RESUMO
Prostate cancer is the leading cause of cancer death in men. Some studies suggest that selenium Se (+4) may help prevent prostate cancer. Certain forms of Se (+4), such as Selol, have shown anticancer activity with demonstrated pro-oxidative effects, which can lead to cellular damage and cell death, making them potential candidates for cancer therapy. Our recent study in healthy mice found that Selol changes the oxidative-antioxidative status in blood and tissue. However, there are no data on the effect of Selol in mice with tumors, considering that the tumor itself influences this balance. This research investigated the impact of Selol on tumor morphology and oxidative-antioxidative status in blood and tumors, which may be crucial for the formulation's effectiveness. Our study was conducted on healthy and tumor-bearing animal models, which were either administered Selol or not. We determined antioxidant enzyme activities (Se-GPx, GPx, GST, and TrxR) spectrophotometrically in blood and the tumor. Furthermore, we measured plasma prostate-specific antigen (PSA) levels, plasma and tumor malondialdehyde (MDA) concentration as a biomarker of oxidative stress, selenium (Se) concentrations and the tumor ORAC value. Additionally, we assessed the impact of Selol on tumor morphology and the expression of p53, BCL2, and Ki-67. The results indicate that treatment with Selol influences the morphology of tumor cells, indicating a potential role in inducing cell death through necrosis. Long-term supplementation with Selol increased antioxidant enzyme activity in healthy animals and triggered oxidative stress in cancer cells, activating their antioxidant defense mechanisms. This research pathway shows promise in understanding the anticancer effects of Selol. Selol appears to increase the breakdown of cancer cells more effectively in small tumors than in larger ones. In advanced tumors, it may accelerate tumor growth if used as monotherapy. Therefore, further studies are necessary to evaluate its efficacy either in combination therapy or for the prevention of recurrence.
Assuntos
Antioxidantes , Estresse Oxidativo , Neoplasias da Próstata , Masculino , Animais , Estresse Oxidativo/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Camundongos , Antioxidantes/farmacologia , Selênio/farmacologia , Modelos Animais de Doenças , Compostos de Selênio/farmacologia , Malondialdeído/metabolismo , Antígeno Prostático Específico/sangue , Linhagem Celular Tumoral , Glutationa Peroxidase/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
Anticancer theranostic nanocarriers have the potential to enhance the efficacy of pharmaceutical evaluation of drugs. Semiconductor nanocrystals, also known as quantum dots (QDs), are particularly promising components of drug carrier systems due to their small sizes and robust photoluminescence properties. Herein, bright CdZnSeS quantum dots were synthesized in a single step via the hot injection method. The particles have a quasi-core/shell structure as evident from the high quantum yield (85 %), which decreased to 41 % after water solubilization. These water solubilized QDs were encapsulated into gallic acid / alginate (GA-Alg) matrices to fabricate imaging QDs@mod-PAA/GA-Alg particles with enhanced stability in aqueous media. Cell viability assessments demonstrated that these nanocarriers exhibited viability ranging from 63 % to 83 % across all tested cell lines. Furthermore, the QDs@mod-PAA/GA-Alg particles were loaded with betulinic acid (BA) and ceranib-2 (C2) for in vitro drug release studies against HL-60 leukemia and PC-3 prostate cancer cells. The BA loaded QDs@mod-PAA/GA-Alg had a half-maximal inhibitory concentration (IC50) of 8.76 µg/mL against HL-60 leukemia cells, which is 3-fold lower than that of free BA (IC50 = 26.55 µg/mL). Similar enhancements were observed with nanocarriers loaded with C2 and simultaneously with both BA and C2. Additionally, BA:C2 loaded QDs@mod-PAA/GA-Alg nanocarriers displayed a similar enhancement (IC50 = 3.37 µg/mL compared against IC50 = 11.68 µg/mL for free BA:C2). The C2 loaded QDs@mod-PAA/GA-Alg nanocarriers had an IC50 = 2.24 µg/mL against HL-60 cells. C2 and BA loaded QDs@mod-PAA/GA-Alg NCr had IC50 values of 7.37 µg/mL and 24.55 µg/mL against PC-3 cells, respectively.
Assuntos
Antineoplásicos , Sobrevivência Celular , Neoplasias da Próstata , Pontos Quânticos , Nanomedicina Teranóstica , Pontos Quânticos/química , Humanos , Masculino , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Tamanho da Partícula , Leucemia/tratamento farmacológico , Leucemia/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Selênio/química , Compostos de Selênio/farmacologia , Compostos de Cádmio/química , Propriedades de Superfície , Liberação Controlada de Fármacos , Alginatos/química , Portadores de Fármacos/química , Compostos de Zinco/química , Proliferação de Células/efeitos dos fármacos , Células PC-3 , Células HL-60RESUMO
Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of â¢OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.
Assuntos
Neoplasias da Mama , Hipertermia Induzida , Metotrexato , Camundongos Nus , Nanotubos , Metotrexato/química , Metotrexato/farmacologia , Animais , Nanotubos/química , Camundongos , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Camundongos Endogâmicos BALB C , Terapia Fototérmica , Ferro/química , Compostos de Selênio/química , Compostos de Selênio/farmacologia , Compostos de Selênio/efeitos da radiação , Linhagem Celular Tumoral , Raios InfravermelhosRESUMO
Nowadays, leishmaniasis is still treated with outdated drugs that present several obstacles related to their high toxicity, long duration, parenteral administration, high costs and drug resistance. Therefore, there is an urgent demand for safer and more effective novel drugs. Previous studies indicated that selenium compounds are promising derivatives for innovative therapy in leishmaniasis treatment. With this background, a new library of 20 selenocyanate and diselenide derivatives were designed based on structural features present in the leishmanicidal drug miltefosine. Compounds were initially screened against promastigotes of L. major and L. infantum and their cytotoxicity was evaluated in THP-1 cells. Compounds B8 and B9 were the most potent and less cytotoxic and were further screened for the intracellular back transformation assay. The results obtained revealed that B8 and B9 showed EC50 values of 7.7 µM and 5.7 µM, respectively, in L. major amastigotes, while they presented values of 6.0 µM and 7.4 µM, respectively, against L. infantum amastigotes. Furthermore, they exerted high selectivity (60 < SI > 70) towards bone marrow-derived macrophages. Finally, these compounds exhibited higher TryR inhibitory activity than mepacrine (IC50 7.6 and 9.2 µM, respectively), and induced nitric oxide (NO) and reactive oxygen species (ROS) production in macrophages. These results suggest that the compounds B8 and B9 could not only exert a direct leishmanicidal activity against the parasite but also present an indirect action by activating the microbicidal arsenal of the macrophage. Overall, these new generation of diselenides could constitute promising leishmanicidal drug candidates for further studies.
Assuntos
Antiprotozoários , Leishmaniose , Compostos de Selênio , Animais , Camundongos , Antiprotozoários/química , Macrófagos , Leishmaniose/tratamento farmacológico , Compostos de Selênio/farmacologia , Camundongos Endogâmicos BALB CRESUMO
The purpose of this study was to analyze the effects of cadmium toxicity on rat embryogenesis when exposed to other heavy metal citrates. Despite the variety of scientific publications discussing the influence of cadmium on mammalian postnatal development, the effect of this metal on embryogenesis has not yet been sufficiently studied. In this experimental study, cadmium chloride was administered to experimental pregnant female Wistar rats at a daily dose of 1.0 mg/kg. Rats were allocated at random into groups receiving either cadmium chloride alone or additional zinc citrate, cerium citrate, or nanocomposite (based on iodine, sulfur, and selenium citrate). The control group received distilled water at an equivalent volume. In each group, operational intervention occurred at the 13th and 20th day of gestation to assess numbers of live fetuses, corpora lutea, pre-implantation losses, post-implantation losses, and total implantation losses. When cadmium chloride alone was administered, a pronounced embryotoxic effect was observed, manifested as a significant decrease in the number of live fetuses. Experimental groups which received cadmium chloride with zinc citrate, cerium citrate, or nanocomposite had an increased number of live fetuses and corpora lutea, as well as a decreased number of implantation losses, compared to the group which only received cadmium chloride. Each combination of cerium, zinc, and selenium nanocomposite citrates demonstrated a compensatory effect on all measures of embryogenesis impacted by cadmium embryotoxicity. Thus, administration of the citrates of cerium, zinc, and selenium nanocomposite reduces cadmium embryotoxicity and its accumulation in the body.
Assuntos
Cloreto de Cádmio , Citratos , Desenvolvimento Embrionário , Metais Pesados , Animais , Feminino , Gravidez , Ratos , Cloreto de Cádmio/toxicidade , Citratos/farmacologia , Implantação do Embrião/efeitos dos fármacos , Mamíferos , Ratos Wistar , Doença Crônica , Desenvolvimento Embrionário/efeitos dos fármacos , Metais Pesados/farmacologia , Metais Pesados/toxicidade , Cério/farmacologia , Nanocompostos , Compostos de Zinco/farmacologia , Compostos de Selênio/farmacologia , Compostos de Iodo/farmacologia , Compostos de Enxofre/farmacologiaRESUMO
The introduction of selenium-containing functional groups into steroids to study the biological activities of related derivatives is rarely reported in the literature. In the present study, using cholesterol as raw material, four cholesterol-3-selenocyanoates and eight B-norcholesterol selenocyanate derivatives were synthesized, respectively. The structures of the compounds were characterized by NMR and MS. The results of the in vitro antiproliferative activity test showed that the cholesterol-3-selenocyanoate derivatives did not exhibit obvious inhibitory on the tested tumor cell lines. However, the B-norcholesterol selenocyanate derivatives obtained by structural modification of cholesterol showed good inhibitory activity against the proliferation of tumor cell. Among them, compounds 9b-c, 9f and 12 showed similar inhibitory activity against tested tumor cells as positive control 2-methoxyestradiol, and better than Abiraterone. At the same time, these B-norcholesterol selenocyanate derivatives displayed a strong selective inhibitory against Sk-Ov-3 cell line. Except for compound 9g, the IC50 value of all B-norcholesterol selenocyanate compounds against Sk-Ov-3 cells was less than 10 µM, and compound 9d was 3.4 µM. In addition, Annexin V-FITC/PI double staining was used to analyze the cell death mechanism. The results showed that compound 9c could induce Sk-Ov-3 cells to enter programmed apoptosis in a dose-dependent manner. Furthermore, the in vivo antitumor experiments of compound 9f against zebrafish xenograft tumor showed that 9f displayed obvious inhibitory effect on the growth of human cervical cancer (HeLa) xenograft tumor in zebrafish. Our results provide new thinking for the study of such compounds as new antitumor drugs.
Assuntos
Antineoplásicos , Colesterol , Animais , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/química , Colesterol/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Peixe-Zebra/metabolismo , Cianatos/química , Cianatos/farmacologia , Compostos de Selênio/química , Compostos de Selênio/farmacologiaRESUMO
Selenium has good antitumor effects in vitro, but the hypoxic microenvironment in solid tumors makes its clinical efficacy unsatisfactory. We hypothesized that the combination with oxygen therapy might improve the treatment efficacy of selenium in hypoxic tumors through the changes of redox environment. In this work, two selenium compounds, Na2SeO3 and CysSeSeCys, were selected to interrogate their therapeutic effects on hepatocellular carcinoma (HCC) under different oxygen levels. In tumor-bearing mice, both selenium compounds significantly inhibited the tumor growth, and combined with oxygen therapy further reduced the tumor volume about 50 %. In vitro HepG2 cell experiments, selenium induced autophagy and delayed apoptosis under hypoxia (1 % O2), while inhibited autophagy and accelerated apoptosis under hyperoxia (60 % O2). We found that, in contrast to hypoxia, the hyperoxic environment facilitated the H2Se, produced by the selenium metabolism in cells, to be rapidly oxidized to generate H2O2, leading to inhibit the expression level of Nrf2 and to increase that of phosphorylation of p38 and MKK4, resulting in inhibiting autophagy and accelerating apoptosis. Once the Nrf2 gene was knocked down, selenium compounds combined with hyperoxia treatment would further activate the MAPK signaling pathway and further increase apoptosis. These findings highlight oxygen can significantly enhance the anti-HCC effect of selenium compounds through regulating the Nrf2 and MAPK signaling pathways, thus providing novel therapeutic strategy for the hypoxic tumors and pave the way for the application of selenium in clinical treatment.
Assuntos
Carcinoma Hepatocelular , Hiperóxia , Neoplasias Hepáticas , Compostos de Selênio , Selênio , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Compostos de Selênio/metabolismo , Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Apoptose , Hipóxia , Oxigênio , Microambiente TumoralRESUMO
The discovery of the anticancer activity of cisplatin has marked the emergence of modern Inorganic Medicinal Chemistry. This field of research is concerned with the application of inorganic compounds to therapy or diagnosis of disease. In particular, metal coordination of bioactive ligands has gained recognition in drug design. The interaction between transition metal ions and the organic drugs could enhance their diagnostic and therapeutic potentials by improving the stability and/or bioavailability or by achieving a metal-drug synergism through a dual or multiple mechanisms of action. The isosteric replacement of sulfur by selenium in thiosemicarbazones leads to selenosemicarbazones. This class of compounds exhibits numerous biological activities like antitumor, antimicrobial, antiviral, etc. and, in most cases, they were more pronounced in comparison to the sulfur analogues. On the other hand, while the effect of transition metal complexation on the biological activity of thiosemicarbazones has been widely studied, the pharmacological activity of the corresponding metal-selenosemicarbazone compounds has been less explored. In this work, the most relevant results related to the selenosemicarbazone metal complexes as potential metal-based drugs have been reviewed.
Assuntos
Complexos de Coordenação , Tiossemicarbazonas , Elementos de Transição , Humanos , Complexos de Coordenação/farmacologia , Metais/química , Enxofre , Tiossemicarbazonas/farmacologia , Compostos de Selênio/química , Compostos de Selênio/farmacologia , Semicarbazonas/química , Semicarbazonas/farmacologiaRESUMO
Cancer stem cells (CSCs) are reported to play essential roles in chemoresistance and metastasis. Pathways regulating CSC self-renewal and proliferation, such as Hedgehog, Notch, Wnt/ß-catenin, TGF-ß, and Myc, may be potential therapeutic targets. Here, a functional screening from the focused library with 365 compounds is performed by a step-by-step strategy. Among these candidate molecules, phenyl-2-pyrimidinyl ketone 4-allyl-3-amino selenourea (CU27) is chosen for further identification because it proves to be the most effective compound over others on CSC inhibition. Through ingenuity pathway analysis, it is shown CU27 may inhibit CSC through a well-known stemness-related transcription factor c-Myc. Gene set enrichment analysis, dual-luciferase reporter assays, expression levels of typical c-Myc targets, molecular docking, surface plasmon resonance, immunoprecipitation, and chromatin immunoprecipitation are conducted. These results together suggest CU27 binds c-Myc bHLH/LZ domains, inhibits c-Myc-Max complex formation, and prevents its occupancy on target gene promoters. In mouse models, CU27 significantly sensitizes sorafenib-resistant tumor to sorafenib, reduces the primary tumor size, and inhibits CSC generation, showing a dramatic anti-metastasis potential. Taken together, CU27 exerts inhibitory effects on CSC and CSC-associated traits in hepatocellular carcinoma (HCC) via c-Myc transcription activity inhibition. CU27 may be a promising therapeutic to treat sorafenib-resistant HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Selênio , Selênio , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Selênio/metabolismo , Selênio/farmacologia , Compostos de Selênio/metabolismo , Compostos de Selênio/farmacologia , Sorafenibe/metabolismo , Sorafenibe/farmacologiaRESUMO
Selenium compounds have pronounced effects on cell growth and proliferation. Nutritional levels induce selenoproteins. However, the antineoplastic effects of supra-nutritional selenium levels are not mediated by selenoproteins. The most studied compound, selenite, was shown in a clinical trial to possess extraordinary pharmacological properties. The uptake of selenite as for GS-Se-SG and selenocystine is dependent on the extracellular reducing environment maintained by the Xc- cystine transporter (xc- antiporter) ensuring a high level of extracellular cysteine. The expression of the xc- antiporter is vital for selenium cytotoxicity and any xenobiotic or media constituents modulating the expression of this antiporter will greatly affect the cellular response. Cytotoxicity determinations are often difficult to interpret and repeat due to differences in culture conditions. In the current chapter, factors influencing the cellular response, e.g., media composition, cell culturing conditions, assays for key enzymes of importance for selenium metabolism and effects, along with selenium mediated modulation of microRNA expression and immune responses are treated.
Assuntos
Neoplasias , Compostos de Selênio , Selênio , Cisteína/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Selênio/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Compostos de Selênio/metabolismo , Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , SelenoproteínasRESUMO
The reactivity of thiophene in Diels-Alder reactions is investigated with different maleimide derivatives. In this paper, we have synthesized for the first time the Diels-Alder adducts of thiophene at room temperature and atmospheric pressure. Maleimido-thiophene adducts were promoted by AlCl3. The effects of solvent, time, temperature and the use of different Lewis acids were studied, showing dramatic effects for solvent and Lewis acid. Furthermore, the catalysis with AlCl3 is highly stereoselective, preferably providing the exo form of the adduct. Additionally, we also discovered the ability of AlCl3 to catalyze the arylation of maleimides to yield 3-aryl succinimides in a straightforward manner following a Friedel-Crafts-type addition. The inclusion of a selenocyanate group contributes to the cytotoxic activity of the adduct. This derivatization (from compound 7 to compound 15) results in an average GI50 value of 1.98 µM in the DTP (NCI-60) cell panel, resulting in being especially active in renal cancer cells.
Assuntos
Antineoplásicos/farmacologia , Cianatos/farmacologia , Compostos de Selênio/farmacologia , Tiofenos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cianatos/química , Reação de Cicloadição , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ácidos de Lewis/química , Compostos de Selênio/química , Tiofenos/farmacologiaRESUMO
The biological applicability of nanomaterials has been limited due to cytotoxicity. Studies have described the effects of nanomaterials on different tissues and cell types, but their actions on immune cells are less elucidated. This study describes unprecedented in vitro and in vivo antioxidant activities of cadmium selenide magic-sized quantum dots (CdSe MSQDs) with implications on rheumatoid arthritis. While the generation of ROS induced by nanomaterials is linked to cytotoxicity, we found that CdSe MSQDs reduced ROS production by neutrophils and macrophages following opsonized-zymosan stimuli, and we did not find cytotoxic effects. Interestingly, inherent antioxidant properties of CdSe MSQDs were confirmed through DPPH, FRAP, and ORAC assays. Furthermore, CdSe MSQDs reduced ROS levels generated by infiltrating leukocytes into joints in experimental model of rheumatoid arthritis. Briefly, we describe a novel application of CdSe MSQDs in modulating the inflammatory response in experimental rheumatoid arthritis through an unexpected antioxidant activity.
Assuntos
Artrite Reumatoide , Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Antioxidantes/farmacologia , Artrite Reumatoide/tratamento farmacológico , Compostos de Cádmio/química , Compostos de Cádmio/farmacologia , Humanos , Macrófagos , Neutrófilos , Pontos Quânticos/química , Espécies Reativas de Oxigênio , Compostos de Selênio/química , Compostos de Selênio/farmacologiaRESUMO
Aurora kinases and protein kinase C (PKC) have been shown to be involved in different aspects of cancer progression. To date, no dual Aurora/PKC inhibitor with clinical efficacy and low toxicity is available. Here, we report the identification of compound 2e as a potent small molecule capable of selectively inhibiting Aurora A kinase and PKC isoforms α, ß1, ß2 and θ. Compound 2e demonstrated significant inhibition of the colony forming ability of metastatic breast cancer cells in vitro and metastasis development in vivo. In vitro kinase screening and molecular modeling studies revealed the critical role of the selenium-containing side chains within 2e, where selenium atoms were shown to significantly improve its selectivity and potency by forming additional interactions and modulating the protein dynamics. In comparison to other H-bonding heteroatoms such as sulfur, our studies suggested that these selenium atoms also confer more favorable PK properties.
Assuntos
Aurora Quinase A/antagonistas & inibidores , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Compostos de Selênio/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Ligação de Hidrogênio , Isoenzimas , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Especificidade por Substrato , Ensaio Tumoral de Célula-TroncoRESUMO
Magnetic resonance imaging (MRI) has excellent potential in the clinical monitoring of tumors because it can provide high-resolution soft tissue imaging. However, commercial contrast agents (CAs) used in MRI still have some problems such as potential toxicity to the human body, low relaxivity, and a short MRI acquisition window. In this study, ultrasmall MnSe nanoparticles are synthesized by living Staphylococcus aureus cells. The as-prepared MnSe nanoparticles are monodispersed with a uniform particle size (3.50 ± 0.52 nm). Due to the ultrasmall particle size and good water solubility, the MnSe nanoparticles exhibit in vitro high longitudinal relaxivity properties (14.12 ± 1.85 mM-1·s-1). The CCK-8 colorimetric assay, histological analysis, and body weight results show that the MnSe nanoparticles do not have appreciable toxicity on cells and organisms. Besides, the MnSe nanoparticles as T1-MRI CAs offer a long MRI acquisition window to tumor imaging (â¼7 h). This work provides a promising T1-MRI CA for clinical tumor imaging and a good reference for the application of functional MnSe nanoparticles in the biomedicine field.
Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Compostos de Selênio/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Meios de Contraste/efeitos adversos , Modelos Animais de Doenças , Feminino , Injeções Intravenosas , Compostos de Manganês/administração & dosagem , Compostos de Manganês/efeitos adversos , Compostos de Manganês/farmacologia , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Tamanho da Partícula , Compostos de Selênio/administração & dosagem , Compostos de Selênio/efeitos adversos , Compostos de Selênio/farmacologia , Solubilidade , Staphylococcus aureus/metabolismoRESUMO
Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects, and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.) is a way for the development of compounds with promising pharmaceutical potential. Therefore, the aim of this review is to highlight the recent achievements in the use of diselenides or selenocyanates as precursors for the synthesis of pharmaceutically relevant compounds, preferentially compounds with antitumor and antimicrobial activities.
Assuntos
Compostos Organosselênicos , Compostos de Selênio , Antioxidantes/química , Cianatos/química , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Compostos de Selênio/química , Compostos de Selênio/farmacologiaRESUMO
CdSe magic-sized quantum dots (MSQDs) have been widely used as fluorescent probes in biological systems due to their excellent optical properties with a broader fluorescence spectrum and stable luminescence in biological media. However, they can be cytotoxic and alter the redox balance depending on the amounts of Cd2+ adsorbed on their surface. Thus, the present study aimed to evaluate whether increases in selenium concentration in the synthesis of CdSe-MSQDs decrease the oxidative stress caused by Cd2+ -based quantum dots. CdSe-MSQDs synthesized with different concentrations of selenium were investigated against oxidative stress in the brain of chicken embryos by examining total antioxidant capacity, lipid peroxidation, thiol, and glutathione contents, as well as the activities of glutathione peroxidase, superoxide dismutase (SOD), catalase (CAT), and glutathione reductase. In addition, the vascularization of the chorioallantoic membrane (CAM) analysis was performed. Higher selenium concentrations alter the surface defect levels (decrease free Cd2+ ) and controlled the oxidative effects of CdSe-MSQDs by reducing the lipid peroxidation, restoring the glutathione defense system and the antioxidant enzymes SOD and CAT, and maintaining the vascular density of the CAM. The current findings reinforce the study of the effects of the presence of Cd2+ ions on the surface of quantum dots, changing toxicity, and aiming interesting strategies of nanomaterials in biological systems.
Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Selênio , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Cádmio/farmacologia , Compostos de Cádmio/farmacologia , Embrião de Galinha , Glutationa , Estresse Oxidativo , Selênio/farmacologia , Compostos de Selênio/farmacologia , Superóxido DismutaseRESUMO
The 3-[(4-methoxyphenyl)selanyl]-2-phenylimidazo[1,2-a] pyridine (MPI), a novel organic selenium compound, has been receiving increased attention due to its antioxidant effects and its ability to protect against depression-like behaviours. However, it remains elusive whether MPI is able to reverse depressive-like symptoms and biochemical alterations in mice. In the present work, we explored the ability of MPI (10 mg/kg, i.g.) to reverse inflammation- and stress-induced depression-like behaviours in mice injected with tumour necrosis factor (TNF-α) or submitted to acute restraint stress. Depression-like behaviours were evaluated by the tail suspension and splash test and the open field test was used to evaluate the locomotor activity of mice. The prefrontal cortex and hippocampus of mice were used for the evaluation of parameters of oxidonitrosative stress. Here, we showed that a single administration of MPI abolished the depressive-like behaviours induced by TNF-α and acute restraint stress. The oxidative and nitrosative stress presented in mice with depression-like behaviours were also decreased by MPI in the prefrontal cortex and hippocampus. Our findings suggest that MPI presents antidepressant-like activity which is associated with the biochemical regulation of oxidative stress in prefrontal cortex and hippocampus of mice, arising as a promising strategy for the management of depressive symptoms.
Assuntos
Depressão , Hipocampo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Compostos de Selênio/farmacologia , Estresse Psicológico , Animais , Antidepressivos/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Inflamação/metabolismo , Camundongos , Restrição Física , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismoRESUMO
Millions of people worldwide are exposed to unacceptable levels of arsenic, a proven human carcinogen, in drinking water. In animal models, arsenic and selenium are mutually protective through formation and biliary excretion of seleno-bis (S-glutathionyl) arsinium ion [(GS)2AsSe]-. Selenium-deficient humans living in arsenic-endemic regions are at increased risk of arsenic-induced diseases, and may benefit from selenium supplementation. The influence of selenium on human arsenic hepatobiliary transport has not been studied using optimal human models. HepaRG cells, a surrogate for primary human hepatocytes, were used to investigate selenium (selenite, selenide, selenomethionine, and methylselenocysteine) effects on arsenic hepatobiliary transport. Arsenite + selenite and arsenite + selenide at different molar ratios revealed mutual toxicity antagonism, with the latter being higher. Significant levels of arsenic biliary excretion were detected with a biliary excretion index (BEI) of 14 ± 8%, which was stimulated to 32 ± 7% by selenide. Consistent with the formation and biliary efflux of [(GS)2AsSe]-, arsenite increased the BEI of selenide from 0% to 24 ± 5%. Arsenic biliary excretion was lost in the presence of selenite, selenomethionine, and methylselenocysteine. Sinusoidal export of arsenic was stimulated â¼1.6-fold by methylselenocysteine, but unchanged by other selenium forms. Arsenic canalicular and sinusoidal transport (±selenide) was temperature- and GSH-dependent and inhibited by MK571. Knockdown experiments revealed that multidrug resistance protein 2 (MRP2/ABCC2) accounted for all detectable biliary efflux of arsenic (±selenide). Overall, the chemical form of selenium and human MRP2 strongly influenced arsenic hepatobiliary transport, information critical for human selenium supplementation in arsenic-endemic regions.
Assuntos
Arsênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismo , Compostos de Selênio/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Antagonistas de Leucotrienos/farmacologia , Metiltransferases/genética , Metiltransferases/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Propionatos/farmacologia , Quinolinas/farmacologia , Temperatura , Poluentes Químicos da Água/metabolismoRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Overexpression of pleomorphic adenoma gene like-2 (PLAGL2) is associated with tumorigenesis. However, its function in HCC is unclear, and there are currently no anti-HCC drugs that target PLAGL2. Drug repositioning may facilitate the development of PLAGL2-targeted drug candidates. METHODS: The expression of PLAGL2 in HCC clinical tissue samples and HCC cell lines was analyzed by western blotting. The constructed HCC cell models were used to confirm the underlying function of PLAGL2 as a therapeutic target. Multiple in vitro and in vivo assays were conducted to determine the anti-proliferative and apoptosis-inducing effects of selenium sulfide (SeS2 ), which is clinically used for the treatment of seborrheic dermatitis and tinea versicolor. RESULTS: PLAGL2 expression was higher in HCC tumor tissues than in normal adjacent tissues. Its overexpression promoted the resistance of HCC cells of mitochondrial apoptosis through the regulation of the downstream C-MET/STAT3 signaling axis. SeS2 exerted significant anti-proliferative and apoptosis-inducing effects on HCC cells in a PLAGL2-dependent manner. Mechanistically, SeS2 suppressed C-MET/STAT3, AKT/mTOR, and MAPK signaling and triggered Bcl-2/Cyto C/Caspase-mediated intrinsic mitochondrial apoptosis both in vitro and in vivo. CONCLUSIONS: Our data reveal an important role of PLAGL2 in apoptosis resistance in HCC and highlight the potential of using SeS2 as a PLAGL2 inhibitor in patients with HCC.
Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas de Ligação a RNA/metabolismo , Compostos de Selênio/farmacologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Fígado/química , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
It is established that steroid based agents are an example of compounds obtained from natural patterns and are of great importance due to their application in the prevention and treatment of diseases. Selenosteroids are hybrids formed by attaching Se-moiety to a steroid molecule. In these types of hybrids, selenium can be present as selenide or as a part of selenosemicarbazones, isoselenocyanates, selenourea, etc. Attaching a Se-moiety to a biologically active steroid might enhance the biological properties of both fragments. Available literature indicates that these kinds of hybrids demonstrate significant anticancer activity, which renders them interesting in terms of medical use. In this review, we present various methods of synthesis and demonstrate that seleno-steroid compounds are promising molecules for further pharmaceutical application.