Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 847
Filtrar
1.
ACS Appl Mater Interfaces ; 16(19): 25101-25112, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691046

RESUMO

The evolution of nano-drug delivery systems addresses the limitations of conventional cancer treatments with stimulus-responsive nanomaterial-based delivery systems presenting temporal and spatial advantages. Among various nanomaterials, boron nitride nanoparticles (BNNs) demonstrate significant potential in drug delivery and cancer treatment, providing a high drug loading capacity, multifunctionality, and low toxicity. However, the challenge lies in augmenting nanomaterial accumulation exclusively within tumors while preserving healthy tissues. To address this, we introduce a novel approach involving cancer cell membrane-functionalized BNNs (CM-BIDdT) for the codelivery of doxorubicin (Dox) and indocyanine green to treat homologous tumor. The cancer cell membrane biomimetic CM-BIDdT nanoparticles possess highly efficient homologous targeting capabilities toward tumor cells. The surface modification with acylated TAT peptides (dTAT) further enhances the nanoparticle intracellular accumulation. Consequently, CM-BIDdT nanoparticles, responsive to the acidic tumor microenvironment, hydrolyze amide bonds, activate the transmembrane penetrating function, and achieve precise targeting with substantial accumulation at the tumor site. Additionally, the photothermal effect of CM-BIDdT under laser irradiation not only kills cells through thermal ablation but also destroys the membrane on the surface of the nanoparticles, facilitating Dox release. Therefore, the fabricated CM-BIDdT nanoparticles orchestrate chemo-photothermal combination therapy and effectively inhibit tumor growth with minimal adverse effects, holding promise as a new modality for synergistic cancer treatment.


Assuntos
Compostos de Boro , Doxorrubicina , Verde de Indocianina , Nanopartículas , Doxorrubicina/química , Doxorrubicina/farmacologia , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Animais , Humanos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Terapia Fototérmica , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
2.
ACS Appl Bio Mater ; 7(5): 3431-3440, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38697834

RESUMO

Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Luz , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Estrutura Molecular , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/química , Tamanho da Partícula , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Processos Fotoquímicos , Teoria da Densidade Funcional
3.
Jt Dis Relat Surg ; 35(2): 340-346, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727113

RESUMO

OBJECTIVES: The aim of this study was to investigate the effects of adding hexagonal boron nitride at four different concentrations to polymethylmethacrylate (PMMA) bone cement, which is commonly used in orthopedic surgeries, on the mechanical properties and microarchitecture of the bone cement. MATERIALS AND METHODS: The study included an unaltered control group and groups containing four different concentrations (40 g of bone cement with 0.5 g, 1 g, 1.5 g, 2 g) of hexagonal boron nitride. The samples used for mechanical tests were prepared at 20±2ºC in operating room conditions, using molds in accordance with the test standards. As a result of the tests, the pressure values at which the samples deformed were determined from the load-deformation graphs, and the megapascal (MPa) values at which the samples exhibited strength were calculated. RESULTS: The samples with 0.5 g boron added to the bone cement had significantly increased mechanical strength, particularly in the compression test. In the group where 2 g boron was added, it was noted that, compared to the other groups, the strength pressure decreased and the porosity increased. The porosity did not change particularly in the group where 0.5 g boron was added. CONCLUSION: Our study results demonstrate that adding hexagonal boron nitride (HBN) to bone cement at a low concentration (0.5 g / 40 g PPMA) significantly increases the mechanical strength in terms of MPa (compression forces) without adversely affecting porosity. However, the incorporation of HBN at higher concentrations increases porosity, thereby compromising the biomechanical properties of the bone cement, as evidenced by the negative impact on compression and four-point bending tests. Boron-based products have gained increased utilization in the medical field, and HBN is emerging as a promising chemical compound, steadily growing in significance.


Assuntos
Cimentos Ósseos , Compostos de Boro , Força Compressiva , Teste de Materiais , Polimetil Metacrilato , Compostos de Boro/química , Compostos de Boro/farmacologia , Polimetil Metacrilato/química , Cimentos Ósseos/química , Teste de Materiais/métodos , Porosidade , Estresse Mecânico
4.
J Med Chem ; 67(10): 7935-7953, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38713163

RESUMO

The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, JYQ-164 and JYQ-173, inhibiting PARK7 in vitro and in cells by covalently and selectively targeting its critical residue, Cys106. Leveraging JYQ-173, we further developed a cell-permeable Bodipy probe, JYQ-196, for covalent labeling of PARK7 in living cells and a first-in-class PARK7 degrader JYQ-194 that selectively induces its proteasomal degradation in human cells. Our study provides a valuable toolbox to enhance the understanding of PARK7 biology in cellular contexts and opens new opportunities for therapeutic interventions.


Assuntos
Proteína Desglicase DJ-1 , Proteólise , Compostos de Boro/farmacologia , Compostos de Boro/química , Compostos de Boro/síntese química , Proteína Desglicase DJ-1/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
5.
Nanoscale ; 16(19): 9462-9475, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38639449

RESUMO

The dimerization of boron dipyrromethene (BODIPY) moieties is an appealing molecular design approach for developing heavy-atom-free triplet photosensitizers (PSs). However, BODIPY dimer-based PSs generally lack target specificity, which limits their clinical use for photodynamic therapy. This study reports the synthesis of two mitochondria-targeting triphenylphosphonium (TPP)-functionalized meso-ß directly linked BODIPY dimers (BTPP and BeTPP). Both BODIPY dimers exhibited solvent-polarity-dependent singlet oxygen (1O2) quantum yields, with maximum values of 0.84 and 0.55 for BTPP and BeTPP, respectively, in tetrahydrofuran. The compact orthogonal geometry of the BODIPY dimers facilitated the generation of triplet excited states via photoinduced charge separation (CS) and subsequent spin-orbit charge-transfer intersystem crossing (SOCT-ISC) processes and their rates were dependent on the energetic configuration between the frontier molecular orbitals of the two BODIPY subunits. The as-synthesized compounds were amphiphilic and hence formed stable nanoparticles (∼36 nm in diameter) in aqueous solutions, with a zeta potential of ∼33 mV beneficial for mitochondrial targeting. In vitro experiments with MCF-7 and HeLa cancer cells indicated the effective localization of BTPP and BeTPP within cancer-cell mitochondria. Under light irradiation, BTPP and BeTPP exhibited robust photo-induced therapeutic effects in both cell lines, with half-maximal inhibitory concentration (IC50) values of ∼30 and ∼55 nM, respectively.


Assuntos
Compostos de Boro , Mitocôndrias , Nanopartículas , Compostos Organofosforados , Fotoquimioterapia , Fármacos Fotossensibilizantes , Oxigênio Singlete , Humanos , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Células MCF-7 , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Dimerização
6.
Sci Rep ; 14(1): 8265, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594281

RESUMO

Boron neutron capture therapy (BNCT) is a type of targeted particle radiation therapy with potential applications at the cellular level. Spinal cord gliomas (SCGs) present a substantial challenge owing to their poor prognosis and the lack of effective postoperative treatments. This study evaluated the efficacy of BNCT in a rat SCGs model employing the Basso, Beattie, and Bresnahan (BBB) scale to assess postoperative locomotor activity. We confirmed the presence of adequate in vitro boron concentrations in F98 rat glioma and 9L rat gliosarcoma cells exposed to boronophenylalanine (BPA) and in vivo tumor boron concentration 2.5 h after intravenous BPA administration. In vivo neutron irradiation significantly enhanced survival in the BNCT group when compared with that in the untreated group, with a minimal BBB scale reduction in all sham-operated groups. These findings highlight the potential of BNCT as a promising treatment option for SCGs.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioma , Neoplasias da Medula Espinal , Ratos , Animais , Neoplasias Encefálicas/patologia , Ratos Endogâmicos F344 , Boro , Pesquisa Translacional Biomédica , Compostos de Boro/farmacologia , Glioma/patologia
7.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560761

RESUMO

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Assuntos
Antineoplásicos , Fotoquimioterapia , Porfobilinogênio/análogos & derivados , Pró-Fármacos , Humanos , Boro/farmacologia , Luz Vermelha , Corantes , Pró-Fármacos/farmacologia , Cobalto/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Antineoplásicos/efeitos da radiação , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Oxigênio Singlete/metabolismo , Luz
8.
ACS Appl Mater Interfaces ; 16(17): 21699-21708, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634764

RESUMO

Conventional photosensitizers (PSs) used in photodynamic therapy (PDT) have shown preliminary success; however, they are often associated with several limitations including potential dark toxicity in healthy tissues, limited efficacy under acidic and hypoxic conditions, suboptimal fluorescence imaging capabilities, and nonspecific targeting during treatment. In response to these challenges, we developed a heavy-atom-free PS, denoted as Cz-SB, by incorporating ethyl carbazole into a thiophene-fused BODIPY core. A comprehensive investigation into the photophysical properties of Cz-SB was conducted through a synergistic approach involving experimental and computational investigations. The enhancement of intersystem crossing (kISC) and fluorescence emission (kfl) rate constants was achieved through a donor-acceptor pair-mediated charge transfer mechanism. Consequently, Cz-SB demonstrated remarkable efficiency in generating reactive oxygen species (ROS) under acidic and low-oxygen conditions, making it particularly effective for hypoxic cancer PDT. Furthermore, Cz-SB exhibited good biocompatibility, fluorescence imaging capabilities, and a high degree of localization within the mitochondria of living cells. We posit that Cz-SB holds substantial prospects as a versatile PS with innovative molecular design, representing a potential "one-for-all" solution in the realm of cancer phototheranostics.


Assuntos
Mitocôndrias , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacologia , Carbazóis/química , Carbazóis/farmacologia , Células HeLa , Tiofenos/química , Tiofenos/farmacologia , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542161

RESUMO

Photodynamic therapy (PDT) relies on the combined action of a photosensitizer (PS), light at an appropriate wavelength, and oxygen, to produce reactive oxygen species (ROS) that lead to cell death. However, this therapeutic modality presents some limitations, such as the poor water solubility of PSs and their limited selectivity. To overcome these problems, research has exploited nanoparticles (NPs). This project aimed to synthesize a PS, belonging to the BODIPY family, covalently link it to two NPs that differ in their lipophilic character, and then evaluate their photodynamic activity on SKOV3 and MCF7 tumor cell lines. Physicochemical analyses demonstrated that both NPs are suitable for PDT, as they are resistant to photobleaching and have good singlet oxygen (1O2) production. In vitro biological analyses showed that BODIPY has greater photodynamic activity in the free form than its NP-bounded counterpart, probably due to greater cellular uptake. To evaluate the main mechanisms involved in PDT-induced cell death, flow cytometric analyses were performed and showed that free BODIPY mainly induced necrosis, while once bound to NP, it seemed to prefer apoptosis. A scratch wound healing test indicated that all compounds partially inhibited cellular migration of SKOV3 cells.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Compostos de Boro/farmacologia , Compostos de Boro/química , Linhagem Celular Tumoral , Oxigênio
10.
Dalton Trans ; 53(8): 3579-3588, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38314620

RESUMO

Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Compostos de Boro/farmacologia , Superóxidos
11.
Bioorg Med Chem ; 99: 117583, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198943

RESUMO

Developing effective near-infrared (NIR) photosensitizers (PSs) has been an attractive goal of photodynamic therapy (PDT) for cancer treatment. In this study, we synthesized N, N-diethylaminomethylphenyl-containing Aza-BODIPY photosensitizers and comprehensively investigated their photophysical/photochemical properties, as well as cell-based and animal-based anti-tumor studies. Among them, BDP 1 has strong NIR absorption at 680 nm and higher singlet oxygen yield in PBS which showed favorable pH-activatable and lysosome-targeting ability. BDP 1 could be easily taken up by tumor cells and showed negligible dark activity (IC50 > 50 µM), however strong phototoxicity upon exposure to light irradiation. The acceptable fluorescence emission from BDP 1 allowed convenient in vivo fluorescence imaging for organ distribution studies in mice. After PDT treatment with upon single time PDT treatment at the beginning using relatively low light dose (54 J/ cm2), BDP 1 (2 mg/kg, 0.1 mL) was found to have strong efficacy to inhibit tumor growth and even to ablate off tumor without causing body weight loss. Therefore, pH-activatable and lysosome-targeted PS may become an effective way to develop potent PDT agent.


Assuntos
Neoplasias , Fotoquimioterapia , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Compostos de Boro/química , Neoplasias/tratamento farmacológico , Lisossomos
12.
Chembiochem ; 25(3): e202300653, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095754

RESUMO

In the realm of cancer therapy and treatment of bacterial infection, photothermal therapy (PTT) stands out as a potential strategy. The challenge, however, is to create photothermal agents that can perform both imaging and PTT, a so-called theranostic agent. Photothermal agents that absorb and emit in the near-infrared region (750-900 nm) have recently received a lot of attention due to the extensive penetration of NIR light in biological tissues. In this study, we combined pyrazole with aza-BODIPY (PY-AZB) to develop a novel photothermal agent. PY-AZB demonstrated great photostability with a photothermal conversion efficiency (PCE) of up to 33 %. Additionally, PY-AZB can permeate cancer cells at a fast accumulation rate in less than 6 hours, according to the confocal images. Furthermore, in vitro photothermal therapy results showed that PY-AZB effectively eliminated cancer cells by up to 70 %. Interestingly, PY-AZB exhibited antibacterial activities against both gram-negative bacteria, Escherichia coli 780, and gram-positive bacteria, Staphylococcus aureus 1466. The results exhibit a satisfactory bactericidal effect against bacteria, with a killing efficiency of up to 100 % upon laser irradiation. As a result, PY-AZB may provide a viable option for photothermal treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Fototerapia , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Escherichia coli , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Neoplasias/tratamento farmacológico
13.
Cell Chem Biol ; 31(1): 139-149.e14, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-37967558

RESUMO

A novel class of benzoxaboroles was reported to induce cancer cell death but the mechanism was unknown. Using a forward genetics platform, we discovered mutations in cleavage and polyadenylation specific factor 3 (CPSF3) that reduce benzoxaborole binding and confer resistance. CPSF3 is the endonuclease responsible for pre-mRNA 3'-end processing, which is also important for RNA polymerase II transcription termination. Benzoxaboroles inhibit this endonuclease activity of CPSF3 in vitro and also curb transcriptional termination in cells, which results in the downregulation of numerous constitutively expressed genes. Furthermore, we used X-ray crystallography to demonstrate that benzoxaboroles bind to the active site of CPSF3 in a manner distinct from the other known inhibitors of CPSF3. The benzoxaborole compound impeded the growth of cancer cell lines derived from different lineages. Our results suggest benzoxaboroles may represent a promising lead as CPSF3 inhibitors for clinical development.


Assuntos
Antineoplásicos , Compostos de Boro , Fator de Especificidade de Clivagem e Poliadenilação , Endonucleases , Precursores de RNA , Processamento Pós-Transcricional do RNA , Fator de Especificidade de Clivagem e Poliadenilação/antagonistas & inibidores , Fator de Especificidade de Clivagem e Poliadenilação/química , Endonucleases/antagonistas & inibidores , Precursores de RNA/genética , Precursores de RNA/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral
14.
Eur J Med Chem ; 264: 116012, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056302

RESUMO

The discovery of new photosensitizer drugs with long wavelength Uv-vis absorption, high efficiency and low side-effects is still a challenge in photodynamic therapy. Here a series of novel meso-substitutedphenyl thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. All these compounds have strong absorption at 640-680 nm and obvious fluorescence emission at 650-760 nm. They exhibited high singlet oxygen generation ability and significant photodynamic efficiency against Eca-109 cancer cells. Compounds II4, II6, II9, II10 and II13 could generate intracellular ROS and induce cell apoptosis after laser irradiation, which displayed superior photodynamic efficiency against Eca-109 cells than Temoporfin in vitro and in vivo. Among them, compound II4 specifically exhibited excellent anti-tumor efficacy, and could be selected as a new drug candidate for PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Tiofenos/farmacologia , Compostos de Boro/farmacologia , Oxigênio Singlete
15.
Chem Commun (Camb) ; 59(83): 12447-12450, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37779498

RESUMO

A cationic BODIPY-based G-quadruplex-selective stabiliser is developed and shown to decrease cancer cell migration-invasion up to 90%. The expression of critical genes (HIF1α, VIM, CDH1) related to metastasis is modulated. The stabiliser reprograms hypoxia-adaptive metabolism and an 1.82-fold increase in O2 consumption, enabling back-to-normal switching of energy metabolism, is observed. Stabilisers with a strong G-quadruplex affinity (0.38 µM Kd) significantly contribute to small molecule anti-cancer approaches.


Assuntos
Quadruplex G , Neoplasias , Compostos de Boro/farmacologia
16.
Eur J Med Chem ; 259: 115705, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544182

RESUMO

A series of BODIPY compounds with a methylphenol substituent at the meso-position and halogen atoms on the BODIPY core, or OCH3 or OAc substituents at the phenolic moiety was synthesized. Their spectral and photophysical properties and the photochemical reactivity upon irradiation in CH3OH were investigated. The molecules with the phenolic substituent at the meso-position undergo more efficient photo-methanolysis at the boron atom, while the introduction of the OCH3 group at the phenolic moiety changes the reaction selectivity towards the cleavage at the meso-position. The introduction of the halogen atoms into the BODIPY increases the photo-cleavage reaction efficiency, as well as the ability of the molecules to sensitize oxygen and form reactive oxygen species (ROS). The efficiency of the ROS formation was measured in comparison with that of tetraphenylporphyrin. The antiproliferative effect of BODIPY molecules was investigated against three human cancer cell lines MCF-7 (breast carcinoma), H460 (lung carcinoma), HCT116 (colon carcinoma), and two non-cancer cell lines, HEK293T (embryonic kindey) and HaCaT (keratinocytes), with the cells kept in the dark or irradiated with visible light. For most of the compounds a modest or no antiproliferative activity was observed for cells in the dark. However, when cells were irradiated, a dramatic increase in cytotoxicity was observed (more than 100-fold), with IC50 values in the submicromolar concentration range. The enhancement of the cytotoxic effect was explained by the formation of ROS, which was studied for cells in vitro. However, for some BODIPY compounds, the effects due to the formation of electrophilic species (carbocations and quinone methides, which react with biomolecules) cannot be disregarded. Confocal fluorescence microscopy images of H460 cells and HEK293T show that the compounds enter the cells and are retained in the cytoplasm and membranes of the various organelles. When the cells treated with the compounds are irradiated, photo-processes lead to cell death by apoptosis. The study performed is important because it provides bases for the development of novel photo-therapeutics capable of exerting photo-cytotoxic effects in both oxygenated and hypoxic cells.


Assuntos
Carcinoma , Oxigênio Singlete , Humanos , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Células HEK293 , Compostos de Boro/farmacologia , Compostos de Boro/química , Halogênios
17.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511596

RESUMO

Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Boro , Oxigênio Singlete/química , Fotoquimioterapia/métodos , Compostos de Boro/farmacologia , Compostos de Boro/química
18.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298796

RESUMO

Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the development of an efficient two-step protocol to completely diastereoselectively access a diethanolamine (DEA) boronate ester derivative of monosaccharide d-galactose from the starting material 1,2:5,6-di-O-isopropylidene-α-d-glucofuranose. This intermediate, in turn, is used to access 3-boronic-3deoxy-d-galactose for boron neutron capture therapy (BNCT) applications. The hydroboration/borane trapping protocol was robustly optimized with BH3.THF in 1,4-dioxane, followed by in-situ conversion of the inorganic borane intermediate to the organic boron product by the addition of DEA. This second step occurs instantaneously, with the immediate formation of a white precipitate. This protocol allows expedited and greener access to a new class of BNCT agents with an Fsp3 index = 1 and a desirable toxicity profile. Furthermore, presented is the first detailed NMR analysis of the borylated free monosaccharide target compound during the processes of mutarotation and borarotation.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Monossacarídeos , Galactose , Boro/química , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias/tratamento farmacológico , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico
19.
J Med Chem ; 66(11): 7205-7220, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37204432

RESUMO

In this study, we linked classical organelle-targeting groups, such as triphenylphosphonium, pentafluorobenzene, and morpholine, to our previously reported potent monoiodo Aza-BODIPY photosensitizer (BDP-15). They were conveniently prepared and retained the advantages of Aza-BODIPY PS with intense NIR absorption, moderate quantum yield, potent photosensitizing efficiency, and good stability. The in vitro antitumor assessment indicated that mitochondria-targeting and lysosome-targeting groups were more effective than ER-targeting groups. Considering undesirable dark toxicity of triphenylphosphonium-modified PSs, compound 6 containing amide-linked morpholine possessed a favorable dark/phototoxicity ratio (>6900 for tumor cells) and was localized in lysosomes with Pearson's coefficient of 0.91 to Lyso-Tracker Green DND-26. 6 exhibited significantly increased intracellular ROS production and resulted in early/late apoptosis and necrosis to disrupt tumor cells. Moreover, in vivo antitumor efficacy exploration suggested that even under a slightly low dose of light (30 J/cm2) and single-time photoirradiation, 6 retarded tumor growth dramatically and displayed much better PDT activity over BDP-15 and Ce6.


Assuntos
Dermatite Fototóxica , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/efeitos da radiação , Fotoquimioterapia/métodos , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Lisossomos , Dermatite Fototóxica/tratamento farmacológico , Linhagem Celular Tumoral
20.
J Am Acad Dermatol ; 89(2): 283-292, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054814

RESUMO

BACKGROUND: Safe and effective long-term topical treatments for atopic dermatitis (AD) remain limited. OBJECTIVE: In this phase 2a, single-center, intrapatient, and vehicle-controlled study, we examine the mechanism of action of crisaborole 2% ointment, a topical nonsteroidal PDE4 (phosphodiesterase-4) inhibitor, in a proteomic analysis of 40 adults with mild to moderate AD and 20 healthy subjects. METHODS: Within the AD cohort, 2 target lesions were randomized in an intrapatient (1:1) manner to double-blind crisaborole/vehicle applied twice daily for 14 days. Punch biopsy specimens were collected for biomarker analysis at baseline from all participants, then from AD patients only at day 8 (optional) and day 15. RESULTS: Compared to the vehicle, crisaborole significantly reversed dysregulation of the overall lesional proteome and of key markers and pathways (eg, Th2, Th17/Th22, and T-cell activation) associated with AD pathogenesis toward both nonlesional and normal skin. Significant clinical correlations were observed with markers associated with nociception and Th2, Th17, and neutrophilic activation. LIMITATIONS: Study limitations include predominance of white patients in the cohort, relatively short treatment time, and regimented administration of crisaborole. CONCLUSION: Our results demonstrate crisaborole-induced normalization of the AD proteome toward a nonlesional molecular phenotype and further support topical PDE4 inhibition in the treatment of mild to moderate AD.


Assuntos
Dermatite Atópica , Adulto , Humanos , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Pomadas/uso terapêutico , Proteoma , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA