Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Immunotherapy ; 13(17): 1427-1438, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693721

RESUMO

Near infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted treatment for cancers achieved by injecting a conjugate of IRDye700DX® (IR700), a water-soluble silicon phthalocyanine derivative in the near infrared, and a monoclonal antibody that targets cancer cell antigens. NIR-PIT is a highly specific treatment with few side effects that results in rapid immunogenic cell death. Despite it being a very effective and innovative therapy, there are a few challenges preventing full implementation in clinical practice. These include the limits of near infrared light penetration, selection of targets, concerns about tumor lysis syndrome and drug costs. However, NIR-PIT has been approved by the regulatory authorities in Japan, allowing for exploration of how to mitigate challenges while maximizing the benefits of this treatment modality.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Imunoterapia , Indóis/uso terapêutico , Raios Infravermelhos , Neoplasias/terapia , Compostos de Organossilício/uso terapêutico , Fototerapia , Animais , Humanos
2.
Pharmacol Res ; 172: 105811, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390852

RESUMO

BACKGROUND/AIMS: IR700DX-6T and IR700DX-mbc94 are two chemically synthesized photosensitizers (PSs) that target the translocator protein (TSPO) and type 2 cannabinoid receptor (CB2R), respectively, for photodynamic therapy (PDT) of cancer. Recently, we found that IR700DX-6T and IR700DX-mbc94 exhibited high selectivity and efficiency in PDT for breast cancer and malignant astrocytoma. Yet, the phototherapeutic effects of the PSs on pancreatic cancer and underlying mechanisms remain unknown. This study investigated the effect of IR700DX-6T- or IR700DX-mbc94-PDT on pancreatic cancer and whether the treatment involves eliciting anticancer immune responses in support of superior therapeutic efficacy. METHODS: Four pancreatic cancer cell lines were used for in vitro studies. C57BL/6 mice bearing pancreatic cancer cell-derived xenografts were generated for in vivo studies regarding the therapeutic effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT on pancreatic cancer. The immunostimulatory or immunosuppressive effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT were examined by detecting CD8+ T cells, regulatory T cells (Tregs), and dendritic cells (DCs) using flow cytometry and immunohistochemistry (IHC). RESULTS: TSPO and CB2R were markedly upregulated in pancreatic cancer cells and tissues. Both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly inhibited pancreatic cancer cell growth in a dose- and time-dependent manner. Notably, assessment of anticancer immune responses revealed that both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly induced CD8+ T cells, promoted maturation of DCs, and suppressed Tregs, with stronger effects exerted by IR700DX-6T-PDT compared to IR700DX-mbc94-PDT. CONCLUSIONS: IR700DX-6T-PDT and IR700DX-mbc94-PDT involves eliciting anticancer immune responses. Our study has also implicated that PDT in combination with immunotherapy holds promise to improve therapeutic efficacy for patients with pancreatic cancer.


Assuntos
Indóis/uso terapêutico , Compostos de Organossilício/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Indóis/farmacologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Compostos de Organossilício/farmacologia , Pâncreas/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Receptores de GABA/metabolismo , Baço/citologia , Baço/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
3.
ACS Appl Mater Interfaces ; 13(8): 9667-9680, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617721

RESUMO

Featured with a zero-autofluorescence background, superior signal-to-noise ratio, high sensitivity, and deep penetration ability, near-infrared persistent luminescence nanoparticle (NIR-PLNP)-based multimodal nanoprobes show great potential for full-scale noninvasive cancer diagnosis. However, direct synthesis of NIR-PLNP-based multimodal nanoprobes with high drug loading capacity to meet growing cancer theranostic demands remains a challenge. In this work, multifunctional hybrid mesoporous nanoparticles (HMNPs) that integrate NIR-PLNPs (Ga2O3:Cr3+, Nd3+), magnetic nanoparticles (Gd2O3), and radionuclides (68Ga) are designed and constructed via a large-pore (mesoporous silica nanoparticle) MSN-templated strategy. The ingenious composition design endows HMNPs with rechargeable NIR-PL, superior longitudinal relaxivity, and excellent radioactivity, making these versatile nanoparticles available for long-term in vivo NIR-PL imaging, magnetic resonance imaging (MRI), and positron emission tomography (PET) imaging. More importantly, the application of large-pore MSN templates maintains the mesoporous structure of HMNPs, promising excellent drug loading capacity of these nanoparticles. As a proof-of-concept, HMNPs loaded with a high dose of DOX (chemotherapy agent) and Si-Pc (photosensitizer) are rationally designed for chemotherapy and NIR-PL-sensitized photodynamic therapy (PDT), respectively. Studies with mice tumor models demonstrate that the DOX/Si-Pc-loaded HMNPs possess excellent cancer cell killing ability and an outstanding tumor suppression effect without systemic toxicity. This work shows the great potential of HMNPs as an "all-in-one" nanotheranostic tool for multimodal NIR-PL/MR/PET imaging-guided chemotherapy and NIR-PL-sensitized photodynamic cancer therapy and provides an innovative paradigm for the development of NIR-PLNP-based nanoplatforms in cancer theranostic.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cromo/química , Cromo/uso terapêutico , Portadores de Fármacos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Gálio/química , Gálio/uso terapêutico , Radioisótopos de Gálio/química , Humanos , Indóis/efeitos da radiação , Indóis/uso terapêutico , Raios Infravermelhos , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Multimodal , Neodímio/química , Neodímio/uso terapêutico , Neoplasias/patologia , Compostos de Organossilício/efeitos da radiação , Compostos de Organossilício/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/uso terapêutico , Porosidade , Medicina de Precisão/métodos , Estudo de Prova de Conceito
4.
Mol Neurobiol ; 58(5): 2231-2241, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417225

RESUMO

Energy-dense foods and ethanol consumption are associated with mood disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been a prominent pharmacological target due to its antidepressant-like effects. This study investigated if the modulation of opioid and glucocorticoid receptors and its well-known antioxidant property contribute to the (m-CF3-PhSe)2 antidepressant-like effect in young mice subjected to an energy-dense diet and ethanol intake. Swiss male mice [postnatal day (PND) 25] were exposed to an energy-dense diet (containing 20% fat and 20% carbohydrate) or standard chow until the PND 67. Mice received ethanol (2 g/kg) or water administration (3 times a week, intragastrically [i.g.]) from PND 45 to PND 60. After that, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g) or vegetal oil administration from PND 60 to 66. Mice performed the behavioral tests to evaluate the depressive-like phenotype. The results showed that individually neither an energy-dense diet nor ethanol group induced a depressive-like phenotype, but the association of both induced this phenotype in young mice. Oxidative stress was characterized by the increase of malondialdehyde, the decrease in the superoxide dismutase activity, and non-protein sulfhydryl levels in the cerebral cortex of depressive-like mice. Depressive-like mice showed an increase in the protein levels of opioid receptors and depletion in those of glucocorticoid. (m-CF3-PhSe)2 abolished depressive-like phenotype and oxidative stress as well as modulated the levels of glucocorticoid and opioid receptors. In conclusion, the modulation of opioid and glucocorticoid receptors and the antioxidant property contributed to the (m-CF3-PhSe)2 antidepressant-like effect in young mice exposed to an energy-dense diet and ethanol intake.


Assuntos
Depressão/metabolismo , Dieta , Estilo de Vida , Compostos de Organossilício/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Receptores Opioides/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Malondialdeído/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Compostos de Organossilício/farmacologia , Superóxido Dismutase/metabolismo
5.
Int Immunol ; 33(1): 7-15, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496557

RESUMO

Near-infrared photoimmunotherapy (NIR-PIT) is a recently developed hybrid cancer therapy that directly kills cancer cells as well as producing a therapeutic host immune response. Conventional immunotherapies, such as immune-activating cytokine therapy, checkpoint inhibition, engineered T cells and suppressor cell depletion, do not directly destroy cancer cells, but rely exclusively on activating the immune system. NIR-PIT selectively destroys cancer cells, leading to immunogenic cell death that initiates local immune reactions to released cancer antigens from dying cancer cells. These are characterized by rapid maturation of dendritic cells and priming of multi-clonal cancer-specific cytotoxic T cells that kill cells that escaped the initial direct effects of NIR-PIT. The NIR-PIT can be applied to a wide variety of cancers either as monotherapy or in combination with conventional immune therapies to further activate anti-cancer immunity. A global Phase 3 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03769506) of NIR-PIT targeting the epidermal growth factor receptor (EGFR) in patients with recurrent head and neck cancer is underway, employing RM1929/ASP1929, a conjugate of anti-EGFR antibody (cetuximab) plus the photo-absorber IRDye700DX (IR700). NIR-PIT has been given fast-track recognition by regulators in the USA and Japan. A variety of imaging methods, including direct IR700 fluorescence imaging, can be used to monitor NIR-PIT. As experience with NIR-PIT grows, additional antibodies will be employed to target additional antigens on other cancers or to target immune-suppressor cells to enhance host immunity. NIR-PIT will be particularly important in patients with localized and locally advanced cancers and may help such patients avoid side-effects associated with surgery, radiation and chemotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Raios Infravermelhos/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Terapia Combinada , Células Dendríticas/imunologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Indóis/uso terapêutico , Ativação Linfocitária/imunologia , Compostos de Organossilício/uso terapêutico
6.
Cancer Immunol Immunother ; 70(2): 485-495, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32839829

RESUMO

Photodynamic therapy (PDT) is an anti-tumor modality which employs three individually non-toxic substances, including photosensitizer, light and oxygen, to produce a toxic effect. Besides causing damage to blood vessels that supply oxygen and nutrients to the tumor and killing the tumor by a direct cytotoxic effect, PDT has also been known to trigger an anti-tumor immune response. For instance, our previous study showed that PDT with BAM-SiPc, a silicon(IV) phthalocyanine based-photosensitizer, can not only eradicate the mouse CT26 tumor cells in a Balb/c mouse model, but also protect the mice against further re-challenge of the tumor cells through an immunomodulatory mechanism. To understand more about the immune effect, the biochemical actions of BAM-SiPc-PDT on CT26 cells were studied in the in vitro system. It was confirmed that the PDT treatment could induce immunogenic necroptosis in the tumor cells. Upon treatment, different damage-associated molecular patterns were exposed onto the cell surface or released from the cells. Among them, calreticulin was found to translocate to the cell membrane through a pathway similar to that in chemotherapy. The activation of immune response was also demonstrated by an increase in the expression of different chemokines.


Assuntos
Indóis/uso terapêutico , Necroptose/imunologia , Compostos de Organossilício/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Indóis/farmacologia , Isoindóis , Camundongos , Compostos de Organossilício/farmacologia , Fármacos Fotossensibilizantes/farmacologia
7.
PLoS One ; 15(6): e0234643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555717

RESUMO

BACKGROUND: Photoimmunotherapy (PIT) employs the use of a near-infrared (NIR) laser to activate an antibody conjugated to a NIR-activatable dye to induce cancer cell death. PIT has shown to be effective in a number of studies, however, there are no data on its use in colorectal cancer in an orthotopic model. METHODS: Humanized anti-CEA antibody (M5A) was conjugated to NIR-activatable IRDye700DX (M5A-700). PIT was validated in vitro with a colon cancer cell-line, using a laser intensity of either 4 J/cm2, 8 J/cm2, or 16 J/cm2. Orthotopic colon cancer mouse models were established by surgical implantation of LS174T tumor fragments onto the cecum. M5A-700 was administered and PIT was performed 24 hours later using a 690 nm laser. Repeat PIT was performed after 7 days in one group. Control mice received laser treatment only. RESULTS: In vitro PIT demonstrated tumor cell death in a laser intensity dose-dependent fashion. In orthotopic models, control mice demonstrated persistent tumor growth. Mice that underwent PIT one time had tumor growth arrested for one week, after which re-growth occurred. The group that received repeated PIT exposure had persistent inhibition of tumor growth. CONCLUSION: PIT arrests tumor growth in colon cancer orthotopic nude-mouse models. Repeated PIT arrests colon cancer growth for a longer period of time. PIT may be a useful therapy in the future as an adjunct to surgical resection or as primary therapy to suppress tumor progression.


Assuntos
Neoplasias Colorretais/terapia , Imunoconjugados/farmacologia , Imunoterapia/métodos , Indóis/uso terapêutico , Compostos de Organossilício/uso terapêutico , Fototerapia/métodos , Receptores de Superfície Celular/imunologia , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Fármacos Fotossensibilizantes/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Nucl Med ; 61(11): 1588-1593, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32385165

RESUMO

Treatment of hyperinsulinemic hypoglycemia is challenging. Surgical treatment of insulinomas and focal lesions in congenital hyperinsulinism is invasive and carries major risks of morbidity. Medication to treat nesidioblastosis and diffuse congenital hyperinsulinism has varying efficacy and causes significant side effects. Here, we describe a novel method for therapy of hyperinsulinemic hyperglycemia, highly selectively killing ß-cells by receptor-targeted photodynamic therapy (rtPDT) with exendin-4-IRDye700DX, targeting the glucagon-like peptide 1 receptor (GLP-1R). Methods: A competitive binding assay was performed using Chinese hamster lung (CHL) cells transfected with the GLP-1R. The efficacy and specificity of rtPDT with exendin-4-IRDye700DX were examined in vitro in cells with different levels of GLP-1R expression. Tracer biodistribution was determined in BALB/c nude mice bearing subcutaneous CHL-GLP-1R xenografts. Induction of cellular damage and the effect on tumor growth were analyzed to determine treatment efficacy. Results: Exendin-4-IRDye700DX has a high affinity for the GLP-1R, with a half-maximal inhibitory concentration of 6.3 nM. rtPDT caused significant specific phototoxicity in GLP-1R-positive cells (2.3% ± 0.8% and 2.7% ± 0.3% remaining cell viability in CHL-GLP-1R and INS-1 cells, respectively). The tracer accumulates dose-dependently in GLP-1R-positive tumors. In vivo, rtPDT induces cellular damage in tumors, shown by strong expression of cleaved caspase-3, and leads to a prolonged median survival of the mice (36.5 vs. 22.5 d, respectively; P < 0.05). Conclusion: These data show in vitro as well as in vivo evidence of the potency of rtPDT using exendin-4-IRDye700DX. This approach might in the future provide a new, minimally invasive, highly specific treatment method for hyperinsulinemic hypoglycemia.


Assuntos
Hiperinsulinismo Congênito/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Fotoquimioterapia/métodos , Animais , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Exenatida/metabolismo , Exenatida/uso terapêutico , Feminino , Humanos , Indóis/metabolismo , Indóis/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Nesidioblastose/tratamento farmacológico , Compostos de Organossilício/metabolismo , Compostos de Organossilício/uso terapêutico , Ratos
9.
Molecules ; 25(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098283

RESUMO

Periodic Mesoporous Organosilica Nanoparticles (PMONPs) are nanoparticles of high interest for nanomedicine applications. These nanoparticles are not composed of silica (SiO2). They belong to hybrid organic-inorganic systems. We considered using these nanoparticles for CO2 release as a contrast agent for High Intensity Focused Ultrasounds (HIFU). Three molecules (P1-P3) possessing two to four triethoxysilyl groups were synthesized through click chemistry. These molecules possess a tert-butoxycarbonyl (BOC) group whose cleavage in water at 90-100 °C releases CO2. Bis(triethoxysilyl)ethylene E was mixed with the molecules Pn (or not for P3) at a proportion of 90/10 to 75/25, and the polymerization triggered by the sol-gel procedure led to PMONPs. PMONPs were characterized by different techniques, and nanorods of 200-300 nm were obtained. These nanorods were porous at a proportion of 90/10, but non-porous at 75/25. Alternatively, molecules P3 alone led to mesoporous nanoparticles of 100 nm diameter. The BOC group was stable, but it was cleaved at pH 1 in boiling water. Molecules possessing a BOC group were successfully used for the preparation of nanoparticles for CO2 release. The BOC group was stable and we did not observe release of CO2 under HIFU at lysosomal pH of 5.5. The pH needed to be adjusted to 1 in boiling water to cleave the BOC group. Nevertheless, the concept is interesting for HIFU theranostic agents.


Assuntos
Nanomedicina , Nanopartículas/química , Compostos de Organossilício/química , Dióxido de Silício/química , Dióxido de Carbono/química , Química Click , Meios de Contraste/química , Portadores de Fármacos/química , Ésteres do Ácido Fórmico/química , Humanos , Nanopartículas/uso terapêutico , Nanotubos/química , Compostos de Organossilício/uso terapêutico , Porosidade , Dióxido de Silício/uso terapêutico
10.
Chem Commun (Camb) ; 56(7): 1093-1096, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894764

RESUMO

We prepared novel conjugated polymer based NIR-II nanoparticles, which display extremely high photothermal conversion efficiency (65%). Both in vitro and in vivo investigations revealed that the as-prepared nanoparticles exhibit excellent theranostic properties including an extremely high cancer cell killing ability, admirable tumor elimination efficiency (100%) and a remarkable photoacoustic imaging contrast enhancing ability.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Compostos de Organossilício/uso terapêutico , Polímeros/uso terapêutico , Tiadiazóis/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Raios Infravermelhos , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Compostos de Organossilício/química , Compostos de Organossilício/efeitos da radiação , Técnicas Fotoacústicas/métodos , Polímeros/química , Polímeros/efeitos da radiação , Nanomedicina Teranóstica/métodos , Tiadiazóis/química , Tiadiazóis/efeitos da radiação
11.
Nano Lett ; 19(11): 7750-7759, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31657578

RESUMO

Inhibiting the formation of new tumor blood vessels (so-called antiangiogenesis) and obstructing the established ones are two primary strategies in tumor vasculature targeted therapy. However, the therapeutic outcome of conventional methodologies relying on only one mechanism is rather limited. Herein, the first example of ultrasmall responsively aggregatable nanochelators that can intrinsically fulfill both antivasculature functions as well as high renal clearable efficiency is introduced. The nanochelators with sub-6 nm sizes exhibit not only systemic copper depletion activity for tumor antiangiogenesis but also, more surprisingly, the capability to transform from a "dispersed" state to an "aggregated" state to form large secondary particles in response to tumor microenvironment with elevated copper and phosphate levels for blood vessel obstruction. Compared to a benchmark antiangiogenic agent that can only inhibit the formation of tumor blood vessels, the nanochelators with unprecedented synergistic functions demonstrate significantly enhanced tumor inhibition activity in both breast cancer and colon cancer tumor models. Moreover, these ultrasmall nanochelators are noncytotoxic and renal clearable, ensuring superior biocompatibility. It is envisaged that the design of nanomaterials with ground-breaking properties and the synergistic antivasculature functions would offer a substantial conceptual advance for tumor vasculature targeted therapy and may provide vast opportunities for developing advanced nanomedicines.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quelantes/uso terapêutico , Nanopartículas/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Compostos de Organossilício/uso terapêutico , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Cobre/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Tamanho da Partícula
12.
Mol Pharm ; 16(7): 3145-3156, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31244224

RESUMO

Photodynamic therapy (PDT) eradicates tumors by the local activation of a photosensitizer with near-infrared light. One of the aspects hampering the clinical use of PDT is the poor selectivity of the photosensitizer. To improve this, we have recently introduced a new approach for targeted PDT by conjugating photosensitizers to nanobodies. Diverse G protein-coupled receptors (GPCRs) show aberrant overexpression in tumors and are therefore interesting targets in cancer therapy. Here we show that GPCR-targeting nanobodies can be used in targeted PDT. We have developed a nanobody binding the extracellular side of the viral GPCR US28, which is detected in tumors like glioblastoma. The nanobody was site-directionally conjugated to the water-soluble photosensitizer IRDye700DX. This nanobody-photosensitizer conjugate selectively killed US28-expressing glioblastoma cells both in 2D and 3D cultures upon illumination with near-infrared light. This is the first example employing a GPCR as target for nanobody-directed PDT. With the emerging role of GPCRs in cancer, this data provides a new angle for exploiting this large family of receptors for targeted therapies.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Imunoconjugados/farmacologia , Indóis/química , Compostos de Organossilício/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Receptores de Quimiocinas/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Proteínas Virais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células HEK293 , Humanos , Imunoconjugados/uso terapêutico , Indóis/uso terapêutico , Raios Infravermelhos/uso terapêutico , Compostos de Organossilício/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Anticorpos de Domínio Único/administração & dosagem , Transfecção
14.
PLoS One ; 14(2): e0212682, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30811466

RESUMO

Obesity is a worldwide public health problem, which is associated with various severe diseases including diabetes, hypertension, atherosclerosis, and cancer. Recent studies have revealed that combination treatment of several different compounds using low doses is effective to reduce side effects. Thus, there is a need to develop an efficient inhibitor for reducing lipid droplets with a divergent target/pathway. Ser/Thr protein phosphatase PPM1D is involved in cellular metabolic processes and is a promising target for anti-obesity treatment. We have previously developed a potent and specific PPM1D inhibitor, SL-176. In this study, we demonstrated that significant reduction of lipid droplet formation in adipocytes by the PPM1D specific inhibitor, SL-176. Using Oil-red O staining and fluorescent imaging of lipid droplet, we found that treatment of SL-176 significantly suppressed lipid droplet formation of 3T3-L1 cells both in amount and in size. SL-176 also repressed mRNA and protein expression of PPARγ and C/EBPα, adipogenic markers, at nontoxic conditions. Thus, SL-176 is a unique and potent inhibitor of lipid droplet formation that acts via PPM1D, a novel target toward inhibiting adipocyte differentiation.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Naftalenos/farmacologia , Compostos de Organossilício/farmacologia , Proteína Fosfatase 2C/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/fisiologia , Adipogenia/efeitos dos fármacos , Animais , Fármacos Antiobesidade/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Camundongos , Naftalenos/uso terapêutico , Obesidade/tratamento farmacológico , Compostos de Organossilício/uso terapêutico , Proteína Fosfatase 2C/metabolismo
15.
J Photochem Photobiol B ; 190: 1-7, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30453160

RESUMO

Phthalocyanines (Pcs) are a kind of potential photosensitizers for fluorescence imaging and photodynamic therapy (PDT). However, the clinical application of Pcs is suffered from their poor solubility, high aggregation tendency and low tumor-specificity. To address these problems, two biotin moieties were linked to the axial positions of silicon(IV) phthalocyanine (SiPc) through hydrophilic polyethylene glycol (PEG) linkers to synthesize a new water-soluble and tumor-targeting photosensitizer (compound 1). The introduction of PEG linkers on SiPc markedly reduced the aggregation tendency of the conjugate. In vitro assays also proved that compound 1 could specifically accumulate in biotin receptor (BR) positive Hela cells through the BR-mediated internalization. Owing to the good characteristics of water-solubility and low aggregation, the bioactivity of compound 1 was examined in the xenograft tumor model. In vivo imaging and tissue distribution studies showed that compound 1 selectively accumulated in the tumor tissue, with tolerable signals found in other organs of the tumor-bearing mice. Furthermore, compound 1 could significantly depress tumor progression in vivo under irradiation. After 14 days of the treatment, the tumor volumes were even smaller than the beginning size. All these results reveal that compound 1 is a promising candidate, with low aggregation tendency, high tumor-specificity and water-solubility, for in vivo tumor diagnosis and PDT treatment.


Assuntos
Indóis/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Compostos de Organossilício/uso terapêutico , Fotoquimioterapia , Receptores de Fatores de Crescimento/metabolismo , Animais , Biotina/química , Reagentes de Ligações Cruzadas/química , Células HeLa , Xenoenxertos , Humanos , Indóis/metabolismo , Indóis/farmacocinética , Isoindóis , Camundongos , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Polietilenoglicóis/química , Solubilidade , Distribuição Tecidual
16.
Angew Chem Int Ed Engl ; 57(50): 16354-16358, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318668

RESUMO

Aggregation-induced quenching (AIQ) of photosensitizers greatly reduces the quantum yield of singlet oxygen generation and mitigates the efficacy of photodynamic therapy (PDT). We have prepared an alternating copolymer starting from 4-vinylbenzyl-terminated tetraphenylporphyrin (VBTPP) and maleimide isobutyl polyhedral oligomeric silsesquioxane (MIPOSS), via alternating reversible addition-fragmentation chain transfer (RAFT) polymerization. Porphyrin and POSS are installed on the amphiphilic block copolymers backbone in an alternating fashion and POSS completely inhibits the aggregation of porphyrin units via stacking. The amphiphilic block copolymer can self-assemble into nanoparticles and its application in PDT treatment was tested. These porphyrin-containing polymeric nanoparticles display high photochemical yield and phototoxicity in vitro and in vivo, providing a novel strategy to enhance the PDT efficacy.


Assuntos
Neoplasias/tratamento farmacológico , Compostos de Organossilício/química , Compostos de Organossilício/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/uso terapêutico , Células A549 , Animais , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Neoplasias/patologia , Fotoquimioterapia , Polimerização , Oxigênio Singlete/química
17.
Cancer Sci ; 109(9): 2889-2896, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29949672

RESUMO

Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer phototherapy modality using an antibody conjugated to a photosensitizer, IRDye700DX. When the conjugate binds to the plasma membrane and is exposed to NIR light, NIR-PIT-treated cells undergo swelling, and target-selective necrotic/immunogenic cell death is induced. However, the cytotoxic mechanism of NIR-PIT has not been elucidated. In order to understand the mechanism, it is important to elucidate how the damage to the plasma membrane induced by NIR light irradiation changes over time. Thus, in the present study, we investigated the changes in plasma membrane permeability using ions and molecules of various sizes. Na+ flowed into cells immediately after NIR light irradiation, even when the function of transporters or channels was blocked. Subsequently, fluorescent molecules larger than Na+ entered the cells, but the damage was not large enough for dextran to pass through at early time points. To assess these phenomena quantitatively, membrane permeability was estimated using radiolabeled ions and molecules: 111 InCl3 , 111 In-DTPA, and 3 H-H2 O, and comparable results were obtained. Although minute plasma membrane perforations usually do not induce cell death, our results suggest that the minute damage induced by NIR-PIT was irreversibly extended with time. In conclusion, minute plasma membrane damage is a trigger for the increase in plasma membrane permeability, cell swelling, and necrotic/immunogenic cell death in NIR-PIT. Our findings provide new insight into the cytotoxic mechanism of NIR-PIT.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Imunoterapia/efeitos adversos , Indóis/toxicidade , Transporte de Íons/efeitos dos fármacos , Compostos de Organossilício/toxicidade , Fototerapia/efeitos adversos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Indóis/uso terapêutico , Compostos de Organossilício/uso terapêutico , Fototerapia/métodos , Sódio/metabolismo , Trastuzumab/uso terapêutico
18.
ACS Nano ; 12(2): 1580-1591, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29384652

RESUMO

Alleviation of tumor hypoxia has been the premise for improving the effectiveness of radiotherapy, which hinges upon the advanced delivery and rapid release of oxygen within the tumor region. Herein, we propose a "bubble-enhanced oxygen diffusion" strategy to achieve whole tumor oxygenation for significant radiation enhancement based on the "bystander effect". Toward this end, sub-50 nm CuS-modified and 64Cu-labeled hollow mesoporous organosilica nanoparticles were constructed for tumor-specific delivery of O2-saturated perfluoropentane (PFP). Through the aid of PFP gasification arising from NIR laser-triggered mild hyperthermia, simultaneous PET/PA/US multimodality imaging and rapid oxygen diffusion across the tumor can be achieved for remarkable hypoxic radiosensitization. Furthermore, the multifunctional oxygen-carrying nanotheranostics also allow for other oxygen-dependent treatments, thus greatly advancing the development of bubble-enhanced synergistic therapy platforms.


Assuntos
Fluorocarbonos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Compostos de Organossilício/uso terapêutico , Oxigênio/metabolismo , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Hipertermia Induzida/métodos , Camundongos , Camundongos Nus , Nanopartículas/ultraestrutura , Neoplasias/radioterapia , Técnicas Fotoacústicas/métodos , Porosidade , Tomografia por Emissão de Pósitrons/métodos , Ultrassonografia/métodos
19.
Angew Chem Int Ed Engl ; 56(29): 8446-8450, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28467690

RESUMO

Developing potent adjuvants for the stimulation of robust immune response is central for effective cancer immunotherapy. Double-shelled dendritic mesoporous organosilica hollow spheres are an excellent adjuvant and provide superior immunity in cancer immunotherapy, and better than their counterparts either with a pure silica composition or a single-walled architecture. This study provides new insights in the rational design of effective nanostructured adjuvants for vaccine developments.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Compostos de Organossilício/uso terapêutico , Adsorção , Animais , Dendrímeros/química , Humanos , Camundongos , Microscopia Confocal , Neoplasias/imunologia , Compostos de Organossilício/química , Ovalbumina/química , Tamanho da Partícula , Porosidade , Células RAW 264.7 , Propriedades de Superfície
20.
Anticancer Agents Med Chem ; 17(10): 1434-1440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270070

RESUMO

BACKGROUND: Targeted imaging and therapy (theranostics) is a promising approach for the simultaneous improvement of cancer diagnosis, prognosis and management. Therapeutic and imaging reagents are coupled to tumor-targeting molecules such as antibodies, providing a basis for truly personalized medicine. However, the development of antibody-drug conjugates with acceptable pharmaceutical properties is a complex process and several parameters must be optimized, such as the controlled conjugation method and the drug-to-antibody ratio. OBJECTIVE: The major aim of this work is to address fundamental key challenges for the development of versatile technology platform for generating homogenous immunotheranostic reagent. METHOD: We conjugated the theranostics reagent IRDye700dx to a recombinant antibody fusion protein containing a self-labeling protein (SNAP-tag) which provides a unique reaction site. RESULTS: The resulting conjugate was suitable for the imaging of cancer cells expressing the epidermal growth factor receptor and demonstrated potent phototherapeutic and imaging activities against them. CONCLUSION: Here, we describe a simple, rapid and robust site-directed labeling method that can be used to generate homogeneous immunoconjugate with defined pharmacological properties.


Assuntos
Anticorpos/uso terapêutico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Anticorpos/química , Relação Dose-Resposta a Droga , Receptores ErbB/análise , Receptores ErbB/biossíntese , Humanos , Indóis/química , Indóis/uso terapêutico , Estrutura Molecular , Compostos de Organossilício/química , Compostos de Organossilício/uso terapêutico , Fotoquimioterapia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA