Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Environ Sci Technol ; 58(32): 14410-14420, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39082216

RESUMO

Complexes with low-molecular-weight thiols are crucial species of methylmercury (MeHg) excreted by anaerobic Hg-methylating microbes, notably, MeHg-cysteine (MeHg-Cys). As MeHg-Cys diffuses into surface water, it would undergo a ligand exchange process with dissolved organic matter (DOM) under nonsulfidic conditions, inevitably altering MeHg speciation and bioavailability to phytoplankton. In this study, we investigated the competitive binding kinetics between MeHg-Cys and Suwannee River natural organic matter, and their influence on the adsorption and uptake of MeHg by the cyanobacterium, Synechocystis sp. PCC6803. Liquid chromatography-inductively coupled plasma mass spectrometry was employed to monitor the kinetics processes involving competition of DOM with Cys for MeHg binding, which revealed that competitive binding kinetics were dictated by the abundance of thiol moieties in DOM. Thiol concentrations of 0.97 and 49.34 µmol of thiol (g C)-1 resulted in competitive binding rate constant (k values) of 0.30 and 3.47 h-1, respectively. Furthermore, the time-dependent competitive binding of DOM toward MeHg-Cys significantly inhibited MeHg adsorption and uptake by cyanobacteria, an effect that was amplified by an increased thiol abundance in DOM. These findings offer valuable insights into the kinetic characteristics of MeHg's fate and transport, as well as their impact on bioconcentration in aquatic organisms within natural aquatic ecosystems.


Assuntos
Compostos de Metilmercúrio , Compostos de Sulfidrila , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/química , Adsorção , Cinética , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Cisteína/metabolismo , Cisteína/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química
2.
Environ Sci Technol ; 58(13): 5942-5951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507823

RESUMO

The intake of methylmercury (MeHg)-contaminated rice poses immense health risks to rice consumers. However, the mechanisms of MeHg accumulation in rice plants are not entirely understood. The knowledge that the MeHg-Cysteine complex was dominant in polished rice proposed a hypothesis of co-transportation of MeHg and cysteine inside rice plants. This study was therefore designed to explore the MeHg accumulation processes in rice plants by investigating biogeochemical associations between MeHg and amino acids. Rice plants and underlying soils were collected from different Hg-contaminated sites in the Wanshan Hg mining area. The concentrations of both MeHg and cysteine in polished rice were higher than those in other rice tissues. A significant positive correlation between MeHg and cysteine in rice plants was found, especially in polished rice, indicating a close geochemical association between cysteine and MeHg. The translocation factor (TF) of cysteine showed behavior similar to that of the TF of MeHg, demonstrating that these two chemical species might share a similar transportation mechanism in rice plants. The accumulation of MeHg in rice plants may vary due to differences in the molar ratios of MeHg to cysteine and the presence of specific amino acid transporters. Our results suggest that cysteine plays a vital role in MeHg accumulation and transportation inside rice plants.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Compostos de Metilmercúrio/metabolismo , Cisteína/metabolismo , Monitoramento Ambiental/métodos , Mercúrio/análise , Solo/química
3.
Yakugaku Zasshi ; 144(1): 41-45, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171793

RESUMO

Methylmercury is a ubiquitous neurotoxic substance present in the environment, and health concerns, especially through the consumption of seafood, remain. Glutathione (GSH)-mediated detoxification and the excretion of methylmercury are known metabolic detoxification pathways. We have also discovered a mechanism by which endogenous super-sulfides convert methylmercury to nontoxic metabolites such as bis-methylmercury sulfide. However, these metabolites are present in very small quantities, and the significance of the detoxification of methylmercury by super-sulfides is not well understood. Methylmercury binds to thiol groups in vivo but can also react with highly reactive selenols (selenocysteine residues). Such covalent bonds (S-mercuration and Se-mercuration) are broken by nucleophilic substitution reactions with other thiol and selenols, however, the contribution of super-sulfides to this substitution reaction is not well understood. Interestingly, a recent study suggested that selenoprotein P, the major selenium transport protein in plasma, binds to methylmercury, however, Se-mercuration was not determined. In this review, we introduce these series of reactions and discuss their involvement with super-sulfides in methylmercury toxicity.


Assuntos
Compostos de Metilmercúrio , Selênio , Compostos de Metilmercúrio/metabolismo , Selênio/metabolismo , Glutationa/metabolismo , Compostos de Sulfidrila , Sulfetos
4.
J Toxicol Sci ; 48(7): 429-439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394656

RESUMO

Granule cell-selective toxicity of methylmercury in the cerebellum is one of the main unresolved issues in the pathogenesis of Minamata disease. Rats were orally administered methylmercury chloride (10 mg/kg/day) for 5 consecutive days, and their brains were harvested on days 1, 7, 14, 21, or 28 after the last administration for histological examination of the cerebellum. It was found that methylmercury caused a marked degenerative change to the granule cell layers but not to the Purkinje cell layers. The generative change of the granule cell layer was due to cell death, including apoptosis, which occurred at day 21 and beyond after the methylmercury administration. Meanwhile, cytotoxic T-lymphocytes and macrophages had infiltrated the granule cell layer. Additionally, granule cells are shown to be a cell type susceptible to TNF-α. Taken together, these results suggest that methylmercury causes small-scale damage to granule cells, triggering the infiltration of cytotoxic T-lymphocytes and macrophages into the granule cell layer, which secrete tumor necrosis factor-α (TNF-α) to induce apoptosis in granule cells. This chain is established based on the susceptibility of granule cells to methylmercury, the ability of cytotoxic T lymphocytes and macrophages to synthesize and secrete TNF-α, and the sensitivity of granule cells to TNF-α and methylmercury. We propose to call the pathology of methylmercury-induced cerebellar damage the "inflammation hypothesis."


Assuntos
Compostos de Metilmercúrio , Ratos , Animais , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cerebelo/metabolismo , Neurônios , Apoptose
5.
J Trace Elem Med Biol ; 79: 127220, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244047

RESUMO

BACKGROUND: Garfish, (Belone belone) is a migratory pelagic fish that inhabits the waters of coastal Europe, North Africa, the North Sea, the Mediterranean Sea. Little information about garfish has been disseminated mainly because of its low abundance and its brief occurrence in various water bodies. Data is lacking on mercury compounds, particularly dangerous the toxic organic form of methylmercury (MeHg), which endangers the health of fish and their consumers. METHODS: The research material was garfish caught off the southern Baltic Sea coast in Puck Bay during the spawning period. Total mercury (THg) content was assayed with the cold vapour atomic absorption method in an AMA 254 mercury analyser. The MeHg extraction procedure was based on three-step sequential extraction method: hydrolysis using of hydrochloric acid, extract by toluene, bind the MeHg by L-cysteine. RESULTS: The concentrations of THg and MeHg was determined in the muscle of garfish. The highest concentrations of THg (0.210 mg kg-1) and MeHg (0154 mg kg-1) were detected in the longest specimens (80 cm). The THg and MeHg concentrations in garfish muscles increased with specimens length, weight and age, which was confirmed by positive correlations. Differences were also noted depending on sex. Males accumulated more THg and MeHg than did females. The mercury in garfish from the southern Baltic Sea occurred mainly in its organic form MeHg and accounted for 84.7% of the THg. CONCLUSION: Significant differences were noted in mercury concentrations depends on length, weight, age and sex. Concentration of MeHg in garfish must be done by length class, and fish sex when selecting this fish for contamination studies and risk assessment. The toxic MeHg in garfish tissues did not pose a threat to the health of consumers, as indicated by the low values of EDI, TWI and THQ indices.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Masculino , Feminino , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/análise , Músculos/metabolismo , Peixes/metabolismo , Peso Corporal , Monitoramento Ambiental
6.
Environ Sci Technol ; 57(18): 7185-7195, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098211

RESUMO

The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formation by Geobacter sulfurreducens. We compared MeHg formation with and without addition of exogenous cysteine (Cys) to experimental assays with varying nutrient and bacterial metabolite concentrations. Cysteine additions initially (0-2 h) enhanced MeHg formation by two mechanisms: (i) altering the Hg(II) partitioning from the cellular to the dissolved phase and/or (ii) shifting the chemical speciation of dissolved Hg(II) in favor of the Hg(Cys)2 complex. Nutrient additions increased MeHg formation by enhancing cell metabolism. These two effects were, however, not additive since cysteine was largely metabolized to penicillamine (PEN) over time at a rate that increased with nutrient addition. These processes shifted the speciation of dissolved Hg(II) from complexes with relatively high availability, Hg(Cys)2, to complexes with lower availability, Hg(PEN)2, for methylation. This thiol conversion by the cells thereby contributed to stalled MeHg formation after 2-6 h Hg(II) exposure. Overall, our results showed a complex influence of thiol metabolism on microbial MeHg formation and suggest that the conversion of cysteine to penicillamine may partly suppress MeHg formation in cysteine-rich environments like natural biofilms.


Assuntos
Geobacter , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/metabolismo , Compostos de Sulfidrila/química , Cisteína , Geobacter/metabolismo , Fenômenos Fisiológicos Celulares , Poluentes Químicos da Água/metabolismo
7.
Chemosphere ; 324: 138291, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870614

RESUMO

Methylmercury (MeHg), derived from industrial processes and microbial methylation, is still a worldwide environmental concern. A rapid and efficient strategy is necessary for MeHg degradation in waste and environmental waters. Here, we provide a new method with ligand-enhanced Fenton-like reaction to rapidly degrade MeHg under neutral pH. Three common chelating ligands were selected (nitriloacetic acid (NTA), citrate, and ethylenediaminetetraacetic disodium (EDTA)) to promote the Fenton-like reaction and degradation of MeHg. Results showed that MeHg can be rapidly degraded, with the following efficiency sequence: EDTA > NTA > citrate. Scavenger addition demonstrated that hydroxyl radical (▪OH), superoxide radical (O2▪-), and ferryl (FeⅣO2+) were involved in MeHg degradation, and their relative contributions highly depended on ligand type. Degradation product and total Hg analysis suggested that Hg(Ⅱ) and Hg0 were generated with the demethylation of MeHg. Further, environmental factors, including initial pH, organic complexation (natural organic matter and cysteine), and inorganic ions (chloride and bicarbonate) on MeHg degradation, were investigated in NTA-enhanced system. Finally, rapid MeHg degradation was validated for MeHg-spiked waste and environmental waters. This study provided a simple and efficient strategy for MeHg remediation in contaminated waters, which is also helpful for understanding its degradation in the natural environment.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , Ligantes , Ácido Edético , Mercúrio/metabolismo , Concentração de Íons de Hidrogênio , Citratos
8.
Appl Environ Microbiol ; 89(4): e0176822, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36951561

RESUMO

The hgcAB gene pair encodes mercury (Hg) methylation capability in a diverse group of microorganisms, but its evolution and transcriptional regulation remain unknown. Working from the possibility that the evolutionary function of HgcAB may not be Hg methylation, we test a possible link to arsenic resistance. Using model Hg methylator Pseudodesulfovibrio mercurii ND132, we evaluated transcriptional control of hgcAB by a putative ArsR encoded upstream and cotranscribed with hgcAB. This regulator shares homology with ArsR repressors of arsenic resistance and S-adenosylhomocysteine (SAH)-responsive regulators of methionine biosynthesis but is distinct from other ArsR/SahR proteins in P. mercurii. Using quantitative PCR (qPCR) and RNA sequencing (RNA-seq) transcriptome analyses, we confirmed this ArsR regulates hgcAB transcription and is responsive to arsenic and SAH. Additionally, RNA-seq indicated a possible link between hgcAB activity and arsenic transformations, with significant upregulation of other ArsR-regulated arsenic resistance operons alongside hgcAB. Interestingly, wild-type ND132 was less sensitive to As(V) (but not As(III)) than an hgcAB knockout strain, supporting the idea that hgcAB may be linked to arsenic resistance. Arsenic significantly impacted rates of Hg methylation by ND132; however, responses varied with culture conditions. Differences in growth and metabolic activity did not account for arsenic impacts on methylation. While arsenic significantly increased hgcAB expression, hgcAB gene and transcript abundance was not a good predictor of Hg methylation rates. Taken together, these results support the idea that Hg and As cycling are linked in P. mercurii ND132. Our results may hold clues to the evolution of hgcAB and the controls on Hg methylation in nature. IMPORTANCE This work reveals a link between microbial mercury methylation and arsenic resistance and may hold clues to the evolution of mercury methylation genes (hgcAB). Microbes with hgcAB produce methylmercury, a strong neurotoxin that readily accumulates in the food web. This study addresses a critical gap in our understanding about the environmental factors that control hgcAB expression. We show that hgcAB expression is controlled by an ArsR-like regulator responsive to both arsenic and S-adenosylhomocysteine in our model organism, Pseudodesulfovibrio mercurii ND132. Exposure to arsenic also significantly impacted Pseudodesulfovibrio mercurii ND132 mercury methylation rates. However, expression of hgcAB was not always a good predictor of Hg methylation rates, highlighting the roles of Hg bioavailability and other biochemical mechanisms in methylmercury production. This study improves our understanding of the controls on hgcAB expression, which is needed to better predict environmental methylmercury production.


Assuntos
Arsênio , Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , S-Adenosil-Homocisteína/metabolismo , Mercúrio/metabolismo , Metilação
9.
Environ Sci Technol ; 57(14): 5988-5998, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36995950

RESUMO

Methylmercury (MeHg) is a potent neurotoxin and has great adverse health impacts on humans. Organisms and sunlight-mediated demethylation are well-known detoxification pathways of MeHg, yet whether abiotic environmental components contribute to MeHg degradation remains poorly known. Here, we report that MeHg can be degraded by trivalent manganese (Mn(III)), a naturally occurring and widespread oxidant. We found that 28 ± 4% MeHg could be degraded by Mn(III) located on synthesized Mn dioxide (MnO2-x) surfaces during the reaction of 0.91 µg·L-1 MeHg and 5 g·L-1 mineral at an initial pH of 6.0 for 12 h in 10 mM NaNO3 at 25 °C. The presence of low-molecular-weight organic acids (e.g., oxalate and citrate) substantially enhances MeHg degradation by MnO2-x via the formation of soluble Mn(III)-ligand complexes, leading to the cleavage of the carbon-Hg bond. MeHg can also be degraded by reactions with Mn(III)-pyrophosphate complexes, with apparent degradation rate constants comparable to those by biotic and photolytic degradation. Thiol ligands (cysteine and glutathione) show negligible effects on MeHg demethylation by Mn(III). This research demonstrates potential roles of Mn(III) in degrading MeHg in natural environments, which may be further explored for remediating heavily polluted soils and engineered systems containing MeHg.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Manganês/química , Compostos de Metilmercúrio/metabolismo , Oxidantes/química , Cisteína
10.
J Hazard Mater ; 452: 131298, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996541

RESUMO

Subsea pipelines carrying well fluids from hydrocarbon fields accumulate mercury. If the pipelines (after cleaning and flushing) are abandoned in situ, their degradation may release residual mercury into the environment. To justify pipeline abandonment, decommissioning plans include environmental risk assessments to determine the potential risk of environmental mercury. These risks are informed by environmental quality guideline values (EQGVs) governing concentrations in sediment or water above which mercury toxicity may occur. However, these guidelines may not consider e.g., the bioaccumulation potential of methylated mercury. Therefore, EQGVs may not protect humans from exposure if applied as the sole basis for risk assessments. This paper outlines a process to assess the EQGVs' protectiveness from mercury bioaccumulation, providing preliminary insights to questions including how to (1) determine pipeline threshold concentrations, (2) model marine mercury bioaccumulation, and (3) determine exceedance of the methylmercury tolerable weekly intake (TWI) for humans. The approach is demonstrated with a generic example using simplifications to describe mercury behaviour and a model food web. In this example, release scenarios equivalent to the EQGVs resulted in increased marine organism mercury tissue concentrations by 0-33 %, with human dietary methylmercury intake increasing 0-21 %. This suggests that existing guidelines may not be protective of biomagnification in all circumstances. The outlined approach could inform environmental risk assessments for asset-specific release scenarios but must be parameterised to reflect local environmental conditions when tailored to local factors.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Humanos , Animais , Compostos de Metilmercúrio/metabolismo , Mercúrio/análise , Cadeia Alimentar , Bioacumulação , Organismos Aquáticos/metabolismo , Monitoramento Ambiental/métodos , Peixes/metabolismo , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 450: 131074, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848841

RESUMO

Methylmercury (MeHg) uptake by demethylating bacteria and inorganic divalent mercury [Hg(II)] uptake by methylating bacteria have been extensively investigated because uptake is the initial step of the intracellular Hg transformation. However, MeHg and Hg(II) uptake by non-methylating/non-demethylating bacteria is overlooked, which may play an important role in the biogeochemical cycling of mercury concerning their ubiquitous presence in the environment. Here we report that Shewanella oneidensis MR-1, a model strain of non-methylating/non-demethylating bacteria, can take up and immobilize MeHg and Hg(II) rapidly without intracellular transformation. In addition, when taken up into MR-1 cells, the intracellular MeHg and Hg(II) were proved to be hardly exported over time. In contrast, adsorbed mercury on cell surface was observed to be easily desorbed or remobilized. Moreover, inactivated MR-1 cells (starved and CCCP-treated) were still capable of taking up nonnegligible amounts of MeHg and Hg(II) over an extended period in the absence and presence of cysteine, suggesting that active metabolism may be not required for both MeHg and Hg(II) uptake. Our results provide an improved understanding of divalent mercury uptake by non-methylating/non-demethylating bacteria and highlight the possible broader involvement of these bacteria in mercury cycling in natural environments.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Bactérias/metabolismo , Cisteína/metabolismo , Transporte Biológico
12.
Environ Sci Pollut Res Int ; 30(2): 3835-3846, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35953752

RESUMO

Mercury (Hg) is a global pollutant of environmental and health concern; its methylated form, methylmercury (MeHg), is a potent neurotoxin. Sulfur-containing molecules play a role in MeHg production by microorganisms. While sulfides are considered to limit Hg methylation, sulfate and cysteine were shown to favor this process. However, these two forms can be endogenously converted by microorganisms into sulfide. Here, we explore the effect of sulfide (produced by the cell or supplied exogenously) on Hg methylation. For this purpose, Pseudodesulfovibrio hydrargyri BerOc1 was cultivated in non-sulfidogenic conditions with addition of cysteine and sulfide as well as in sulfidogenic conditions. We report that Hg methylation depends on sulfide concentration in the culture and the sulfides produced by cysteine degradation or sulfate reduction could affect the Hg methylation pattern. Hg methylation was independent of hgcA expression. Interestingly, MeHg production was maximal at 0.1-0.5 mM of sulfides. Besides, a strong positive correlation between MeHg in the extracellular medium and the increase of sulfide concentrations was observed, suggesting a facilitated MeHg export with sulfide and/or higher desorption from the cell. We suggest that sulfides (exogenous or endogenous) play a key role in controlling mercury methylation and should be considered when investigating the impact of Hg in natural environments.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , Cisteína , Mercúrio/metabolismo , Sulfetos/metabolismo , Bactérias/metabolismo , Sulfatos/metabolismo
13.
J Biochem Mol Toxicol ; 37(2): e23243, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36245390

RESUMO

The cytochrome P450 1 A (CYP1A) subfamily enzymes are involved in the metabolic activation of several xenobiotics to toxic metabolites and reactive intermediates, resulting ultimately in carcinogenesis. Mercury and halogenated aromatic hydrocarbons (HAHs), typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are persistent environmental pollutants involved in the modulation of aryl hydrocarbon receptor (AHR) gene battery, including cytochrome P450 (CYP) genes. We previously investigated the effect of coexposure to either inorganic or organic mercury (Hg+2 and MeHg) with TCDD on CYP1A1 in vitro. Thus, we examined the impact of coexposure to Hg+2 or MeHg and TCDD on AHR-regulated genes (Cyp1a1/1a2) in vivo and in vitro. Therefore, male C57BL/6 mice were injected intraperitoneally with MeHg or Hg+2 (2.5 mg/kg) in the absence and presence of TCDD (15 µg/kg) for 6 or 24 h. The concentration-dependent effect of MeHg was examined in murine hepatoma Hepa1c1c7 cells. In vivo, both MeHg and Hg2+ inhibited the TCDD-mediated induction of Cyp1a1/1a2 mRNA levels. However, Only Hg2+ was able to inhibit the TCDD-mediated induction at posttranscriptional levels of CYP1A1/1A2 protein and catalytic activity, suggesting differential modulation effects by Hg+2 and MeHg. In addition, the inhibitory role of HO-1 (Heme oxygenase-1) on CYP1A activity induced by TCDD was investigated using a HO-1 competitive inhibitor, tin-mesoporphyrin, that partially restored the MeHg-mediated decrease in CYP1A1 activity. This study demonstrates that MeHg, alongside Hg2+ , can differentially modulate the TCDD-induced AHR-regulated genes (Cyp1a1/1a2) at different expression levels in C57BL/6 mice liver and Hepa1c1c7 cells.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Dibenzodioxinas Policloradas , Masculino , Camundongos , Animais , Citocromo P-450 CYP1A1/genética , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo
14.
Environ Pollut ; 311: 119936, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964789

RESUMO

The biomagnification of toxic methylmercury (MeHg) and selenium (Se) through aquatic food webs using nitrogen stable isotopes (δ15N) varies among ecosystems but underlying mechanisms are yet unexplained. Given the strong links between MeHg and thiol-containing amino acids and proteins containing selenocysteine, our hypothesis was that cysteine content is a better predictor of MeHg and Se transfer through lake food webs than δ15N. Food web samples were collected from six lakes in Kejimkujik National Park, Nova Scotia, Canada, and the regression slopes of log MeHg or Se versus protein-bound cysteine or bulk δ15N were compared. Across all six lakes, MeHg varied by a factor of 10 among taxa and was significantly and positively related to both cysteine (R2 = 0.65-0.80, p < 0.001) and δ15N (R2 = 0.88-0.94, p < 0.001), with no among-system differences in these slopes. In contrast, total Se concentrations varied by less than a factor of 2 among taxa in four lakes and were significantly related to cysteine in only two food webs (R2 = 0.20 & 0.37, p = 0.014 & < 0.001); however, δ15N was not a predictor of Se in any lake (p = 0.052-0.777). Overall, these novel results indicate that cysteine content predicts MeHg, and sometimes Se, across trophic levels, providing a potential mechanism for among-system differences in their biomagnification.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Poluentes Químicos da Água , Animais , Cisteína/metabolismo , Ecossistema , Monitoramento Ambiental/métodos , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Isótopos de Nitrogênio/análise , Nova Escócia , Selênio/metabolismo , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 56(8): 4961-4969, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35389633

RESUMO

As a major entry point of mercury (Hg) to aquatic food webs, algae play an important role in taking up and transforming Hg species in aquatic ecosystems. However, little is known how and to what extent Hg reduction, uptake, and species transformations are mediated by algal cells and their exudates, algal organic matter (AOM), under either sunlit or dark conditions. Here, using Chlorella vulgaris (CV) as one of the most prevalent freshwater model algal species, we show that solar irradiation could enhance the reduction of mercuric Hg(II) to elemental Hg(0) by both CV cells and AOM. AOM reduced more Hg(II) than algal cells themselves due to cell surface adsorption and uptake of Hg(II) inside the cells under solar irradiation. Synchrotron radiation X-ray absorption near-edge spectroscopy (SR-XANES) analyses indicate that sunlight facilitated the transformation of Hg to less bioavailable species, such as ß-HgS and Hg-phytochelatins, compared to Hg(Cysteine)2-like species formed in algal cells in the dark. These findings highlight important functional roles and potential mechanisms of algae in Hg reduction and immobilization under varying lighting conditions and how these processes may modulate Hg cycling and bioavailability in the aquatic environment.


Assuntos
Chlorella vulgaris , Mercúrio , Compostos de Metilmercúrio , Transporte Biológico , Chlorella vulgaris/metabolismo , Ecossistema , Água Doce , Mercúrio/química , Compostos de Metilmercúrio/metabolismo
16.
J Hazard Mater ; 433: 128835, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398798

RESUMO

Mercury (Hg) is a pervasive environmental pollutant and poses serious health concerns as inorganic Hg(II) can be converted to the neurotoxin methylmercury (MeHg), which bioaccumulates and biomagnifies in food webs. Phytoplankton, representing the base of aquatic food webs, can take up Hg(II) and influence MeHg production, but currently little is known about how and to what extent phytoplankton may impact Hg(II) methylation by itself or by methylating bacteria it harbors. This study investigated whether some species of phytoplankton could produce MeHg and how the live or dead phytoplankton cells and excreted algal organic matter (AOM) impact Hg(II) methylation by several known methylators, including iron-reducing bacteria (FeRB), Geobacter anodireducens SD-1 and Geobacter sulfurreducens PCA, and the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans ND132 (or Pseudodesulfovibrio mercurii). Our results indicate that, among the 4 phytoplankton species studied, none were capable of methylating Hg(II). However, the presence of phytoplankton cells (either live or dead) from Chlorella vulgaris (CV) generally inhibited Hg(II) methylation by FeRB but substantially enhanced methylation by SRB D. desulfuricans ND132. Enhanced methylation was attributed in part to CV-excreted AOM, which increased Hg(II) complexation and methylation by ND132 cells. In contrast, inhibition of methylation by FeRB was attributed to these bacteria incapable of competing with phytoplankton for Hg(II) binding and uptake. These observations suggest that phytoplankton could play different roles in affecting Hg(II) methylation by the two groups of anaerobic bacteria, FeRB and SRB, and thus shed additional light on how phytoplankton blooms may modulate MeHg production and bioaccumulation in the aquatic environment.


Assuntos
Chlorella vulgaris , Desulfovibrio desulfuricans , Desulfovibrio , Mercúrio , Compostos de Metilmercúrio , Bactérias/metabolismo , Chlorella vulgaris/metabolismo , Desulfovibrio/metabolismo , Desulfovibrio desulfuricans/metabolismo , Exsudatos e Transudatos/metabolismo , Ferro/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Metilação , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Fitoplâncton , Sulfatos/metabolismo
17.
ISME J ; 16(1): 211-220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290379

RESUMO

Aerobic methanotrophy is strongly controlled by copper, and methanotrophs are known to use different mechanisms for copper uptake. Some methanotrophs secrete a modified polypeptide-methanobactin-while others utilize a surface-bound protein (MopE) and a secreted form of it (MopE*) for copper collection. As different methanotrophs have different means of sequestering copper, competition for copper significantly impacts methanotrophic activity. Herein, we show that Methylomicrobium album BG8, Methylocystis sp. strain Rockwell, and Methylococcus capsulatus Bath, all lacking genes for methanobactin biosynthesis, are not limited for copper by multiple forms of methanobactin. Interestingly, Mm. album BG8 and Methylocystis sp. strain Rockwell were found to have genes similar to mbnT that encodes for a TonB-dependent transporter required for methanobactin uptake. Data indicate that these methanotrophs "steal" methanobactin and such "theft" enhances the ability of these strains to degrade methylmercury, a potent neurotoxin. Further, when mbnT was deleted in Mm. album BG8, methylmercury degradation in the presence of methanobactin was indistinguishable from when MB was not added. Mc. capsulatus Bath lacks anything similar to mbnT and was unable to degrade methylmercury either in the presence or absence of methanobactin. Rather, Mc. capsulatus Bath appears to rely on MopE/MopE* for copper collection. Finally, not only does Mm. album BG8 steal methanobactin, it synthesizes a novel chalkophore, suggesting that some methanotrophs utilize both competition and cheating strategies for copper collection. Through a better understanding of these strategies, methanotrophic communities may be more effectively manipulated to reduce methane emissions and also enhance mercury detoxification in situ.


Assuntos
Compostos de Metilmercúrio , Methylosinus trichosporium , Cobre/metabolismo , Imidazóis/metabolismo , Compostos de Metilmercúrio/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Oligopeptídeos/metabolismo
18.
Chemosphere ; 273: 129673, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33497984

RESUMO

Mercury (Hg) in high exposures can be a potent life threatening heavy metal that bioaccumulate in aquatic food-chain mainly as organic methylmercury (MeHg). In this regard, fish and seafood consumptions could be the primary sources of MeHg exposure for human and fish-eating animals. The objective of the present study was to elucidate the effects of dietary supplementation of some antioxidants on induced mercury toxicity in mice model. In this study, a 30-day long investigation has been conducted to evaluate the dietary effect of selenium (Se) in combination with vitamin C and vitamin E on methylmercury induced toxicity in mice. Total 54 mice fed the diets with three levels of Hg (0, 50 or 500 µg kg-1) and two levels of Se in combination with vitamin C and E (Se: 0, 2 mg kg-1; vitamin C: 0, 400 mg kg-1; vitamin E: 0, 200 mg kg-1) in triplicates. The results show that Hg accumulated in blood and different tissues such as muscle, liver and kidney tissues of mice on dose dependent manner. The bioaccumulation pattern of dietary Hg, in decreasing order, kidney > liver > muscle > blood. Superoxide dismutase levels in blood serum showed no significant differences in mice fed the diets. However, dietary antioxidants significantly reduced the levels of thiobarbituric acid reactive substances in mice fed the mercury containing diets. Cytochrome c oxidase enzyme activities showed no significant differences as the mercury level increases in liver and kidney tissues of mice. Kaplan-Meier curve showed a dose- and time-dependent survivability of mice. Cumulative survival rate of Hg intoxicated mice fed the antioxidant supplemented diets were increased during the experimental period. Overall, the results showed that dietary Se, vitamin C and vitamin E had no effect on reducing the mercury bioaccumulation in tissues but reduced the serum lipid peroxidation as well as prolonged the cumulative survival rate in terms of high Hg exposures in mice.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Animais , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Bioacumulação , Peroxidação de Lipídeos , Fígado/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Camundongos , Estresse Oxidativo , Selênio/metabolismo , Selênio/farmacologia
19.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008820

RESUMO

Mercury is a heavy metal toxicant that is prevalent throughout the environment. Organic forms of mercury, such as methylmercury (MeHg), can cross the placenta and can lead to lasting detrimental effects in the fetus. The toxicological effects of MeHg on the placenta itself have not been clearly defined. Therefore, the purpose of the current study was to assess the transport of MeHg into placental syncytiotrophoblasts and to characterize the mechanisms by which MeHg exerts its toxic effects. Cultured placental syncytiotrophoblasts (BeWo) were used for these studies. The transport of radioactive MeHg was measured to identify potential mechanisms involved in the uptake of this compound. The toxicological effects of MeHg on BeWo cells were determined by assessing visible pathological change, autophagy, mitochondrial viability, and oxidative stress. The findings of this study suggest that MeHg compounds are transported into BeWo cells primarily by sodium-independent amino acid carriers and organic anion transporters. The MeHg altered mitochondrial function and viability, decreased mitophagy and autophagy, and increased oxidative stress. Exposure to higher concentrations of MeHg inhibited the ability of cells to protect against MeHg-induced injury. The findings show that MeHg is directly toxic to syncytiotrophoblasts and may lead to disruptions in the fetal/maternal transfer of nutrients and wastes.


Assuntos
Cisteína/análogos & derivados , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Autofagia/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisteína/metabolismo , Cisteína/toxicidade , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Metionina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo , Trítio/metabolismo
20.
Arch Environ Contam Toxicol ; 79(4): 406-420, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33123745

RESUMO

Methylmercury (MeHg) is the most toxic form of mercury and can accumulate in the cells of marine organisms, such as fish, causing adverse effects on various physiological functions. This study examined MeHg accumulation and its toxicological role in antioxidant defenses in tissues, including the liver, gills, and muscle of flounder (Paralichthys olivaceus) juveniles. After 30 d of MeHg exposure (0, 0.1, 1.0, 10.0, and 20.0 µg L-1), the accumulation of MeHg in the three tissues correlated positively with the concentration of MeHg and exhibited tissue specificity in the order of liver > gills > muscle. Among the antioxidant markers, the activities of SOD (superoxide dismutase) and GST (glutathione S-transferase) as well as the content of glutathione (GSH) in the liver and gills were induced at 0.1-10.0 µg L-1 but repressed at 20.0 µg L-1. The activities of SOD and GST and the content of GSH in the muscle significantly increased with increasing MeHg concentration. Catalase (CAT) activity in the liver was induced at 0.1-1.0 µg L-1 but inhibited at 10.0-20.0 µg L-1, whereas exposure to MeHg did not remarkably affect CAT activity in the gills and muscle. The levels of lipid peroxidation (LPO) increased dose dependently, showing tissue specificity with the highest level in the liver, then the gills, followed by muscles. Overall, higher sensitivity to oxidative stress induced by MeHg was detected in the liver than the gills and muscle. These findings improve our understanding of the tissue-specific accumulation of heavy metals and their roles in antioxidant responses in marine fish subjected to MeHg exposure.


Assuntos
Linguado/fisiologia , Compostos de Metilmercúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Peixes/metabolismo , Linguado/metabolismo , Brânquias/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA