Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
1.
J Mol Graph Model ; 129: 108730, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377793

RESUMO

Inorganic binders like bentonite, used for pelletization of low-grade iron ore, generate iron ore slimes with comparatively high silica and alumina content necessitating extra steps for their removal during iron making process. This demands the usage of organic binders as full or partial replacement of bentonite for iron ore pelletization. In this work, adsorption of organic binders with saccharides skeleton and -H, -OH, -CH2OH and -CH2CH2OH as polar substituents, on goethite surface was studied using density functional theory, molecular dynamics and machine learning. It was observed that adsorption energy of binders on goethite surface had weak dependence on number of hydrogen bonds between them. With this favorable interaction in mind, a library containing 64 organic binders was constructed and adsorption energy of 30 of these binders was computed using molecular dynamics, followed by training of a linear regression model, which was then used to predict the adsorption energy of rest of the binders in the library. It was found that the introduction of -CH2CH2OH at R2 position resulted in statistically significant higher adsorption energy. Binder34 and Binder44 were identified as viable candidates for both goethite and hematite ore pelletization and adsorption of their n-mers on goethite and hematite surfaces was also quantified.


Assuntos
Bentonita , Compostos Férricos , Compostos de Ferro , Minerais , Bentonita/química , Compostos de Ferro/química , Ferro/química , Adsorção
2.
Bull Environ Contam Toxicol ; 112(2): 33, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342847

RESUMO

Abundant iron and sulfate resources are present in acid mine drainage. The synthesis of schwertmannite from AMD rich in iron and sulfate could achieve the dual objectives of resource recovery and wastewater purification. However, schwertmannite cannot emerge spontaneously due to the Gibbs free energy greater than 0. This results in the iron and sulfate in AMD only being able to use the energy generated by oxidation in the coupling reaction to promote the formation of minerals, but this only achieved partial mineralization, which limited the remediation of AMD through mineralization. In order to clarify the mechanism of iron and sulfate removal by the formation of schwertmannite in AMD, kinetic and thermodynamic parameters were crucial. This work used H2O2 oxidation of Fe2+ as a coupling reaction to promote the formation of schwertmannite from 64.4% of iron and 15.7% of sulfate in AMD, and determined that 99.7% of the iron and 89.9% of sulfate were immobilized in the schwertmannite structural, and only a small fraction was immobilized by the adsorption of schwertmannite, both of which were consistent with second-order kinetics models. The thermodynamic data suggested that reducing the concentration of excess sulfate ions or increasing the energy of the system may allow more iron and sulfate to be immobilized by forming schwertmannite. Experimental verification using the reaction of potassium bicarbonate with the acidity in solution to increase the energy in the system showed that the addition of potassium bicarbonate effectively promoted the formation of schwertmannite from Fe3+ and SO42-. It provided a theoretical and research basis for the direct synthesis of schwertmannite from Fe3+ and SO42- rich AMD for the removal of contaminants from water and the recovery of valuable resources.


Assuntos
Bicarbonatos , Compostos de Ferro , Ferro , Compostos de Potássio , Adsorção , Peróxido de Hidrogênio , Compostos de Ferro/química , Oxirredução , Sulfatos/química , Concentração de Íons de Hidrogênio
3.
Mol Cells ; 46(12): 736-742, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38052488

RESUMO

NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.


Assuntos
Compostos de Ferro , Nitrogenase , Nitrogenase/química , Nitrogenase/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Estudos Prospectivos , Domínio Catalítico , Proteínas de Bactérias/metabolismo
4.
Water Sci Technol ; 87(8): 1879-1892, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119161

RESUMO

Soluble iron and sulfate in acid mine drainage (AMD) can be greatly removed through the formation of minerals facilitated by seed crystals. However, the difference in the effects of jarosite and schwertmannite as endogenous seed crystals to induce AMD mineralization remains unclear. This paper intends to study the effect of Fe2+ oxidation and Fe3+ mineralization in the biosynthesis of minerals using different addition amounts and methods of jarosite or schwertmannite. The results showed that the addition amount and method of different seed crystals had no effect on the Fe2+ bio-oxidation but would change the Fe3+ mineralization efficiency. With the same amount of seed crystals added, jarosite exhibited a higher capacity to promote Fe3+ mineralization than schwertmannite. Adding seed crystals before the initiation of Fe2+ oxidation (0 h) could significantly promote Fe3+ mineralization efficiency. With the increase of seed crystals, jarosite could not only shorten the time required for mineral synthesis but also improve the final mineral yield, whereas schwertmannite could only shorten the time required for mineral synthesis. When Fe2+ was completely oxidized to Fe3+ (48 h), the supplementary of jarosite could still effectively improve Fe3+ mineralization efficiency, but the addition of schwertmannite no longer affected the final mineralization degree.


Assuntos
Acidithiobacillus , Compostos de Ferro , Ferro , Biomineralização , Compostos de Ferro/química , Compostos Férricos/química , Minerais , Oxirredução
5.
Environ Sci Technol ; 57(5): 2175-2185, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693009

RESUMO

Chemical oxidation of As(III) by iron (Fe) oxyhydroxides has been proposed to occur under anoxic conditions and may play an important role in stabilization and detoxification of As in subsurface environments. However, this reaction remains controversial due to lack of direct evidence and poorly understood mechanisms. In this study, we show that As(III) oxidation can be facilitated by Fe oxyhydroxides (i.e., goethite) under anoxic conditions coupled with the reduction of structural Fe(III). An excellent electron balance between As(V) production and Fe(III) reduction is obtained. The formation of an active metastable Fe(III) phase at the defective surface of goethite due to atom exchange is responsible for the oxidation of As(III). Furthermore, the presence of defects (i.e., Fe vacancies) in goethite can noticeably enhance the electron transfer (ET) and atom exchange between the surface-bound Fe(II) and the structural Fe(III) resulting in a two time increase in As(III) oxidation. Atom exchange-induced regeneration of active goethite sites is likely to facilitate As(III) coordination and ET with structural Fe(III) based on electrochemical analysis and theoretical calculations showing that this reaction pathway is thermodynamically and kinetically favorable. Our findings highlight the synergetic effects of defects in the Fe crystal structure and Fe(II)-induced catalytic processes on anoxic As(III) oxidation, shedding a new light on As risk management in soils and subsurface environments.


Assuntos
Compostos de Ferro , Ferro , Ferro/química , Compostos de Ferro/química , Minerais/química , Oxirredução , Compostos Ferrosos/química , Compostos Férricos/química
6.
Environ Sci Pollut Res Int ; 30(9): 22188-22210, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36282383

RESUMO

Mining waste that is rich in iron-, calcium- and magnesium-bearing minerals can be a potential feedstock for sequestering CO2 by mineral carbonation. This study highlights the utilization of iron ore mining waste in sequestering CO2 under low-reaction condition of a mineral carbonation process. Alkaline iron mining waste was used as feedstock for aqueous mineral carbonation and was subjected to mineralogical, chemical, and thermal analyses. A carbonation experiment was performed at ambient CO2 pressure, temperature of 80 °C at 1-h exposure time under the influence of pH (8-12) and particle size (< 38-75 µm). The mine waste contains Fe-oxides of magnetite and hematite, Ca-silicates of anorthite and wollastonite and Ca-Mg-silicates of diopside, which corresponds to 72.62% (Fe2O3), 5.82% (CaO), and 2.74% (MgO). Fe and Ca carbonation efficiencies were increased when particle size was reduced to < 38 µm and pH increased to 12. Multi-stage mineral transformation was observed from thermogravimetric analysis between temperature of 30 and 1000 °C. Derivative mass losses of carbonated products were assigned to four stages between 30-150 °C (dehydration), 150-350 °C (iron dehydroxylation), 350-700 °C (Fe carbonate decomposition), and 700-1000 °C (Ca carbonate decomposition). Peaks of mass losses were attributed to ferric iron reduction to magnetite between 662 and 670 °C, siderite decarbonization between 485 and 513 °C, aragonite decarbonization between 753 and 767 °C, and calcite decarbonization between 798 and 943 °C. A 48% higher carbonation rate was observed in carbonated products compared to raw sample. Production of carbonates was evidenced from XRD analysis showing the presence of siderite, aragonite, calcite, and traces of Fe carbonates, and about 33.13-49.81 g CO2/kg of waste has been sequestered from the process. Therefore, it has been shown that iron mining waste can be a feasible feedstock for mineral carbonation in view of waste restoration and CO2 emission reduction.


Assuntos
Dióxido de Carbono , Compostos de Ferro , Dióxido de Carbono/química , Óxido Ferroso-Férrico , Minerais/química , Carbonatos/química , Silicatos/química , Carbonato de Cálcio/química , Compostos de Ferro/química , Ferro , Sequestro de Carbono
7.
Chemosphere ; 307(Pt 2): 135900, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944668

RESUMO

Iron oxides play an important role in the transport and transformation of organic phosphorus in aquatic environments. However, the effect of different types of iron oxide on the environmental fate of organic phosphorus has remained unclear. In this study, the photodegradation of the organic phosphorus compound adenosine triphosphate (ATP) via the activity of crystalline (goethite) and amorphous (ferrihydrite) iron oxides was investigated. It was found that ATP was photodegraded by goethite, resulting in the release of dissolved inorganic phosphate under simulated sunlight irradiation. The concentration of ATP on goethite decreased by 75% after 6 h of simulated sunlight irradiation, while the concentration of ATP on ferrihydrite decreased by only 22%. ATR-FTIR spectroscopy revealed that the intensity of the peaks for the P-O and PO stretching vibrations in the goethite-ATP complex decreased significantly more after simulated sunlight irradiation than did those for the ferrihydrite treatment. Combined with the higher TOC/TOC0 values for the goethite treatment, the results indicate that a more vigorous photochemical reaction took place in the presence of goethite than with ferrihydrite. Reactive oxygen species analysis also showed that hydroxyl and superoxide anion radicals were generated when goethite was exposed to simulated sunlight irradiation, while ferrihydrite did not exhibit this ability. Overall, this study highlights that the type of iron oxide is an important factor in the transformation of organic phosphorus in aquatic environments.


Assuntos
Compostos de Ferro , Fósforo , Trifosfato de Adenosina , Compostos Férricos/química , Ferro/química , Compostos de Ferro/química , Minerais/química , Oxirredução , Fosfatos/química , Fósforo/química , Espécies Reativas de Oxigênio , Superóxidos , Água
8.
Chemosphere ; 307(Pt 2): 135901, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940408

RESUMO

The geochemical processes of polyphosphates (poly-Ps) are important for phosphorus (P) management and environmental protection. Water-soluble ammonium polyphosphate (APP) containing various P species has been increasingly used as an alternative P-fertilizer. The various P species coexistence and the chelation of poly-Ps with mental would trigger the P's competitive adsorption and affect the APP's adsorption intensity on goethite, compared to single orthophosphate (P1). P adsorption behaviors of APP1 with two P species and APP2 with seven P species on goethite were investigated via batch experiments in comparison to the traditional P-fertilizer of mono-ammonium phosphate (MAP). Coadsorption of P1 and pyrophosphate (P2) on goethite was investigated by molecular dynamics (MD) simulation. The more Fe3+ dissolved from goethite as a bridge due to the chelation of poly-Ps in APP and contributed to the stronger APP adsorption on goethite compared with MAP. Ion chromatography and spectral analysis showed P1 and P2 in APP were mainly adsorbed by goethite via mainly forming bidentate complexes. The goethite preferentially adsorbed P1 at lower APP concentration but increased the poly-Ps' adsorption at higher APP concentration. MD simulation showed that electrostatic interaction and hydrogen bonds played a key role in water-phosphates-goethite systems. The P1 pre-adsorbed on goethite could be replaced by P2 at high P2 concentration. The results develop new insights regarding the selective adsorption of various P species coexistence in goethite-rich environments.


Assuntos
Compostos de Amônio , Compostos de Ferro , Adsorção , Difosfatos , Fertilizantes , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Minerais/química , Simulação de Dinâmica Molecular , Fosfatos , Fósforo , Polifosfatos , Água/química
9.
Environ Sci Process Impacts ; 24(9): 1383-1391, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35838030

RESUMO

Schwertmannite is a common nanomineral in acid sulfate environments such as Acid Mine Drainage (AMD) and Acid Sulfate Soils (ASS). Its high surface area and positively charged surface result in a strong affinity towards toxic oxyanions such as arsenate in solution. However, natural precipitation of schwertmannite also involves the accumulation of other impurities, in particular aluminum, an element that is often incorporated into the structure of Fe-oxide minerals, such as goethite and ferrihydrite, affecting their structural and surface properties. However, little is known about the effect of Al incorporation in schwertmannite on the removal capacity of toxic oxyanions found in AMD and ASS (e.g. arsenate). In this paper, schwertmannite samples with variable Al concentration were synthetized and employed in arsenate adsorption isotherm experiments at a constant pH of 3.5. Solid samples before and after arsenate adsorption were characterized using high energy X-ray diffraction and pair distribution function analyses in order to identify structural differences correlated with the Al content as well as variations in the coordination of arsenate adsorbed on the mineral surface. These analyses showed limited Al accumulation on schwertmannite (up to 5%) with a low effect on its structure. The maximum arsenate sorption capacity (258 mmolH2AsO4 molFe-1) was in the range of that with pure schwertmannite, but a higher proportion of inner-sphere coordination was observed. Finally, Al was found to desorb from schwertmannite, with adsorbed arsenate preventing this effect and increasing the stability of the mineral. These results are useful to interpret observations from the field, in particular from river water affected by AMD and ASS, where similar conditions are observed, and where aluminum incorporation is expected.


Assuntos
Arseniatos , Compostos de Ferro , Adsorção , Alumínio , Arseniatos/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Minerais/química , Óxidos , Solo , Sulfatos/química , Propriedades de Superfície , Água
10.
Dalton Trans ; 51(11): 4284-4296, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35191438

RESUMO

4,6,10-Trihydroxy-1,4,6,10-tetraazaadamantane (TAAD) has been shown to form a stable Fe(IV) complex having a diamantane cage structure, in which the metal center is coordinated by three oxygen atoms of the deprotonated ligand. The complex was characterized by X-ray diffraction analysis, HRMS, NMR, FT-IR, Mössbauer spectroscopy and DFT calculations, which supported the d4 configuration of iron. The Fe(IV)-TAAD complex showed excellent performance in dioxygen activation under mild conditions serving as a mimetic of the thiol oxidase enzyme. The nucleophilicity of the bridgehead nitrogen atom in TAAD provides a straightforward way for the conjugation of Fe(IV)-TAAD complexes to various functional molecules. Using this approach, steroidal and peptide molecules having an iron(IV) label have been prepared for the first time. In addition, the Fe(IV)-TAAD complex was covalently bound to a polystyrene matrix and the resulting material was shown to serve as a heterogeneous catalyst for aerobic oxidation of thiols to disulfides.


Assuntos
Adamantano/química , Compostos de Ferro/química , Oxigênio/química , Adamantano/síntese química , Cristalografia por Raios X , Teoria da Densidade Funcional , Compostos de Ferro/síntese química , Ligantes , Modelos Moleculares
11.
J Am Chem Soc ; 144(10): 4294-4299, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119845

RESUMO

Structural regulation of the active centers is often pivotal in controlling the catalytic functions, especially in iron-based oxidation systems. Here, we discovered a significantly altered catalytic oxidation pathway via a simple cation intercalation into a layered iron oxychloride (FeOCl) scaffold. Upon intercalation of FeOCl with potassium iodide (KI), a new stable phase of K+-intercalated FeOCl (K-FeOCl) was formed with slided layers, distorted coordination, and formed high-spin Fe(II) species compared to the pristine FeOCl precursor. This structural manipulation steers the catalytic H2O2 activation from a traditional Fenton-like pathway on FeOCl to a nonradical ferryl (Fe(IV)═O) pathway. Consequently, the K-FeOCl catalyst can efficiently remove various organic pollutants with almost 2 orders of magnitude faster reaction kinetics than other Fe-based materials via an oxidative coupling or polymerization pathway. A reaction-filtration coupled process based on K-FeOCl was finally demonstrated and could potentially reduce the energy consumption by almost 50%, holding great promise in sustainable pollutant removal technologies.


Assuntos
Poluentes Ambientais , Compostos de Ferro , Peróxido de Hidrogênio , Ferro , Compostos de Ferro/química , Oxirredução , Potássio
12.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35017303

RESUMO

Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES-oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.


Assuntos
Elétrons , Espaço Extracelular/química , Compostos Férricos/química , Bases de Dados como Assunto , Compostos de Ferro/química , Minerais/química , Termodinâmica
13.
Bioorg Chem ; 119: 105514, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34864281

RESUMO

Thanks to development of erlotinib and other target therapy drugs the lung cancer treatment have improved a lot in recent years. However, erlotinib-resistant lung cancer remains an unsolved clinical problem which demands for new therapeutics to be developed. Herein we report the synthesis of a library of 1,4- and 1,5-triazole ferrocenyl derivatives of erlotinib together with their anticancer activity studies against erlotinib-sensitive A549 and H1395 as well as erlotinib-resistant H1650 and H1975 cells. Studies showed that extend of anticancer activity is mainly related to the length of the spacer between the triazole and the ferrocenyl entity. Among the series of investigated compounds two isomers commonly bearing C(O)CH2CH2 spacer have shown superior to erlotinib activity against erlotinib-resistant H1650 and H1975 cells whereas compound with short methylene spacer devoid of any activity. In-depth biological studies for the most active compound showed differences in its mechanism of action in compare to erlotinib. The latter is known EGFR inhibitor whereas their ferrocenyl congener exerts anticancer activity mainly as ROS-inducer which activates mitochondrial pathway of apoptosis in cancer cells. However, docking studies suggested that the most active compound can also binds to the active site of EGFR TK in a similar way as erlotinib.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cloridrato de Erlotinib/farmacologia , Compostos de Ferro/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/química , Humanos , Compostos de Ferro/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Triazóis/química
14.
J Mater Chem B ; 9(44): 9213-9220, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34698754

RESUMO

Carbon monoxide (CO) can cause mitochondrial dysfunction, inducing apoptosis of cancer cells, which sheds light on a potential alternative for cancer treatment. However, the existing CO-based compounds are inherently limited by their chemical nature, such as high biological toxicity and uncontrolled CO release. Therefore, a nanoplatform - UmPF - that addresses such pain points is urgently in demand. In this study, we have proposed a nanoplatform irradiated by near-infrared (NIR) light to release CO. Iron pentacarbonyl (Fe(CO)5) was loaded in the mesoporous polydopamine layer that was coated on rare-earth upconverting nanoparticles (UCNPs). The absorption wavelength of Fe(CO)5 overlaps with the emission bands of the UCNPs in the UV-visible light range, and therefore the emissions from the UCNPs can be used to incite Fe(CO)5 to control the release of CO. Besides, the catechol groups, which are abundant in the polydopamine structure, serve as an ideal locating spot to chelate with Fe(CO)5; in the meantime, the mesoporous structure of the polydopamine layer improves the loading efficiency of Fe(CO)5 and reduces its biological toxicity. The photothermal effect (PTT) of the polydopamine layer is highly controllable by adjusting the external laser intensity, irradiation time and the thickness of the polydopamine layer. The results illustrate that the combination of CO gas therapy (GT) and polydopamine PTT brought by the final nanoplatform can be synergistic in killing cancer cells in vitro. More importantly, the possible toxic side effects can be effectively prevented from affecting the organism, since CO will not be released in this system without near-infrared light radiation.


Assuntos
Antineoplásicos/farmacologia , Monóxido de Carbono/metabolismo , Corantes Fluorescentes/farmacologia , Nanopartículas Metálicas/química , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Fluoretos/química , Fluoretos/farmacologia , Fluoretos/efeitos da radiação , Fluoretos/toxicidade , Células HeLa , Humanos , Indóis/química , Indóis/farmacologia , Indóis/efeitos da radiação , Indóis/toxicidade , Raios Infravermelhos , Compostos de Ferro/química , Compostos de Ferro/farmacologia , Compostos de Ferro/efeitos da radiação , Compostos de Ferro/toxicidade , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Microscopia Confocal , Microscopia de Fluorescência , Terapia Fototérmica , Polímeros/química , Polímeros/farmacologia , Polímeros/efeitos da radiação , Polímeros/toxicidade , Porosidade , Túlio/química , Túlio/farmacologia , Túlio/efeitos da radiação , Túlio/toxicidade , Itérbio/química , Itérbio/farmacologia , Itérbio/efeitos da radiação , Itérbio/toxicidade , Ítrio/química , Ítrio/farmacologia , Ítrio/efeitos da radiação , Ítrio/toxicidade
15.
Molecules ; 26(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577006

RESUMO

Cisplatin and its derivatives are commonly used in chemotherapeutic treatments of cancer, even though they suffer from many toxic side effects. The problems that emerge from the use of these metal compounds led to the search for new complexes capable to overcome the toxic side effects. Here, we report the evaluation of the antiproliferative activity of Fe(II) cyclopentadienyl complexes bearing n-heterocyclic carbene ligands in tumour cells and their in vivo toxicological profile. The in vitro antiproliferative assays demonstrated that complex Fe1 displays the highest cytotoxic activity both in human colorectal carcinoma cells (HCT116) and ovarian carcinoma cells (A2780) with IC50 values in the low micromolar range. The antiproliferative effect of Fe1 was even higher than cisplatin. Interestingly, Fe1 showed low in vivo toxicity, and in vivo analyses of Fe1 and Fe2 compounds using colorectal HCT116 zebrafish xenograft showed that both reduce the proliferation of human HCT116 colorectal cancer cells in vivo.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos de Ferro/química , Compostos de Ferro/farmacologia , Metano/análogos & derivados , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Compostos Heterocíclicos/uso terapêutico , Compostos Heterocíclicos/toxicidade , Humanos , Concentração Inibidora 50 , Compostos de Ferro/uso terapêutico , Compostos de Ferro/toxicidade , Metano/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
16.
J Mater Chem B ; 9(40): 8480-8490, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34553729

RESUMO

The development of versatile nanotheranostic agents has received increasing interest in cancer treatment. Herein, in this study, we rationally designed and prepared a novel flowerlike multifunctional cascade nanoreactor, BSA-GOx@MnO2@FePt (BGMFP), by integrating glucose oxidase (GOx), manganese dioxide (MnO2) and FePt for synergetic cancer treatment with satisfying therapeutic efficiency. In an acidic environment, intratumoral H2O2 could be decomposed to O2 to accelerate the consumption of glucose catalyzed by GOx to induce cancer starvation. Moreover, the accumulation of gluconic acid and H2O2 generated along with the consumption of glucose would in turn promote the catalytic efficiency of MnO2 and boost O2 evolution, which could enhance the efficiency of starvation therapy. Moreover, FePt as an excellent Fenton agent could simultaneously convert H2O2 to the toxic hydroxyl radical (˙OH), subsequently resulting in amplified intracellular oxidative stress and cell apoptosis. Therefore, BGMFP could catalyze a cascade of intracellular biochemical reactions and optimize the unique properties of MnO2, GOx and FePt via mutual promotion of each other to realize O2 supply, chemodynamic therapy (CDT) and starvation therapy. The anticancer results in vitro and in vivo demonstrated that BGMFP possessed remarkable tumor inhibition capacity through enhancing the starvation therapy and CDT. It is appreciated that BGMFP could be a promising platform for synergetic cancer treatment.


Assuntos
Glucose Oxidase , Compostos de Ferro , Compostos de Manganês , Nanotecnologia , Neoplasias , Óxidos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Compostos de Ferro/química , Compostos de Manganês/química , Neoplasias/terapia , Óxidos/química , Oxigênio , Nanomedicina Teranóstica , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
17.
ACS Appl Mater Interfaces ; 13(33): 39100-39111, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34382406

RESUMO

In this work, a nanoplatform (FeCORM NPs) loaded with an iron-carbonyl complex was constructed. By exploiting chemodynamic therapy (CDT) and immunogenic cell death (ICD)-induced immunotherapy (IMT), the nanoparticles exhibited excellent efficacy against lung metastasis of melanoma in vivo. The iron-carbonyl compound of the nanomaterials could be initiated by both glutathione (GSH) and hydrogen peroxide (H2O2) to release CO and generate ferrous iron through ligand exchange and oxidative destruction pathways. The released CO caused mitochondria damage, whereas the generated ferrous iron led to oxidative stress via the Fenton reaction. On the other hand, the nanomaterials induced ICD-based IMT, which worked jointly with CDT to exhibit excellent effects against lung metastasis of melanoma through a mouse model. This work demonstrated how a nanoplatform, simple and stable but showing excellent efficacy against tumors, could be built using simple building blocks via a self-assembling approach. Importantly, the system took advantage of relatively high levels of GSH and H2O2 in tumors to initiate the therapeutic effects, which rendered the nanoplatform with a capability to differentiate normal cells from tumor cells. In principle, the system has great potential for future clinical applications, not only in the treatment of lung metastasis of melanoma but also in suppressing other types of tumors.


Assuntos
Antineoplásicos/química , Monóxido de Carbono/química , Compostos de Ferro/química , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/metabolismo , Nanopartículas Metálicas/química , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Monóxido de Carbono/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenvolvimento de Medicamentos , Feminino , Glutationa/química , Humanos , Peróxido de Hidrogênio/química , Imunoterapia/métodos , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Neoplasias Experimentais , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
18.
J Am Chem Soc ; 143(33): 13145-13155, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34383499

RESUMO

Iron complexes that model the structural and functional properties of the active iron site in rabbit lipoxygenase are described. The ligand sphere of the mononuclear pseudo-octahedral cis-(carboxylato)(hydroxo)iron(III) complex, which is completed by a tetraazamacrocyclic ligand, reproduces the first coordination shell of the active site in the enzyme. In addition, two corresponding iron(II) complexes are presented that differ in the coordination of a water molecule. In their structural and electronic properties, both the (hydroxo)iron(III) and the (aqua)iron(II) complex reflect well the only two essential states found in the enzymatic mechanism of peroxidation of polyunsaturated fatty acids. Furthermore, the ferric complex is shown to undergo hydrogen atom abstraction reactions with O-H and C-H bonds of suitable substrates, and the bond dissociation free energy of the coordinated water ligand of the ferrous complex is determined to be 72.4 kcal·mol-1. Theoretical investigations of the reactivity support a concerted proton-coupled electron transfer mechanism in close analogy to the initial step in the enzymatic mechanism. The propensity of the (hydroxo)iron(III) complex to undergo H atom abstraction reactions is the basis for its catalytic function in the aerobic peroxidation of 2,4,6-tri(tert-butyl)phenol and its role as a radical initiator in the reaction of dihydroanthracene with oxygen.


Assuntos
Compostos de Ferro/metabolismo , Lipoxigenase/metabolismo , Animais , Domínio Catalítico , Compostos de Ferro/síntese química , Compostos de Ferro/química , Lipoxigenase/química , Estrutura Molecular , Coelhos
19.
Inorg Chem ; 60(18): 13821-13832, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34291939

RESUMO

Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.


Assuntos
Compostos de Ferro/química , Oxigênio/química , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Ligantes , Estrutura Molecular
20.
Mikrochim Acta ; 188(7): 239, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184122

RESUMO

For the first time the enzyme mimic activity of iron oxychloride (FeOCl) nanosheets has been studied. The intrinsic peroxidase-mimetic activity of the nanosheets in the presence of H2O2 was approved by the efficient oxidation of tetramethylbenzidine (TMB). The Michaelis-Menten constant of the nanosheets toward TMB was about six times lower than that of natural horseradish peroxidase. The superiority of the nanosheets' catalytic property ascribes to their H2O2 activation ability. Based on the inhibition of the nanozymes' catalytic reaction, an assay was developed for the quantitative measurement of glutathione (GSH) and cysteine (Cys). The linear range for both biomolecules was over the range of 3-33 µM. The LOD values (3σ/slope) for GSH and Cys were 2.23 µM and 2.76 µM, respectively. Importantly, we succeeded in colorimetric discrimination of GSH and Cys kinetically. We achieved high selectivity toward GSH and Cys. This work extends the feasibility of using FeOCl as nanozymes to construct biosensors, colorimetric probes for medical diagnosis, and nanozyme-based cancer therapy.


Assuntos
Cisteína/sangue , Glutationa/sangue , Compostos de Ferro/química , Nanoestruturas/química , Benzidinas/química , Catálise , Compostos Cromogênicos/química , Colorimetria/métodos , Cisteína/química , Glutationa/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA