with the enhancement by alcohol of ketamine-induced glutamate (Glu) and dopamine (DA) release in the cortex and hippocampus. Further mechanistic study demonstrated that alcohol potentiated ketamine-induced neurotoxicity through down-regulation of Akt (a serine/threonine kinase or protein kinase, PKB), protein kinase A (PKA), calmodulin-dependent kinase IV (CaMK-IV)-mediated cyclic AMP-responsive element binding protein (CREB) pathways and induction of neuronal apoptosis in the cortex and hippocampus of the adolescent rats. As this study provides strong evidence that repeated alcohol and ketamine co-exposure may cause serious neurotoxicity, attention needs to be drawn to the potential risk of this consumption behaviour, especially for adolescents.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Etanol/toxicidade , Ketamina/toxicidade , Animais , Ataxia/induzido quimicamente , Ataxia/metabolismo , Ataxia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Glutâmico/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Maturidade Sexual , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA