Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.856
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phytochemistry ; 222: 114073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565420

RESUMO

Two undescribed cladosporol derivatives, cladosporols J-K (1-2), and three previously unreported spirobisnaphthalenes, urnucratins D-F (3-5), as well as eleven known cladosporols (6-16), were characterized from Cladosporium cladosporioides (Cladosporiaceae), a common plant pathogen isolated from the skin of Chinese toad. Cladosporols J-K (1-2) with a single double bond have been rarely reported, while urnucratins D-F (3-5) featured an unusual benzoquinone bisnaphthospiroether skeleton, contributing to an expanding category of undiscovered natural products. Their structures and absolute configurations were determined using extensive spectroscopic methods, including NMR, HRESIMS analyses, X-ray single crystal diffraction, as well as through experimental ECD analyses. Biological assays revealed that compounds 1 and 2 exhibited inhibitory activity against A549 cells, with IC50 values of 30.11 ± 3.29 and 34.32 ± 2.66 µM, respectively.


Assuntos
Cladosporium , Naftalenos , Cladosporium/química , Humanos , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Células A549 , Compostos de Espiro/química , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos
2.
Phytochemistry ; 222: 114101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636687

RESUMO

Bafilomycins are macrocyclic polyketides with intriguing structures and therapeutic value. Genomic analysis of Streptomyces sp. SCSIO 66814 revealed a type I polyketide synthase biosynthetic gene cluster (BGC), namely blm, which encoded bafilomycins and featured rich post-modification genes. The One strain many compounds (OSMAC) strategy led to the discovery of six compounds related to the blm BGC from the strain, including two previously undescribed 6,6-spiroketal polyketides, streptospirodienoic acids D (1) and E (2), and four known bafilomycins, bafilomycins P (3), Q (4), D (5), and G (6). The structures of 1 and 2 were determined by extensive spectroscopic analysis, quantum calculation, and biosynthetic analysis. Additionally, the absolute configurations of the 6/5/5 tricyclic ring moiety containing six consecutive chiral carbons in the putative structures of 3 and 4 were corrected through NOE analysis, DP4+ calculation, and single-crystal X-ray diffraction data. Bioinformatic analysis uncovered a plausible biosynthetic pathway for compounds 1-6, indicating that both streptospirodienoic acids and bafilomycins were derived from the same blm BGC. Additionally, sequence analysis revealed that the KR domains of module 2 from blm BGC was B1-type, further supporting the configurations of 1-4. Notably, compounds 3 and 4 displayed significant cytotoxic activities against A-549 human non-small cell lung cancer cells and HCT-116 human colon cancer cells.


Assuntos
Policetídeos , Streptomyces , Streptomyces/química , Streptomyces/metabolismo , Streptomyces/genética , Policetídeos/química , Policetídeos/farmacologia , Policetídeos/isolamento & purificação , Humanos , Estereoisomerismo , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Macrolídeos/química , Macrolídeos/farmacologia , Macrolídeos/isolamento & purificação , Macrolídeos/metabolismo , Proliferação de Células/efeitos dos fármacos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/isolamento & purificação , Relação Estrutura-Atividade , Policetídeo Sintases/metabolismo , Policetídeo Sintases/genética , Linhagem Celular Tumoral , Genoma Bacteriano , Família Multigênica
3.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608805

RESUMO

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Assuntos
Asma , Caderinas , Modelos Animais de Doenças , Ferroptose , Quinoxalinas , Compostos de Espiro , Animais , Ferroptose/efeitos dos fármacos , Caderinas/metabolismo , Asma/metabolismo , Asma/patologia , Asma/induzido quimicamente , Camundongos , Granulócitos/metabolismo , Granulócitos/patologia , Feminino , Camundongos Endogâmicos BALB C , Ovalbumina , Fenilenodiaminas/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Cicloexilaminas/farmacologia
4.
Bioorg Chem ; 147: 107363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657527

RESUMO

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Assuntos
Antioxidantes , Dipeptidil Peptidase 4 , Hipoglicemiantes , Pirazóis , Triazóis , alfa-Amilases , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Relação Estrutura-Atividade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Dipeptidil Peptidase 4/metabolismo , Estrutura Molecular , Humanos , Relação Dose-Resposta a Droga , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/síntese química , Simulação de Acoplamento Molecular , Picratos/antagonistas & inibidores , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/síntese química , Oxindóis/farmacologia , Oxindóis/química , Oxindóis/síntese química , Benzopiranos , Nitrilas
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612759

RESUMO

As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.


Assuntos
Lesão Pulmonar Aguda , Antineoplásicos , Benzimidazóis , Compostos de Espiro , Animais , Suínos , Cloro/toxicidade , Canais de Cátion TRPV , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação , Oxigênio
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124342, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676981

RESUMO

Two spirobifluene-based fluorescent probes SPF1 and SPF2, were designed and synthesized. The probes displayed "turn-on" fluorescence response for Cysteine. One of the challenges in developing a Cysteine probe is to secure high selectivity. SPF1/SPF2 can discriminate Cysteine from GSH as well as Hcy, and showed high substrate selectivity. The detection limit of SPF1 is 36 nM, which is excellent comparing with other optical sensors for Cysteine. The sensing mechanism of SPF1/SPF2 was verified by experimental data and theoretical calculations. There was a good linear relationship between the fluorescence intensity of SPF1/SPF2 and the concentration of Cysteine. The MTT tests indicated that SPF1/SPF2 had low cytotoxicity and good biocompatibility. Theoretical calculations demonstrated that SPF1, SPF2, and their related reaction products with Cysteine exhibited good two-photon absorption properties. Finally, SPF1/SPF2 had been successfully applied to the imaging of Cysteine in living cells under two-photon excitation.


Assuntos
Cisteína , Corantes Fluorescentes , Compostos de Espiro , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cisteína/análise , Humanos , Compostos de Espiro/química , Células HeLa , Imagem Óptica/métodos , Limite de Detecção , Fótons , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Espectrometria de Fluorescência/métodos
7.
Bioorg Med Chem Lett ; 104: 129739, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599298

RESUMO

FR901464 is a natural product that exhibits antiproliferative activity at single-digit nanomolar concentrations in cancer cells. Its tetrahydropyran-spiroepoxide covalently binds the spliceosome. Through our medicinal chemistry campaign, we serendipitously discovered that a bromoetherification formed a tetrahydrofuran. The tetrahydrofuran analog was three orders of magnitude less potent than the corresponding tetrahydropyran analogs. This study shows the significance of the tetrahydropyran ring that presents the epoxide toward the spliceosome.


Assuntos
Compostos de Epóxi , Furanos , Piranos , Compostos de Espiro , Humanos , Linhagem Celular Tumoral , Compostos de Epóxi/síntese química , Compostos de Epóxi/farmacologia , Furanos/síntese química , Furanos/farmacologia , Piranos/síntese química , Piranos/farmacologia , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia
8.
Cancer Res Commun ; 4(5): 1328-1343, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38687198

RESUMO

Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli. SIGNIFICANCE: SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Transdução de Sinais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Humanos , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Linhagem Celular Tumoral , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , NF-kappa B/metabolismo , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Receptores de Antígenos de Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos
9.
Free Radic Biol Med ; 218: 26-40, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570172

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in ferroptosis by regulating the cellular antioxidant response and maintaining redox balance. However, compounds that induce ferroptosis through dual antioxidant pathways based on Nrf2 have not been fully explored. In our study, we investigated the impact of Gambogic acid (GA) on MCF-7 cells and HepG2 cells in vitro. The cytotoxicity, colony formation assay and cell cycle assay demonstrated potent tumor-killing ability of GA, while its effect was rescued by ferroptosis inhibitors. Furthermore, RNA sequencing revealed the enrichment of ferroptosis pathway mediated by GA. In terms of ferroptosis indicators detection, evidences for GA were provided including reactive oxygen species (ROS) accumulation, alteration in mitochondrial membrane potential (MMP), disappearance of mitochondrial cristae, lipid peroxidation induction, malondialdehyde (MDA) accumulation promotion, iron ion accumulation as well as glutathione (GSH)/thioredoxin (Trx) depletion. Notably, Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) successfully rescued GA-induced MDA accumulation. In terms of mechanism, Nrf2 was found to play a pivotal role in GA-induced ferroptosis by inducing protein alterations through the iron metabolism pathway and GSH/Trx dual antioxidant pathway. Furthermore, GA exerted good antitumor activity in vivo through GSH/Trx dual antioxidant pathway, and Fer-1 significantly attenuated its efficacy. In conclusion, our findings first provided new evidence for GA as an inducer of ferroptosis, and Nrf2-mediated GSH/Trx dual antioxidant system played an important role in GA-induced ferroptosis.


Assuntos
Antioxidantes , Ferroptose , Glutationa , Fator 2 Relacionado a NF-E2 , Quinoxalinas , Espécies Reativas de Oxigênio , Compostos de Espiro , Xantonas , Ferroptose/efeitos dos fármacos , Xantonas/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Glutationa/metabolismo , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Células MCF-7 , Células Hep G2 , Ensaios Antitumorais Modelo de Xenoenxerto , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antineoplásicos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Cicloexilaminas/farmacologia , Fenilenodiaminas/farmacologia , Proliferação de Células/efeitos dos fármacos
10.
J Comp Eff Res ; 13(5): e230041, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38497192

RESUMO

Background: In the absence of head-to-head comparative data from randomized controlled trials, indirect treatment comparisons (ITCs) may be used to compare the relative effects of treatments versus a common comparator (either placebo or active treatment). For acute pain management, the effects of oliceridine have been compared in clinical trials to morphine but not to fentanyl or hydromorphone. Aim: To assess the comparative safety (specifically differences in the incidence of nausea, vomiting and opioid-induced respiratory depression [OIRD]) between oliceridine and relevant comparators (fentanyl and hydromorphone) through ITC analysis. Methods: A systematic literature review identified randomized clinical trials with oliceridine versus morphine and morphine versus fentanyl or hydromorphone. The ITC utilized the common active comparator, morphine, for the analysis. Results: A total of six randomized controlled trials (oliceridine - 2; hydromorphone - 3; fentanyl - 1) were identified for data to be used in the ITC analyses. The oliceridine data were reported in two studies (plastic surgery and orthopedic surgery) and were also reported in a pooled analysis. The ITC focused on nausea and vomiting due to limited data for OIRD. When oliceridine was compared with hydromorphone in the ITC analysis, oliceridine significantly reduced the incidence of nausea and/or vomiting requiring antiemetics compared with hydromorphone (both orthopedic surgery and pooled data), while results in plastic surgery were not statistically significant. When oliceridine was compared with hydromorphone utilizing data from Hong, the ITC only showed a trend toward reduced risk of nausea and vomiting with oliceridine that was not statistically significant across all three comparisons (orthopedic surgery, plastic surgery and combined). An ITC comparing oliceridine with a study of fentanyl utilizing the oliceridine orthopedic surgery data and combined orthopedic and plastic surgery data showed a trend toward reduced risk that was not statistically significant. Conclusion: In ITC analyses, oliceridine significantly reduced the incidence of nausea and/or vomiting or the need for antiemetics in orthopedic surgery compared with hydromorphone and a non-significant trend toward reduced risk versus fentanyl.


Assuntos
Dor Aguda , Analgésicos Opioides , Fentanila , Hidromorfona , Náusea , Ensaios Clínicos Controlados Aleatórios como Assunto , Compostos de Espiro , Tiofenos , Vômito , Humanos , Hidromorfona/administração & dosagem , Hidromorfona/efeitos adversos , Hidromorfona/uso terapêutico , Fentanila/efeitos adversos , Fentanila/administração & dosagem , Fentanila/uso terapêutico , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/administração & dosagem , Dor Aguda/tratamento farmacológico , Vômito/induzido quimicamente , Vômito/prevenção & controle , Vômito/tratamento farmacológico , Náusea/prevenção & controle , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Administração Intravenosa , Insuficiência Respiratória/induzido quimicamente , Manejo da Dor/métodos , Quinuclidinas/uso terapêutico , Quinuclidinas/administração & dosagem , Quinuclidinas/efeitos adversos
11.
Angew Chem Int Ed Engl ; 63(20): e202401324, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38499463

RESUMO

We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.


Assuntos
Alcaloides , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/biossíntese , Piperazinas/química , Piperazinas/metabolismo , Ferro/química , Ferro/metabolismo , Ciclização , Biocatálise , Estrutura Molecular , Compostos de Espiro/química , Compostos de Espiro/metabolismo , Oxirredução , Piperazina/química , Piperazina/metabolismo
12.
Biochem Pharmacol ; 222: 116110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460908

RESUMO

This study investigates the anticancer activity and pharmacological mechanisms of Corynoxine (Cory) in non-small cell lung cancer (NSCLC). Cory, a natural product derived from the Chinese herbal medicine Uncaria rhynchophylla, demonstrates promising pharmacological activity. Cell proliferation and viability were evaluated via MTT and colony formation assays. Flow cytometry was employed to analyze cell apoptosis, cycle distribution, and mitochondrial membrane potential. Autophagy was detected using fluorescence microscopy and electron microscopy. Western blotting, protein overexpression, gene knockdown, co-immunoprecipitation, and bioinformatics characterized Cory's impact on signaling pathways. The research indicates that Cory inhibits the proliferation of NSCLC cells in vivo and in vitro. Cory enhances PP2A activity, inhibits the AKT/mTOR signaling pathway triggering autophagy, while suppressing the AKT/GSK3ß signaling pathway to induce cellular apoptosis in NSCLC. Notably, the activation of PP2A plays a crucial role in Cory's antitumor effects by inhibiting AKT. In vivo experiments validated Cory's efficacy in NSCLC treatment. These findings highlight the promising role of Cory as a lead compound for drug development in NSCLC therapy, providing a viable option for addressing this challenging disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Compostos de Espiro , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Autofagia
13.
Surgery ; 175(6): 1539-1546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508920

RESUMO

BACKGROUND: Ischemia-reperfusion injury is a common problem in liver surgery and transplantation. Although ischemia-reperfusion injury is known to be more pronounced in fatty livers, the underlying mechanisms for this difference remain poorly understood. We hypothesized that ferroptosis plays a significant role in fatty liver ischemia-reperfusion injury due to increased lipid peroxidation in the presence of stored iron in the fatty liver. To test this hypothesis, the ferroptosis pathway was evaluated in a murine fatty liver ischemia-reperfusion injury model. METHODS: C57BL6 mice were fed with a normal diet or a high fat, high sucrose diet for 12 weeks. At 22 weeks of age, liver ischemia-reperfusion injury was induced through partial (70%) hepatic pedicle clamping for 60 minutes, followed by 24 hours of reperfusion before tissue harvest. Acyl-coenzyme A synthetase long-chain family member 4 and 4-hydroxynonenal were quantified in the liver tissues. In separate experiments, liproxstatin-1 or vehicle control was administered for 7 consecutive days before liver ischemia-reperfusion injury. RESULTS: Exacerbated ischemia-reperfusion injury was observed in the livers of high fat, high sucrose diet fed mice. High fat, high sucrose diet + ischemia-reperfusion injury (HDF+IRI) livers had a significantly greater abundance of acyl-coenzyme A synthetase long-chain family member 4 and 4-hydroxynonenal compared with normal diet + ischemia-reperfusion injury (ND+IRI) livers or sham fatty livers, which indicated an increase of ferroptosis. HFD fed animals receiving liproxstatin-1 injections had a significant reduction in serum aspartate transaminase and alanine transaminase after ischemia-reperfusion injury, consistent with attenuation of ischemia-reperfusion injury in the liver. CONCLUSION: Ferroptosis plays a significant role in ischemia-reperfusion injury in fatty livers. Inhibiting ferroptotic pathways in the liver may serve as a novel therapeutic strategy to protect the fatty liver in the setting of ischemia-reperfusion injury.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Camundongos , Masculino , Fígado/metabolismo , Fígado/irrigação sanguínea , Fígado/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Modelos Animais de Doenças , Aldeídos/metabolismo , Coenzima A Ligases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Quinoxalinas , Compostos de Espiro
14.
Cell Commun Signal ; 22(1): 195, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539203

RESUMO

BACKGROUND: Lung cancer is cancer with the highest morbidity and mortality in the world and poses a serious threat to human health. Therefore, discovering new treatments is urgently needed to improve lung cancer prognosis. Small molecule inhibitors targeting the ubiquitin-proteasome system have achieved great success, in which deubiquitinase inhibitors have broad clinical applications. The deubiquitylase OTUD3 was reported to promote lung tumorigenesis by stabilizing oncoprotein GRP78, implying that inhibition of OTUD3 may be a therapeutic strategy for lung cancer. RESULTS: In this study, we identified a small molecule inhibitor of OTUD3, Rolapitant, by computer-aided virtual screening and biological experimental verification from FDA-approved drugs library. Rolapitant inhibited the proliferation of lung cancer cells by inhibiting deubiquitinating activity of OTUD3. Quantitative proteomic profiling indicated that Rolapitant significantly upregulated the expression of death receptor 5 (DR5). Rolapitant also promoted lung cancer cell apoptosis through upregulating cell surface expression of DR5 and enhanced TRAIL-induced apoptosis. Mechanistically, Rolapitant directly targeted the OTUD3-GRP78 axis to trigger endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-DR5 signaling, sensitizing lung cancer cells to TRAIL-induced apoptosis. In the vivo assays, Rolapitant suppressed the growth of lung cancer xenografts in immunocompromised mice at suitable dosages without apparent toxicity. CONCLUSION: In summary, the present study identifies Rolapitant as a novel inhibitor of deubiquitinase OTUD3 and establishes that the OTUD3-GRP78 axis is a potential therapeutic target for lung cancer.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Neoplasias Pulmonares , Compostos de Espiro , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Proteômica , Proteases Específicas de Ubiquitina/metabolismo , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
15.
Cell Signal ; 117: 111087, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316266

RESUMO

Bladder cancer (BLCA) is ranked among the main causes of mortality in male cancer patients, and research into targeted therapies guided by its genomics and molecular biology has been a prominent focus in BLCA studies. Fatty acid transporter protein 2 (FATP2), a member of the FATPs family,is a key contributor to the progression of cancers such as hepatocellular carcinomas and melanomas.However,its role in BLCA remains poorly understand. This study delved into the function of FATP2 in BLCA through a succession of experiments in vivo and in vitro, employing techniques as quantitative real-time polymerase chain reaction (qRT-PCR), RNA sequencing, transwell assays, immunofluorescence, western blot,and others to dissect its mechanistic actions. The findings revealed that an oncogenic function is executed by FATP2 in bladder cancer, significantly impacting the proliferation and migration capabilities, thereby affecting the prognosis of BLCA patients. Furthermore, A suppression that relies on both time and concentration of BLCA proliferation and migration, trigger of apoptosis, and blockage of the cell cycle at the G2/M phase were observed when the inhibitor of FATP2, Lipofermata, was applied. It was unveiled through subsequent investigations that ATF3 expression is indirectly promoted by Lipofermata through the inhibition of FATP2, ultimately inhibiting the signal transduction of the PI3K/Akt/mTOR pathway. This effect was also responsible for the inhibitory impact on BLCA proliferation. Therefore, FATP2 emerges as an auspicious and emerging molecular target with potential applications in precision therapy in BLCA.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Compostos de Espiro , Tiadiazóis , Neoplasias da Bexiga Urinária , Humanos , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/patologia , Proteínas de Transporte/farmacologia , Proliferação de Células , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo
16.
Arch Toxicol ; 98(3): 807-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175295

RESUMO

The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo-keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.


Assuntos
Cardiotoxicidade , Daunorrubicina/análogos & derivados , Idarubicina , Pirazinas , Compostos de Espiro , Humanos , Idarubicina/toxicidade , Idarubicina/metabolismo , Aldo-Ceto Redutases , Células HEK293 , Aldeído Redutase
17.
Adv Sci (Weinh) ; 11(12): e2307870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233204

RESUMO

For tumor treatment, the ultimate goal in tumor therapy is to eliminate the primary tumor, manage potential metastases, and trigger an antitumor immune response, resulting in the complete clearance of all malignant cells. Tumor microenvironment (TME) refers to the local biological environment of solid tumors and has increasingly become an attractive target for cancer therapy. Neutrophils within TME of gastric cancer (GC) spontaneously undergo ferroptosis, and this process releases oxidized lipids that limit T cell activity. Enhanced photodynamic therapy (PDT) mediated by di-iodinated IR780 (Icy7) significantly increases the production of reactive oxygen species (ROS). Meanwhile, neutrophil ferroptosis can be triggered by increased ROS generation in the TME. In this study, a liposome encapsulating both ferroptosis inhibitor Liproxstatin-1 and modified photosensitizer Icy7, denoted LLI, significantly inhibits tumor growth of GC. LLI internalizes into MFC cells to generate ROS causing immunogenic cell death (ICD). Simultaneously, liposome-deliver Liproxstatin-1 effectively inhibits the ferroptosis of tumor neutrophils. LLI-based immunogenic PDT and neutrophil-targeting immunotherapy synergistically boost the anti-PD-1 treatment to elicit potent TME and systemic antitumor immune response with abscopal effects. In conclusion, LLI holds great potential for GC immunotherapy.


Assuntos
Ferroptose , Fotoquimioterapia , Quinoxalinas , Compostos de Espiro , Neoplasias Gástricas , Humanos , Neutrófilos , Lipossomos , Espécies Reativas de Oxigênio , Microambiente Tumoral
18.
Bioorg Chem ; 143: 107091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183683

RESUMO

This scientific review documents the recent progress of C3-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C3-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc. Regarding organic synthesis, several traditional and advanced strategies have been reported, particularly those that started with isatin derivatives.


Assuntos
Benzopiranos , Nitrilas , Compostos de Espiro , Espiro-Oxindóis , Simulação de Acoplamento Molecular , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Oxindóis/farmacologia , Oxindóis/química
19.
Cephalalgia ; 44(1): 3331024231226186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215228

RESUMO

BACKGROUND: The trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) is identified as an essential element in migraine pathogenesis. METHODS: In vitro and in vivo studies evaluated pharmacologic properties of the CGRP receptor antagonist atogepant. Radioligand binding using 125I-CGRP and cyclic adenosine monophosphate (cAMP) accumulation assays were conducted in human embryonic kidney 293 cells to assess affinity, functional potency and selectivity. Atogepant in vivo potency was assessed in the rat nitroglycerine model of facial allodynia and primate capsaicin-induced dermal vasodilation (CIDV) pharmacodynamic model. Cerebrospinal fluid/brain penetration and behavioral effects of chronic dosing and upon withdrawal were evaluated in rats. RESULTS: Atogepant exhibited high human CGRP receptor-binding affinity and potently inhibited human α-CGRP-stimulated cAMP responses. Atogepant exhibited significant affinity for the amylin1 receptor but lacked appreciable affinities for adrenomedullin, calcitonin and other known neurotransmitter receptor targets. Atogepant dose-dependently inhibited facial allodynia in the rat nitroglycerine model and produced significant CIDV inhibition in primates. Brain penetration and behavioral/physical signs during chronic dosing and abrupt withdrawal were minimal in rats. CONCLUSIONS: Atogepant is a competitive antagonist with high affinity, potency and selectivity for the human CGRP receptor. Atogepant demonstrated a potent, concentration-dependent exposure/efficacy relationship between atogepant plasma concentrations and inhibition of CGRP-dependent effects.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Piperidinas , Piridinas , Pirróis , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Compostos de Espiro , Humanos , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Hiperalgesia/tratamento farmacológico
20.
Chem Biodivers ; 21(3): e202301762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263615

RESUMO

Artemisia pallens Wall. ex DC (Asteraceae) is cultivated for the production of high-value essential oil from its aerial biomass. In this study, the chemical composition of the root (crop-residue) essential oil was investigated for the first time, using column-chromatography, GC-FID, GC-MS, LC-QTOF, and NMR techniques, which led to the identification of twenty constituents, with isolation of (E)-2-(2',4'-hexadiynylidene)-1,6-dioxaspiro [4.5]dec-3-ene (D6). The D6 was evaluated in vitro for neuroinflammation and acetylcholinesterase inhibitory potential. It showed inhibition of neuroinflammation in a concentration-dependent manner with significant inhibition of pro-inflammatory cytokines (TNF-α and IL-6) in LPS-stimulated BV2 microglial cells. D6 did not have any significant effect on the viability of the cells at the therapeutic concentrations. D6 also has shown acetylcholinesterase inhibitory potential (51.90±1.19 %) at the concentration of log 106  nM. The results showed that D6 has a potential role in the resolution of neuroinflammation, and its acetylcholinesterase inhibitory potential directs further investigation of its role in the management of Alzheimer's disease-related pathogenesis.


Assuntos
Artemisia , Furanos , Óleos Voláteis , Compostos de Espiro , Acetilcolinesterase , Éter , Poli-Inos , Doenças Neuroinflamatórias , Óleos Voláteis/química , Artemisia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA