Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Carbohydr Polym ; 343: 122489, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174141

RESUMO

The clinical utility of chemotherapy is often compromised by its limited efficacy and significant side effects. Addressing these concerns, we have developed a self-assembled nanomicelle, namely SANTA FE OXA, which consists of hyaluronic acid (HA) conjugated with ferrocene methanol (FC), oxaliplatin prodrug (OXA(IV)) and ethylene glycol-coupled linoleic acid (EG-LA). Targeted delivery is achieved by HA binding to the CD44 receptors that are overexpressed on tumor cells, facilitating drug uptake. Once internalized, hyaluronidase (HAase) catalyzes the digestion of the SANTA FE OXA, releasing FC and reducing OXA(IV) into an active form. The active oxaliplatin (OXA) induces DNA damage and increases intracellular hydrogen peroxide (H2O2) levels via cascade reactions. Simultaneously, FC disrupts the redox balance within tumor cells, inducing ferroptosis. Both in vivo and in vitro experiments confirmed that SANTA FE OXA inhibited tumor growth by combining cascade chemotherapy and self-sensitized ferroptosis, achieving a tumor inhibition rate of up to 76.61 %. Moreover, this SANTA FE OXA significantly mitigates the systemic toxicity commonly associated with platinum-based chemotherapeutics. Our findings represent a compelling advancement in nanomedicine for enhanced cascade cancer therapy.


Assuntos
Antineoplásicos , Ferroptose , Compostos Ferrosos , Ácido Hialurônico , Micelas , Oxaliplatina , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ferroptose/efeitos dos fármacos , Oxaliplatina/farmacologia , Oxaliplatina/química , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Linhagem Celular Tumoral , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Metalocenos/química , Metalocenos/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Ácido Linoleico/química , Ácido Linoleico/farmacologia , Camundongos Endogâmicos BALB C , Feminino , Camundongos Nus , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Neoplasias/tratamento farmacológico
2.
Biomolecules ; 14(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062570

RESUMO

Background: The regulation of divalent metal transporter-1 (DMT1) by insulin has been previously described in Langerhans cells and significant neuroprotection was found by insulin and insulin-like growth factor 1 treatment during experimental cerebral ischemia in acute ischemic stroke patients and in a rat 6-OHDA model of Parkinson's disease, where DMT1 involvement is described. According to the regulation of DMT1, previously described as a target gene of NF-kB in the early phase of post-ischemic neurodegeneration, both in vitro and in vivo, and because insulin controls the NFkB signaling with protection from ischemic cell death in rat cardiomyocytes, we evaluated the role of insulin in relation to DMT1 expression and function during ischemic neurodegeneration. Methods: Insulin neuroprotection is evaluated in differentiated human neuroblastoma cells, SK-N-SH, and in primary mouse cortical neurons exposed to oxygen glucose deprivation (OGD) for 8 h or 3 h, respectively, with or without 300 nM insulin. The insulin neuroprotection during OGD was evaluated in both cellular models in terms of cell death, and in SK-N-SH for DMT1 protein expression and acute ferrous iron treatment, performed in acidic conditions, known to promote the maximum DMT1 uptake as a proton co-transporter; and the transactivation of 1B/DMT1 mouse promoter, already known to be responsive to NF-kB, was analyzed in primary mouse cortical neurons. Results: Insulin neuroprotection during OGD was concomitant to the down-regulation of both DMT1 protein expression and 1B/DMT1 mouse promoter transactivation. We also showed the insulin-dependent protection from cell death after acute ferrous iron treatment. In conclusion, although preliminary, this evaluation highlights the peculiar role of DMT1 as a possible pharmacological target, involved in neuroprotection by insulin during in vitro neuronal ischemia and acute ferrous iron uptake.


Assuntos
Proteínas de Transporte de Cátions , Morte Celular , Regulação para Baixo , Insulina , Neurônios , Animais , Insulina/metabolismo , Insulina/farmacologia , Humanos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Camundongos , Morte Celular/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Linhagem Celular Tumoral , Fármacos Neuroprotetores/farmacologia , Ferro/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Glucose/metabolismo , Compostos Ferrosos/farmacologia
3.
Chem Rec ; 24(7): e202300347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984727

RESUMO

The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.


Assuntos
Antineoplásicos , Azóis , Compostos Ferrosos , Compostos Heterocíclicos , Metalocenos , Azóis/química , Azóis/farmacologia , Azóis/síntese química , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Compostos Ferrosos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Humanos , Metalocenos/química , Metalocenos/farmacologia , Metalocenos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química
4.
Dalton Trans ; 53(32): 13503-13514, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39072444

RESUMO

Tris(pyrazolyl)methane (tpm), 2,2,2-tris(pyrazolyl)ethanol (tpmOH) and its esterification derivatives with ibuprofen and flurbiprofen (tpmIBU and tpmFLU) were used as ligands to obtain complexes of the type [Fe(tpmX)2]Cl2 (1-4). The tpmIBU and tpmFLU ligands and corresponding complexes 3 and 4 were characterized by IR and multinuclear NMR spectroscopy, and the structure of tpmIBU was elucidated by single crystal X-ray diffraction. Complexes 1-4 were also assessed for their behaviour in aqueous media (solubility in D2O, octanol/water partition coefficient, stability in physiological-like conditions). The antiproliferative activity of ligands and complexes was determined on A2780, A2780cis and A549 cancer cell lines and the non-cancerous HEK 293T and BJ cell lines. The ligands and complexes were investigated for their ability to inhibit COX-2 (cyclooxygenase) and HNE (4-hydroxynonenal) enzymes. Complexes 3 and 4 exhibited cytotoxicity that may be attributed predominantly to their bioactive fragments, while DNA binding and enhancement of ROS production do not appear to play any significant role.


Assuntos
Anti-Inflamatórios não Esteroides , Antineoplásicos , Complexos de Coordenação , Pirazóis , Humanos , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Metano/química , Metano/análogos & derivados , Metano/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Ciclo-Oxigenase 2/metabolismo , Aldeídos/química , Aldeídos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Ibuprofeno/química , Ibuprofeno/farmacologia , Modelos Moleculares
5.
Int J Biol Macromol ; 276(Pt 2): 133942, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025181

RESUMO

The immune-suppressive microenvironment of solid tumors is a key factor limiting the effectiveness of immunotherapy, which seriously threatens human life and health. Ferroptosis and apoptosis are key cell-death pathways implicated in cancers, which can synergistically activate tumor immune responses. Here, we developed a multifunctional composite hydrogel (CE-Fc-Gel) based on the self-assembly of poloxamer 407, cystamine-linked ιota-carrageenan (CA)-eicosapentaenoic acid (EPA), and ferrocene (Fc). CE-Fc-Gel improved targeting in tumor microenvironment due to its disulfide bonds. Moreover, CE-Fc-Gel promoted lipid peroxidation, enhanced reactive oxygen species (ROS) production, and decreased glutathione peroxidase 4 (GPX4), inducing ferroptosis by the synergistic effect of Fc and EPA. CE-Fc-Gel induced apoptosis and immunogenic cell death (ICD), thereby promoting dendritic cells (DCs) maturation and T cell infiltration. As a result, CE-Fc-Gel significantly inhibited primary and metastatic tumors in vivo. Our findings provide a novel strategy for enhancing tumor immunotherapy by combining apoptosis, ferroptosis, and ICD.


Assuntos
Apoptose , Carragenina , Ácido Eicosapentaenoico , Ferroptose , Compostos Ferrosos , Hidrogéis , Metalocenos , Ferroptose/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Metalocenos/química , Metalocenos/farmacologia , Apoptose/efeitos dos fármacos , Camundongos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Carragenina/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica , Microambiente Tumoral/efeitos dos fármacos , Feminino , Recidiva Local de Neoplasia/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
6.
Carbohydr Polym ; 342: 122403, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048238

RESUMO

Sonodynamic therapy (SDT) has been extensively studied as a new type of non-invasive treatment for mammary cancer. However, the poor water solubility and defective biocompatibility of sonosensitizers during SDT hinder the sonodynamic efficacy. Herein, a nanoplatform has been developed to achieve high efficient SDT against mammary cancer through the host-guest interaction of ß-cyclodextrin/5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (ß-CD-TPP) and ferrocenecarboxylic acid/chitooligosaccharides (FC-COS). Moreover, the glucose oxidase (GOx) was loaded through electrostatic adsorption, which efficiently restricts the energy supply in tumor tissues, thus enhancing the therapeutic efficacy of SDT for tumors. Under optimal conditions, the entire system exhibited favorable water solubility, suitable particle size and viable biocompatibility. This facilitated the integration of the characteristics of starvation therapy and sonodynamic therapy, resulting in efficient inhibition of tumor growth with minimal side effects in vivo. This work may provide new insights into the application of natural oligosaccharides for construct multifunctional nanocarrier systems, which could optimize the design and development of sonodynamic therapy strategies and even combination therapy strategies.


Assuntos
Quitosana , Oligossacarídeos , Espécies Reativas de Oxigênio , Terapia por Ultrassom , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Animais , Quitosana/química , Quitosana/farmacologia , Feminino , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Terapia por Ultrassom/métodos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Nanopartículas/química , Quitina/química , Quitina/análogos & derivados , Quitina/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Metalocenos/química , Metalocenos/farmacologia , Porfirinas/química , Porfirinas/farmacologia
7.
Inorg Chem ; 63(25): 11667-11687, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38860314

RESUMO

Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.


Assuntos
Compostos Ferrosos , Rutênio , Tripanossomicidas , Trypanosoma cruzi , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Compostos Ferrosos/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Ligantes , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Animais , Rutênio/química , Rutênio/farmacologia , Camundongos , Metalocenos/química , Metalocenos/farmacologia , Metalocenos/síntese química , Trypanosoma brucei brucei/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Estrutura Molecular , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química
8.
Colloids Surf B Biointerfaces ; 240: 113968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788472

RESUMO

Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). However, none of them has been applied in clinical treatment, because they have not been approved for clinical evaluations and the precise temperature control facility is scarce. In this study, we designed a temperature-responsive controller for PTT and used carbon nanoparticles-Fe(II) complex (CNSI-Fe) as photothermal conversion agent (PTA) for PTT of tumor in vitro and in vivo. CNSI-Fe was an innovative drug under the evaluations in clinical trials. CNSI-Fe showed excellent photothermal conversion ability in water to increase the water temperature by 40 °C within 5 min under irradiation of 808 nm laser at 0.5 W/cm2. The temperature was precisely controlled at 52 °C for both in vitro and in vivo tumor inhibition. CNSI-Fe with NIR irradiation showed higher tumor cell inhibition than CNSI. In tumor bearing mice, CNSI-Fe with NIR irradiation achieved an inhibition rate of 84.7 % and 71.4 % of them were completely cured. Mechanistically, CNSI-Fe under NIR irradiation induced the radical generation, oxidative damage and ferroptosis to kill tumor. In addition, CNSI-Fe showed good biosafety during PTT according to hematological, serum biological and histopathological examinations. These results indicated that the combination of chemotherapy and PTT provided higher antitumor efficiency using CNSI-Fe as PTA.


Assuntos
Carbono , Nanopartículas , Terapia Fototérmica , Animais , Carbono/química , Camundongos , Nanopartículas/química , Humanos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Raios Infravermelhos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais
9.
Langmuir ; 40(23): 12226-12238, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814099

RESUMO

We have red-shifted the light absorbance property of a Re(I)-tricarbonyl complex via distant conjugation of a ferrocene moiety and developed a novel complex ReFctp, [Re(Fctp)(CO)3Cl], where Fctp = 4'-ferrocenyl-2,2':6',2″-terpyridine. ReFctp showed green to red light absorption ability and blue emission, indicating its potential for photodynamic therapy (PDT) application. The conjugation of ferrocene introduced ferrocene-based transitions, which lie at a higher wavelength within the PDT therapeutic window. The time-dependent density functional theory and excited state calculations revealed an efficient intersystem crossing for ReFctp, which is helpful for PDT. ReFctp elicited both PDT type I and type II pathways for reactive oxygen species (ROS) generation and facilitated NADH (1,4-dihydro-nicotinamide adenine dinucleotide) oxidation upon exposure to visible light. Importantly, ReFctp showed effective penetration through the layers of clinically relevant 3D multicellular tumor spheroids and localized primarily in mitochondria (Pearson's correlation coefficient, PCC = 0.65) of A549 cancer cells. ReFctp produced more than 20 times higher phototoxicity (IC50 ∼1.5 µM) by inducing ROS generation and altering mitochondrial membrane potential in A549 cancer cells than the nonferrocene analogue Retp, [Re(CO)3(tp)Cl], where tp = 2,2':6',2″-terpyridine. ReFctp induced apoptotic mode of cell death with a notable photocytotoxicity index (PI, PI = IC50dark/IC50light) and selectivity index (SI, SI = normal cell's IC50dark/cancer cell's IC50light) in the range of 25-33.


Assuntos
Antineoplásicos , Compostos Ferrosos , Luz , Metalocenos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Humanos , Metalocenos/química , Metalocenos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Antineoplásicos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Teoria da Densidade Funcional , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/efeitos da radiação , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Luz Vermelha
10.
Biomacromolecules ; 25(6): 3685-3702, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38779908

RESUMO

Combination therapy has emerged as a promising approach for treating tumors, although there is room for improvement. This study introduced a novel strategy that combined the enhancement of apoptosis, ferroptosis, and DNA damage to improve therapeutic outcomes for prostate cancer. Specifically, we have developed a supramolecular oxidative stress nanoamplifier, which was comprised of ß-cyclodextrin, paclitaxel, and ferrocene-poly(ethylene glycol). Paclitaxel within the system disrupted microtubule dynamics, inducing G2/M phase arrest and apoptosis. Concurrently, ferrocene utilized hydrogen peroxide to generate toxic hydroxyl radicals in cells through the Fenton reaction, triggering a cascade of reactive oxygen species expansion, reduction of glutathione levels, lipid peroxidation, and ferroptosis. The increased number of hydroxyl radicals and the inhibitory effect of THZ531 on DNA repair mechanisms exacerbated DNA damage within tumor cells. As expected, the supramolecular nanoparticles demonstrated excellent drug delivery ability to tumor cells or tissues, exhibited favorable biological safety in vivo, and enhanced the killing effect on prostate cancer.


Assuntos
Estresse Oxidativo , Paclitaxel , Neoplasias da Próstata , Paclitaxel/farmacologia , Paclitaxel/química , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Animais , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Camundongos , Metalocenos/química , Nanopartículas/química , Apoptose/efeitos dos fármacos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Linhagem Celular Tumoral , beta-Ciclodextrinas/química , Polietilenoglicóis/química , Camundongos Nus , Ferroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos
11.
J Inorg Biochem ; 257: 112586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38728860

RESUMO

Ferrocene, ruthenium(II) and iridium(III) organometallic complexes, potential substitutes for platinum-based drugs, have shown good application prospects in the field of cancer therapy. Therefore, in this paper, six ferrocene-modified half-sandwich ruthenium(II) and iridium(III) propionylhydrazone complexes were prepared, and the anticancer potential was evaluated and compared with cisplatin. These complexes showed potential in-vitro anti-proliferative activity against A549 cancer cells, especially for Ir-based complexes, and showing favorable synergistic anticancer effect. Meanwhile, these complexes showed little cytotoxicity and effective anti-migration activity. Ir3, the most active complex (ferrocene-appended iridium(III) complex), could accumulate in the intracellular mitochondria, disturb the cell cycle (S-phase), induce the accumulation of reactive oxygen species, and eventually cause the apoptosis of A549 cells. Then, the design of these complexes provides a good structural basis for the multi-active non­platinum organometallic anticancer complexes.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Compostos Ferrosos , Hidrazonas , Irídio , Metalocenos , Rutênio , Humanos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Metalocenos/química , Metalocenos/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Células A549 , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos
12.
Acta Biomater ; 181: 333-346, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38643814

RESUMO

Bacterial infection and immune imbalance are the primary culprits behind chronic wounds in individuals with diabetes, impeding the progression of damaged tissues towards normal healing. To achieve a harmonious balance between pro- and anti-inflammation within these infected areas, herein, we propose a one-two punch strategy for on-demand therapy of diabetes-infected wounds, utilizing an azithromycin (AZM)-hybrid nanocomposite termed GOx@FexSy/AZM. During the infective stage, the nanocomposite facilitates the production of ROS, coupled with the burst release of AZM and H2S gas, effectively dismantling biofilms and achieving rapid sterilization. Subsequently, the hyperinflammatory response induced by antibiosis is significantly mitigated through the synergistic action of tissue H2S and the prolonged half-life of AZM. These components inhibit the activity of pro-inflammatory transcription factors (AP-1 and NF-κB) within macrophages, thereby promoting the polarization of macrophages towards a reparative M2 phenotype and facilitating tissue remodeling. By catering to the diverse requirements of wound healing at different stages, this nanocomposite accelerates a sensible transition from inflammation to the reparative phase. In summary, this one-two punch strategy gives an instructive instance for procedural treatment of diabetes wound infection. STATEMENT OF SIGNIFICANCE: The treatment of diabetic wound infection presents two major challenges: the diminished antibacterial efficacy arising from biofilm formation and bacterial resistance, as well as the inadequate transition of the wound microenvironment from pro-inflammatory to anti-inflammatory states after bacterial clearance. In this work, a biomineralized iron sulfide nanocomposite was prepared to mediate cascade catalytic (ROS storm) / antibiotic (AZM) / gas (H2S) triple-synergetic antibacterial therapy during the initial stage of bacterial infection, achieving the goal of rapid bactericidal effect; Subsequently, the residual H2S and long half-life AZM would inhibit the key pro-inflammatory transcription factors and promote the macrophages polarization to reparative M2, which effectively mediated tissue repair after hyperinflammatory reactions, leading to orderly treatment of hyperglycemic infected wounds.


Assuntos
Antibacterianos , Cicatrização , Antibacterianos/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Masculino , Nanopartículas/química , Biofilmes/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Humanos
14.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38632976

RESUMO

This experiment aimed to investigate the effects of dietary iron supplementation from different sources on the reproductive performance of sows and the growth performance of piglets. A total of 87 sows with similar farrowing time were blocked by body weight at day 85 of gestation, and assigned to one of three dietary treatments (n = 29 per treatment): basal diet, basal diet supplemented with 0.2% ferrous sulfate (FeSO4), and basal diet supplemented with 0.2% iron sucrose, respectively, with 30% iron in both FeSO4 and iron sucrose. Compared with the control (CON) group, iron sucrose supplementation reduced the rate of stillbirth and invalid of neonatal piglets (P < 0.05), and the number of mummified fetuses was 0. Moreover, it also improved the coat color of newborn piglets (P < 0.05). At the same time, the iron sucrose could also achieve 100% estrus rate of sows. Compared with the CON group, FeSO4 and iron sucrose supplementation increased the serum iron content of weaned piglets (P < 0.05). In addition, iron sucrose increased serum transferrin level of weaned piglets (P < 0.05) and the survival rate of piglets (P < 0.05). In general, both iron sucrose and FeSO4 could affect the blood iron status of weaned piglets, while iron sucrose also had a positive effect on the healthy development of newborn and weaned piglets, and was more effective than FeSO4 in improving the performance of sows and piglets.


Sows need more iron to meet the requirements for their and offspring's growth during pregnancy and lactation. Exogenous iron supplementation may improve the reproductive performance of sows and the growth performance of piglets, but different sources of iron have different effects. This study facilitates the understanding of the effects of iron sucrose and ferrous sulfate on the reproductive performance of sows and the growth performance of piglets.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Suplementos Nutricionais , Reprodução , Animais , Feminino , Ração Animal/análise , Dieta/veterinária , Suínos/crescimento & desenvolvimento , Suínos/fisiologia , Reprodução/efeitos dos fármacos , Gravidez , Animais Recém-Nascidos , Ferro/administração & dosagem , Ferro/farmacologia , Compostos Ferrosos/farmacologia , Compostos Ferrosos/administração & dosagem , Óxido de Ferro Sacarado/farmacologia , Óxido de Ferro Sacarado/administração & dosagem , Ferro da Dieta/administração & dosagem , Ferro da Dieta/farmacologia
15.
Sci Rep ; 14(1): 5634, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454122

RESUMO

In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Fosfinas , Fosfitos , Humanos , Simulação de Acoplamento Molecular , Complexos de Coordenação/química , Ferro , Leucócitos Mononucleares/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , DNA/metabolismo , Maleimidas , Compostos Ferrosos/farmacologia , Antineoplásicos/química , Ligantes , Linhagem Celular Tumoral
16.
J Med Chem ; 67(2): 1209-1224, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38156614

RESUMO

Ferrocidiphenols possessing appropriate substituents in the aliphatic chain have very promising anticancer properties, but a systematic approach to deciphering their diversified metabolic behavior has so far been lacking. Herein, we show that a series of novel ferrocidiphenols bearing different hydroxyalkyl substituents exhibit strong anticancer activity as revealed in a range of in vitro and in vivo experiments. Moreover, they display diversified oxidative transformation profiles very distinct from those of previous complexes, shown by the use of chemical and enzymatic methods and in cellulo and in vivo metabolism studies. In view of this phenomenon, unprecedented chemo-evolutionary sequences that connect all the ferrocidiphenol-related intermediates and analogues have been established. In addition, a comprehensive density functional theory (DFT) study has been performed to decipher the metabolic diversification profiles of these complexes and demonstrate the delicate modulation of carbenium ions by the ferrocenyl moiety, via either α- or ß-positional participation.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química , Oxirredução , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia
17.
An. acad. bras. ciênc ; 90(1): 485-494, Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886916

RESUMO

ABSTRACT Soybean (Glycine max L.) seed contains amounts of protein, lipid, carbohydrate and mineral elements, which protein and lipid have been known as a main part for soybean's trade value. In this study, in order to investigate the effect of ferrous nano-oxide particles on nutritional compounds of soybean seed, an experiment with 5 treatments and 3 replications was conducted as a randomized complete block design. Treatments were 5 concentrations of ferrous nano-oxide particles including 0, 0.25, 0.5, 0.75 and 1 g L-1 which were sprayed 3 times at 4 and 8 leaves stage and pod initiation. Lipid and protein contents, fatty acids profile, some of mineral elements such as Fe, Mg, Ca and P, chlorophyll a, b and total chlorophyll content were determined. Results showed that solution containing ferrous nano-oxide particles had significant effect on nutritional compounds of soybean seed (P<0.01) compared to control. The highest content of lipid and protein (25.4 and %33.8, respectively) observed by applying 0.75 g L-1 of ferrous nano-oxide and the lowest content was also in control. Changes in the trends of fatty acids profile (palmitic, oleic, linoleic and linolenic acids), some of mineral elements (Fe, Mg, Ca and P) and chlorophyll contents were similar to lipid and protein levels which by increasing in concentration of ferrous nano-oxide from 0 to 0.75 g L-1 all measured parameters also increased, but reduction in all parameters was observed in concentration from 0.75 to 1 g L-1. In conclusion, application of 0.75 to 1 g L-1 ferrous nano-oxide had the best effect on the nutrient composition of soybean seed.


Assuntos
Sementes/efeitos dos fármacos , Sementes/química , Glycine max/efeitos dos fármacos , Glycine max/química , Compostos Ferrosos/farmacologia , Nanopartículas Metálicas/química , Valores de Referência , Sementes/fisiologia , Glycine max/fisiologia , Oligoelementos/análise , Proteínas/análise , Distribuição Aleatória , Clorofila/análise , Análise de Regressão , Reprodutibilidade dos Testes , Ácidos Graxos/análise , Fertilizantes , Lipídeos/análise
18.
Braz. j. infect. dis ; 21(2): 125-132, Mar.-Apr. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839198

RESUMO

Abstract Resistance to benznidazole in certain strains of Trypanosoma cruzi may be caused by the increased production of enzymes that act on the oxidative metabolism, such as mitochondrial tryparedoxin peroxidase which catalyses the reduction of peroxides. This work presents cytotoxicity assays performed with ferrocenyl diamine hydrochlorides in six different strains of T. cruzi epimastigote forms (Y, Bolivia, SI1, SI8, QMII, and SIGR3). The last four strains have been recently isolated from triatominae and mammalian host (domestic cat). The expression of mitochondrial tryparedoxin peroxidase was analyzed by the Western blotting technique using polyclonal antibody anti mitochondrial tryparedoxin peroxidase obtained from a rabbit immunized with the mitochondrial tryparedoxin peroxidase recombinant protein. All the tested ferrocenyl diamine hydrochlorides were more cytotoxic than benznidazole. The expression of the 25.5 kDa polypeptide of mitochondrial tryparedoxin peroxidase did not increase in strains that were more resistant to the ferrocenyl compounds (SI8 and SIGR3). In addition, a 58 kDa polypeptide was also recognized in all strains. Ferrocenyl diamine hydrochlorides showed trypanocidal activity and the expression of 25.5 kDa mitochondrial tryparedoxin peroxidase is not necessarily increased in some T. cruzi strains. Most likely, other mechanisms, in addition to the over expression of this antioxidative enzyme, should be involved in the escape of parasites from cytotoxic oxidant agents.


Assuntos
Animais , Gatos , Coelhos , Peroxidases/metabolismo , Compostos Ferrosos/farmacologia , Proteínas de Protozoários/metabolismo , Oxidantes/farmacologia , Diaminas/farmacologia , Mitocôndrias/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Western Blotting , Mitocôndrias/efeitos dos fármacos
19.
Mem. Inst. Oswaldo Cruz ; 110(8): 981-988, Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-769827

RESUMO

This work reports the in vitro activity against Plasmodium falciparumblood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.


Assuntos
Animais , Humanos , Antimaláricos/farmacologia , Complexos de Coordenação/síntese química , Compostos Ferrosos/farmacologia , Compostos Organometálicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Rutênio/farmacologia , Antimaláricos/síntese química , Linhagem Celular , Cromatografia em Camada Fina , Complexos de Coordenação/farmacologia , Citotoxinas/farmacologia , Compostos Ferrosos/síntese química , Haplorrinos , /parasitologia , Técnicas In Vitro , Compostos Organometálicos/síntese química , Rutênio/química , Tamoxifeno/química
20.
Braz. j. med. biol. res ; 45(1): 58-67, Jan. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-610544

RESUMO

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15 percent increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52 percent compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.


Assuntos
Animais , Ratos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , /efeitos dos fármacos , Peptídeos beta-Amiloides/farmacologia , Apoptose/fisiologia , Diferenciação Celular , Proliferação de Células , Compostos Ferrosos/farmacologia , Nitrocompostos/farmacologia , Estresse Oxidativo/fisiologia , Propionatos/farmacologia , Transdução de Sinais/fisiologia , Estaurosporina/farmacologia , /fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA