Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Toxicology ; 505: 153844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801937

RESUMO

Tributyltin chloride (TBTC) is a ubiquitous environmental pollutant with various adverse effects on human health. Exosomes are cell - derived signaling and substance transport vesicles. This investigation aimed to explore whether exosomes could impact the toxic effects caused by TBTC via their transport function. Cytotoxicity, DNA and chromosome damage caused by TBTC on MCF-7 cells were analyzed with CCK-8, flow cytometry, comet assay and micronucleus tests, respectively. Exosomal characterization and quantitative analysis were performed with ultracentrifugation, transmission electron microscope (TEM) and bicinchoninic acid (BCA) methods. TBTC content in exosomes was detected with Liquid Chromatography-Mass Spectrometry (LC-MS). The impacts of exosomal secretion on the toxic effects of TBTC were analyzed. Our data indicated that TBTC caused significant cytotoxicity, DNA and chromosome damage effects on MCF-7 cells, and a significantly increased exosomal secretion. Importantly, TBTC could be transported out of MCF-7 cells by exosomes. Further, when exosomal secretion was blocked with GW4869, the toxic effects of TBTC were significantly exacerbated. We concluded that TBTC promoted exosomal secretion, which in turn transported TBTC out of the source cells to alleviate its toxic effects. This investigation provided a novel insight into the role and mechanism of exosomal release under TBTC stress.


Assuntos
Dano ao DNA , Exossomos , Compostos de Trialquitina , Humanos , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Compostos de Trialquitina/toxicidade , Células MCF-7 , Dano ao DNA/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Sobrevivência Celular/efeitos dos fármacos
2.
J Toxicol Sci ; 48(3): 161-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858641

RESUMO

Tributyltin (TBT) is an environmental chemical, which was used as an antifouling agent for ships. Although its use has been banned, it is still persistently present in ocean sediments. Although TBT reportedly causes various toxicity in mammals, few studies on the mechanisms of biological response against TBT toxicity exist. The well-established Keap1-Nrf2 pathway is activated as a cytoprotective mechanism under stressful conditions. The relationship between TBT and the Keap1-Nrf2 pathway remains unclear. In the present study, we evaluated the effect of TBT on the Keap1-Nrf2 pathway. TBT reduced Keap1 protein expression in Neuro2a cells, a mouse neuroblastoma cell line, after 6 hr without altering mRNA expression levels. TBT also promoted the nuclear translocation of Nrf2, a transcription factor for antioxidant proteins, after 12 hr and augmented the expression of heme oxygenase 1, a downstream protein of Nrf2. Furthermore, TBT decreased Keap1 levels in mouse embryonic fibroblast (MEF) cells, with the knockout of Atg5, which is essential for macroautophagy, as well as in wild-type MEF cells. These results suggest that TBT activates the Keap1-Nrf2 pathway via the reduction in the Keap1 protein level in a macroautophagy-independent manner. The Keap1-Nrf2 pathway is activated by conformational changes in Keap1 induced by reactive oxygen species or electrophiles. Furthermore, any unutilized Keap1 protein is degraded by macroautophagy. Understanding the novel mechanism governing the macroautophagy-independent reduction in Keap1 by TBT may provide insights into the unresolved biological response mechanism against TBT toxicity and the activation mechanism of the Keap1-Nrf2 pathway.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Macroautofagia , Fator 2 Relacionado a NF-E2 , Compostos de Trialquitina , Animais , Camundongos , Fibroblastos , Compostos de Trialquitina/toxicidade
3.
Arch Toxicol ; 97(2): 547-559, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319700

RESUMO

Tributyltin (TBT) is known as an endocrine-disrupting chemical. This study investigated the effects and possible mechanisms of TBT exposure on inducing human articular chondrocyte senescence in vitro at the human-relevant concentrations of 0.01-0.5 µM and mouse articular cartilage aging in vivo at the doses of 5 and 25 µg/kg/day, which were 5 times lower than the established no observed adverse effect level (NOAEL) and equal to NOAEL, respectively. TBT significantly increased the senescence-associated ß-galactosidase activity and the protein expression levels of senescence markers p16, p53, and p21 in chondrocytes. TBT induced the protein phosphorylation of both p38 and JNK mitogen-activated protein kinases in which the JNK signaling was a main pathway to be involved in TBT-induced chondrocyte senescence. The phosphorylation of both ataxia-telangiectasia mutated (ATM) and histone protein H2AX (termed γH2AX) was also significantly increased in TBT-treated chondrocytes. ATM inhibitor significantly inhibited the protein expression levels of γH2AX, phosphorylated p38, phosphorylated JNK, p16, p53, and p21. TBT significantly stimulated the mRNA expression of senescence-associated secretory phenotype (SASP)-related factors, including IL-1ß, TGF-ß, TNF-α, ICAM-1, CCL2, and MMP13, and the protein expression of GATA4 and phosphorylated NF-κB-p65 in chondrocytes. Furthermore, TBT by oral gavage for 4 weeks in mice significantly enhanced the articular cartilage aging and abrasion. The protein expression of phosphorylated p38, phosphorylated JNK, GATA4, and phosphorylated NF-κB-p65, and the mRNA expression of SASP-related factors were enhanced in the mouse cartilages. These results suggest that TBT exposure can trigger human chondrocyte senescence in vitro and accelerating mouse articular cartilage aging in vivo.


Assuntos
Cartilagem Articular , Senescência Celular , Condrócitos , Compostos de Trialquitina , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Compostos de Trialquitina/toxicidade
4.
Environ Sci Pollut Res Int ; 30(7): 17828-17838, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36201083

RESUMO

Widespread human activity has resulted in the presence of different pollutants in the aquatic environment that does not exist in isolation. The study of the effects of contamination of aquatic organisms is of great significance. To assess the individual and combined toxicity of cadmium (Cd) and tributyltin (TBT) to aquatic organisms, juvenile grass carp (Ctenopharyngodon idella) were exposed to Cd (2.97 mg/L), TBT (7.5 µg/L), and their mixture MIX. The biological response was evaluated by nuclear magnetic resonance (NMR) analysis of plasma metabolites. Plasma samples at 1, 2, 4, 8, 16, 32, and 48 days post-exposure were analyzed using detection by NMR technique. The typical correlation analysis (CCA) analysis revealed that TBT had the greatest effect on plasma metabolism, followed by MIX and Cd. The interference pathway to grass carp was similar to that of TBT and MIX. Both Cd and TBT exposure alone or in combination can lead to metabolic abnormalities in TCA cycle-related pathways and interfere with energy metabolism. These results provide more detailed information for the metabolic study of pollutants and data for assessing the health risks of Cd, TBT, and MIX at the metabolic level.


Assuntos
Carpas , Poluentes Ambientais , Compostos de Trialquitina , Poluentes Químicos da Água , Animais , Humanos , Cádmio/toxicidade , Larva , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Toxicol Appl Pharmacol ; 453: 116209, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998708

RESUMO

Organotins, a chemical family with over 30 congeners to which humans are directly exposed to through food consumption, are a chemical class widely used as stabilizers in polyvinyl chloride, and biocides in antifouling products. Aside from tributyltin (TBT), toxicological information on other organotin congeners, such as triphenyltin (TPT), remains scarce. Our previous work has demonstrated that TBT can interfere with cholesterol trafficking in steroidogenic cells. Given their structural similarities, we hypothesized that TPT, similar to TBT, disrupts intracellular cholesterol transport and impairs steroidogenesis in ovarian theca cells. To test this, human and ovine primary ovarian theca cells were isolated, purified and exposed to TPT at environmentally relevant doses (1 or 10 ng/ml) in pre-luteinized (48 h exposure) or luteinizing cells (72 h exposure). Intracellular cholesterol levels, progesterone, and testosterone secretion and gene expression of nuclear receptors, cholesterol transporters, and steroidogenic enzymes were evaluated. In ovine cells, TPT upregulated StAR, ABCA1, and SREBF1 mRNA and ABCA1 protein in both pre-luteinized and luteinized stages. TPT did not alter intracellular cholesterol or testosterone synthesis, but upregulated progesterone production. Inhibitor and shRNA knockdown approaches were then used to evaluate the role of retinoid X receptor (RXR) and liver X receptor (LXR) on TPT's effects. TPT upregulated ABCA1 and StAR expression was blocked by both LXR and RXR antagonists. TPT's effect on ABCA1 expression was reduced in LXRß and RXRß knockdown theca cells. Similar findings were obtained with primary human theca cells. No synergistic effect of TBT and TPT was observed. In conclusion, at an environmentally relevant dose, TPT upregulates theca cell cholesterol transporter ABCA1 expression via RXR and LXR pathways. Similar effects of TPT on human and sheep theca cells supports its conserved mechanism across mammalian theca cells.


Assuntos
Progesterona , Compostos de Trialquitina , Animais , Colesterol/metabolismo , Feminino , Humanos , Receptores X do Fígado , Mamíferos/metabolismo , Compostos Orgânicos de Estanho , Progesterona/metabolismo , Receptores X de Retinoides , Ovinos , Testosterona/metabolismo , Compostos de Trialquitina/toxicidade
6.
Mol Cell Endocrinol ; 553: 111689, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690288

RESUMO

Tributyltin (TBT) is an endocrine disruptor used as a biocide in nautical paints. Even though many TBT effects in marine species are known, data in mammals are scarce, especially regarding the thyroid gland. The present study aimed to evaluate the effect of a subchronic exposure to TBT on thyroid oxidative stress of female Wistar rats. Rats received vehicle (control group), 200 or 1000 ng TBT/kg body weight/day for 40 days. After euthanasia, one part of the thyroids were collected in order to assess iodide uptake; activity and/or mRNA expression of thyroperoxidase (TPO) and dual oxidases (DUOXs); activity and/or mRNA expression of catalase, glutathione peroxidase, superoxide dismutase and NADPH oxidase 4 (CAT, GPx, SOD and NOX4); 4-hydroxynonenal (4-HNE) expression and total thiol groups levels; and mRNA expression of estrogen receptors alpha and beta (ERα and ERß). The remaining part of the thyroid was processed for morphological analysis of estrogen receptor alpha (ERα) and for collagen deposition. Iodide uptake was not changed with treatments. TPO activity and expression were increased in the TBT1000 group (259.81% and 95.17%). The activity, but not mRNA, of CAT (17.36% TBT200; 27.10% TBT1000) and GPx (29.24% TBT200; 28.97% TBT1000) were decreased by TBT. SOD and NADPH oxidase activity, as well as thiol group and 4-HNE levels remained unchanged. Interstitial collagen deposition increased in the TBT200 group (39.54%). The mRNA expression of ERα increased in TBT-treated rats (44.87% TBT200; 36.43% TBT1000), while protein expression was increased but not reaching significance (TBT1000, p = 0.056) by TBT. Therefore, our results show that TBT increases TPO expression and reduces antioxidant enzyme activities in the thyroid gland leading to oxidative stress. Some of these effects could be mediated by the ERα pathway.


Assuntos
Disruptores Endócrinos , Compostos de Trialquitina , Animais , Colágeno/metabolismo , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Feminino , Iodetos/metabolismo , Mamíferos/metabolismo , Oxirredução , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Glândula Tireoide/metabolismo , Compostos de Trialquitina/toxicidade
7.
Sci Total Environ ; 801: 149646, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416608

RESUMO

Tributyltin (TBT), an organotin compound frequently detected in the coastal environments, poses a threat to aquatic organisms. The lined seahorse (Hippocampus erectus) is a vulnerable species found in nearshore water habitats. The mechanisms by which this fish responds to TBT exposure are not yet fully understood. Histological, biochemical, and transcriptional analyses were conducted, and the results showed that 60 days of exposure to 50 and 500 ng/L TBT caused significant tin accumulation and liver damage to seahorses. Antioxidant defenses and immune responses to TBT exposure in the livers of seahorses were further investigated. The enzymatic activity of superoxide dismutase and malondialdehyde content increased, while catalase activity decreased. Transcriptomic analysis revealed that a series of genes involved in the antioxidant defense system were highly induced to protect the hepatic cells from oxidative damage. TBT exposure also resulted in the induction of genes associated with immune and inflammatory processes, representing a stress response to combat the adverse environmental conditions in the exposed seahorses. Furthermore, seahorses showed an increased health risk, according to the elevation of the expression of genes with tumor-promoting effects, when exposed to TBT. These findings contribute to our understanding of the adverse effects of TBT exposure on seahorses, and their potential defense mechanisms.


Assuntos
Smegmamorpha , Compostos de Trialquitina , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Bioacumulação , Expressão Gênica , Fígado/metabolismo , Smegmamorpha/genética , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
8.
Environ Toxicol ; 36(10): 2025-2039, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34227745

RESUMO

Tributyltin (TBT) is an organotin compound widely used as a biocide in antifouling paints. Moringa oleifera oil (MOO) has a promising antioxidant potential, which necessitates further exploration. This study was conducted to investigate the potential protective effect of MOO against TBT-induced brain toxicity. The 30 rats were grouped into five groups (six each), Group I negative control, Group II positive control (vehicle), Group III MOO (5 ml/kg body weight [b.wt.]), Group IV TBT (10 mg/kg b.wt.), and Group V TBT & MOO. All treatments were given orally for 28 days. Thereafter, brains were exposed to oxidative stress and neurological parameters analyses. Histopathological and immunohistochemical (caspase-3, Bax, Bcl-2) examinations were also carried out. In rats administered TBT, increased malondialdehyde level, decreased reduced glutathione, and low total antioxidant capacity levels were in support of oxidative stress mechanism. Neurotoxicity was indicated by high nitric oxide level and increased acetylcholinestrase activity. Along with the histopathological alterations, the dysregulated expression of caspase-3, Bax, and Bcl-2 were indicative of the apoptotic mechanism mediated by TBT. Co-administration of MOO with TBT ameliorated the aforementioned toxic effects. In conclusion, TBT causes brain toxicity via oxidative, nitrosative, and apoptotic mechanisms. MOO demonstrates protective effect against TBT-induced brain toxicity mostly via potent antioxidant and antiapoptotic properties.


Assuntos
Moringa oleifera , Compostos de Trialquitina , Animais , Encéfalo , Malondialdeído , Estresse Oxidativo , Ratos , Compostos de Trialquitina/toxicidade
9.
J Ethnopharmacol ; 269: 113669, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33338591

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiao Geng (TG) decoction is a Chinese herbal medicine extract that has been utilized for the treatment of menopausal symptoms for a history of over 30 years. In our previous study, we suggest that TG decoction possibly exerts an anti-apoptotic effect on hypothalamic neurons of ovariectomized rats via the ASK1/MKK7/JNK pathway. Tributyltin chloride (TBTC) causes oxidative damage and induces apoptosis of primary hypothalamic neurons in rats. AIM OF THE STUDY: The present work aimed to explore the inhibition of TG decoction on TBTC-induced GT1-7 cell apoptosis and its possible molecular mechanism. MATERIALS AND METHODS: The GT1-7 cell line was exposed to TG decoction at diverse doses (31.25, 62.5, 125 µg/mL) for 24 h and later with TBTC (1 mg/L) for 1 h, with 17ß-E2 (100 nM) treatment being the positive control. Then, CCK8 assay was conducted to evaluate cell viability, while flow cytometric analysis was conducted to examine the apoptosis level. Related pathways and differentially expressed proteins were identified by tandem mass tag (TMT)-based quantitative phosphoproteomics. qRT-PCR was carried out to examine mRNA levels of Bax and B-cell lymphoma-2 (Bcl-2). Western blotting was performed to detect the levels of Bax, Bcl-2, c-Jun, c-Jun N-terminal kinase (JNK), Caspase-3 (Casp3), Mitogen-activated protein kinase kinase 7 (MKK7), and apoptosis signal-regulating kinase 1 (ASK1) . Finally, cells were pretreated with SP600125, an inhibitor of JNK, later the expression of JNK and Casp3 was measured. RESULTS: Application of TG decoction mitigated the GT1-7 cell apoptosis and injury caused by TBTC; besides, it inhibited the activation of the ASK1/MKK7/JNK pathway. Moreover, Bcl-2/Bax ratio became higher, and the MKK7, ASK1, Casp3 and c-Jun levels were inhibited. Besides, TG decoction combined with SP600125 (the JNK inhibitor) more significantly inhibited GT1-7 cell apoptosis caused by TBTC. CONCLUSION: As discovered from the experiment in this study, TG decoction has a neuroprotective effect, which is achieved through inhibiting the ASK1/MKK7/JNK signal transduction pathway to reduce GT1-7 cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Compostos de Trialquitina/toxicidade , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Compostos de Trialquitina/antagonistas & inibidores
10.
Aquat Toxicol ; 224: 105503, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32438217

RESUMO

Tributyltin (TBT) was reported to affect sexual behavior and gametogenesis in fish. However, the modes of action involved are largely unclear. In order to elucidate the toxicological mechanisms of TBT in reproduction, zebrafish (Danio rerio) males were exposed to TBT at concentrations of 100 and 500 ng/L for 28 days. After exposure, the sperm count of the treated fish was sharply decreased though the testis weight and gonadosomatic index remained unchanged. Moreover, reduced number of spermatogonia and spermatozoa and increased spermatocytes were observed in TBT-treated fish by histological observation and PCNA-immunostaining. Increased number of apoptotic-positive spermatocytes was also present in TBT-treated fish, indicating an enhanced apoptosis in these cells. Consistent to decreased number of spermatogonia, down-regulated expressions of genes responsible for germ cell proliferation (cyclind1 and pcna) were observed in TBT-treated fish. In contrast, TBT elevated the expressions of genes involved in meiotic entry and maintenance (aldhla2, sycp3 and dmc1) while suppressed the mRNA level of gene responsible for terminus of meiotic entry (cyp26a1), in agreement with arrested meiosis and reduced sperm count. Furthermore, TBT significantly elevated the ratios of bax/bcl-2 and tnfrsf1a/tnfrsf1b in testis, which are markers for intrinsic- and extrinsic-apoptotic pathways, consistent with the enhanced TUNEL positive signals in spermatocytes. Moreover, TBT also significantly affected the parameter of reproductive behaviors in treated fish (reflected by decreased frequency of meeting, visits and time spent in spawning area). Consistently, the expressions of genes responsible for the modulation of reproductive behaviors in brain (such as cyp19a1b, kiss2, gnrh3 and ompb) were significantly down-regulated in treated-fish. Interestingly, disrupted reproductive behaviors of untreated female fish were also observed in the present study. The present study indicated that TBT might affect the reproduction of zebrafish male by disrupting the spermatogenesis and reproductive behavior of the fish.


Assuntos
Comportamento Sexual Animal/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Meiose/efeitos dos fármacos , Meiose/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo
11.
Toxicol Sci ; 176(1): 74-85, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239163

RESUMO

Tributyltin (TBT) chloride is an endocrine disrupting chemical associated with reproductive complications. Studies have shown that TBT targets the reproductive tract, impairing ovarian folliculogenesis, and uterine morphophysiology. In this investigation, we assessed whether subchronic and low dose of TBT exposure results in abnormal ovarian follicular reserve and other irregularities in female mice. TBT was administered to female mice (500 ng/kg/day for 12 days via gavage), and reproductive tract morphophysiology was assessed. We further assessed reproductive tract inflammation and oxidative stress. Improper functioning of the reproductive tract in TBT mice was observed. Specifically, irregular estrous cyclicity and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. In addition, improper follicular development and a reduction in antral follicles, corpora lutea, and total healthy ovarian follicles together with an increase in cystic follicles were apparent. Evidence of uterine atrophy, reduction in endometrial gland number, and inflammation and oxidative stress were seen in TBT mice. Further, strong negative correlations were observed between testosterone levels and primordial, primary, and total healthy ovarian follicles. Thus, these data suggest that the subchronic and low dose of TBT exposure impaired ovarian follicular reserve, uterine gland number, and other reproductive features in female mice.


Assuntos
Poluentes Ambientais/toxicidade , Reserva Ovariana/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Animais , Corpo Lúteo , Disruptores Endócrinos , Ciclo Estral , Feminino , Camundongos , Folículo Ovariano , Ovário , Estresse Oxidativo , Reprodução , Testes de Toxicidade
12.
Open Vet J ; 9(4): 366-374, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32042660

RESUMO

Background: Tributylin chloride (TBTCl) has been demonstrated to be acutely toxic to aquatic organisms. Aim: This study was conducted to investigate the effects of TBTCl on epithelial cell of gut Artemia salina in different stages (Nauplii, Juveniles, and Adults). Methods: Samples of A. salina used were cultivated in incubators for hatching. Nauplii were harvested at 24 hours of age, while the juveniles and adults were harvested at 21 and 35 days of age, respectively. These three stages of A. salina were exposed to different concentrations of TBTCl (1 ng.L-1 to 500 ng.L-1) for 24 hours. For nauplii, juveniles, and adults, 100 individuals were exposed, and those that survived in the exposure test were harvested for histological analysis. Results: The histological examinations revealed significant differences (p < 0.05) in type of lesions associated with different TBTCl concentrations and at different stages. The predominant lesions associated with different stages and different concentrations of TBTCl were epithelial cell necroasis, degeneration, cell loss, disruption, piknosis, and submucosal necrosis. Cell scoring was a significant difference (p < 0.05) between the groups of different TBTCl concentrations and different life stages. Conclusion: Overall, in this study, the generality of the lesion scores showed that the adults are relatively more susceptible to the effects of TBTCl compared to the juvenile and the nauplii.


Assuntos
Artemia/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Fatores Etários , Animais , Artemia/crescimento & desenvolvimento , Células Epiteliais/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento
13.
Toxicol Lett ; 322: 39-49, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927052

RESUMO

Exposure to the environmental pollutants organotins is of toxicological concern for the marine ecosystem and sensitive human populations, including pregnant women and their unborn children. Using a placenta cell model, we investigated whether organotins at nanomolar concentrations affect the expression and activity of 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). 11ß-HSD2 represents a placental barrier controlling access of maternal glucocorticoids to the fetus. The organotins tributyltin (TBT) and triphenyltin (TPT) induced 11ß-HSD2 expression and activity in JEG-3 placenta cells, an effect confirmed at the mRNA level in primary human trophoblast cells. Inhibition/knock-down of retinoid X receptor alpha (RXRα) in JEG-3 cells reduced the effect of organotins on 11ß-HSD2 activity, mRNA and protein levels, revealing involvement of RXRα. Experiments using RNA and protein synthesis inhibitors indicated that the effect of organotins on 11ß-HSD2 expression was direct and caused by increased transcription. Induction of placental 11ß-HSD2 activity by TBT, TPT and other endocrine disrupting chemicals acting as RXRα agonists may affect placental barrier function by altering the expression of glucocorticoid-dependent genes and resulting in decreased availability of active glucocorticoids for the fetus, disturbing development and increasing the risk for metabolic and cardiovascular complications in later life.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Disruptores Endócrinos/toxicidade , Expressão Gênica/efeitos dos fármacos , Compostos Orgânicos de Estanho/toxicidade , Receptor X Retinoide alfa/metabolismo , Compostos de Trialquitina/toxicidade , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Receptor X Retinoide alfa/genética , Transfecção , Regulação para Cima
14.
Mol Cell Endocrinol ; 502: 110677, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31821856

RESUMO

Organotin compounds, such as tributyltin (TBT), are common environmental contaminants and suspected endocrine-disrupting chemicals. Tributyltin is found in antifouling paints, widely used in ships and other vessels. The present study evaluated whether a 15-day treatment with TBT at a dose of 100 ng/kg/day could induce histomorphological changes in the thyroid gland of rats. TBT promoted relevant alterations in the thyroid architecture, being the most relevant histological findings the presence of increased number of small-size follicles in the treated group. In qualitative analyses, colloid vacuolization, papillary budging structures, cystic degeneration and chronic thyroiditis, were observed. Moreover, histomorphometric analysis showed statistically significant changes in the follicular architecture of TBT-treated rats, mainly a decrease in the follicle area (colloid) and an increased epithelial height that resulted in an increased epithelial height/colloid ratio. Augmented collagen deposition was also seen in the thyroids of treated groups. In immunohistochemical (IHC) analyses, the localization of NIS protein was described and a significant increased proliferation index (evaluated by Ki67 positive cells) in the treated group was reported. As an indirect measurement of oxidative stress, mitochondrial protein SDHA was also analyzed by IHC analysis. Although the cytoplasmic expression of SDHA was observed in both groups, the staining intensity score was higher in TBT-treated group. Our results suggest that besides causing histomorphological changes, environmental relevant dose of TBT treatment can also induce oxidative alterations.


Assuntos
Disruptores Endócrinos/toxicidade , Glândula Tireoide/patologia , Testes de Toxicidade Subaguda/métodos , Compostos de Trialquitina/toxicidade , Animais , Colágeno/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Succinato Desidrogenase/metabolismo , Simportadores/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo
15.
Environ Toxicol Pharmacol ; 73: 103271, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31627035

RESUMO

Tributyltin (TBT), a proven endocrine disrupter, was widely used in industry and agriculture. Previous research showed that TBT could alter the balance between osteogenesis and adipogenesis, which may have significant consequences for bone health. Herein, we exposed male rats to TBT chloride (TBTCl) to evaluate the deleterious effects of TBT on bone. Exposure to 50 µg kg-1 TBT resulted in a significant decrease in bone mineral density (BMD) at the femur diaphysis region in the rat. A dose-dependent increase in lipid accumulation and adipocyte number was observed in the bone marrow (BM) of the femur. Meanwhile, TBTCl treatment significantly enhanced the expression of PPARγ and attenuated the expression of Runx2 and ß-catenin in BM. In addition, serum ALP activity of TBT-exposed rats also showed a dose-dependent decrease. These results suggest that TBT could reduce BMD via inhibition of the Wnt/ß-catenin pathway and skew the adipo-osteogenic balance in the BM of rats.


Assuntos
Densidade Óssea/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células-Tronco Mesenquimais , Compostos de Trialquitina/toxicidade , Animais , Masculino , Ratos
16.
Regul Toxicol Pharmacol ; 110: 104527, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733229

RESUMO

Perfluorocarbon liquids (PFCLs) have been considered safe for intraocular manipulation of the retina, but since 2013 many cases of acute eye toxicity cousing blindness have been reported in various countries when using various commercial PFCLs. All these PFCLs were CE marked (Conformité Européenne), which meant they had been subjected to evaluation complying with the International Organization for Standardization (ISO) guidelines. These dramatic events raised questions about the safety of PFCLs and the validity of some cytotoxicity tests performed under ISO guidelines. Samples from toxic batches were analyzed by gas chromatography-mass spectrometry combined with Raman and infrared spectrometry. Perfluorooctanoic acid, dodecafluoro-1-heptanol, ethylbenzene and tributyltin bromide were identified and evaluated by a direct contact cytotoxicity test using ARPE-19 cell line, patented by our group (EP 3467118 A1). Perfluorooctanoic acid at a concentration of >0.06 mM and tributyltin bromide at a concentration of ≥0.016 mM were shown to be toxic, whereas the concentration found in the toxic samples reached 0.48 mM, and 0.111 mM, respectively. These finding emphasized the idea that determination of partially fluorinated compounds are not enough to guarantee the safety of these medical devices.


Assuntos
Contaminação de Medicamentos , Fluorocarbonos/toxicidade , Procedimentos Cirúrgicos Oftalmológicos , Compostos de Trialquitina/toxicidade , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Retina/citologia
17.
Toxicology ; 426: 152255, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401084

RESUMO

DNA fragmentation factor 40 (DFF40), an endonuclease, mediates the final and irreversible step of apoptosis by conducting oligonucleosomal DNA fragmentation. New emerging studies have proposed a role of DFF40 in genomic stability, besides its nuclease activity. Overexpression of DFF40 in tumoral cells increases their sensitivity to chemotherapeutic drugs. In this study, we sought to determine if DFF40 expression influences the toxicity of tributyltin (TBT), a well-known immunotoxic and apoptosis-inducing compound. The strategy used was to knockout DFF40 expression by CRISPR-cas9 method in Jurkat T cells and to determine the toxicity of TBT in DFF40 KO cells and DFF40 WT Jurkat cells. DFF40 KO Jurkat cells show an increase of cell viability following a 24-h TBT exposure (p < 0.05). There is a resistance to TBT-induced apoptosis determined by annexin V/PI am labeling (p < 0.05). Interestingly, the basal level of ROS rises in DFF40 KO Jurkat cells, but ROS production levels after TBT exposure remains at the same basal level. Other apoptosis or DNA damage makers (procaspase-3, caspase-6, and PARP cleavage) are significantly delayed and decreased. DFF40 deficient cells do not present histone H2AX phosphorylation, whereas wild-type cells present a phosphorylation following a 6-h exposure to TBT (p < 0.001). The re-expression of DFF40 in DFF40 KO cells restores the cytotoxic effects of TBT. Overall, these data suggest a role of DFF40 in cells sensitivity to TBT and possibly in DNA stability.


Assuntos
Apoptose/efeitos dos fármacos , Desoxirribonucleases/biossíntese , Proteínas de Ligação a Poli-ADP-Ribose/biossíntese , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Compostos de Trialquitina/toxicidade , Caspases/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Técnicas de Inativação de Genes , Histonas/metabolismo , Humanos , Células Jurkat , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
18.
Ecotoxicol Environ Saf ; 182: 109406, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31288122

RESUMO

Obesity, a risk factor for the development of type-2 diabetes, hypertension, cardiovascular disease, hepatic steatosis and some cancers, has been ranked in the top 10 health risk in the world by the World Health Organization. Despite the growing body of literature evidencing an association between the obesity epidemic and specific chemical exposure across a wide range of animal taxa, very few studies assessed the effects of chemical mixtures and environmental samples on lipid homeostasis. Additionally, the mode of action of several chemicals reported to alter lipid homeostasis is still poorly understood. Aiming to fill some of these gaps, we combined an in vivo assay with the model species zebrafish (Danio rerio) to screen lipid accumulation and evaluate expression changes of key genes involved in lipid homeostasis, alongside with an in vitro transactivation assay using human and zebrafish nuclear receptors, retinoid X receptor α and peroxisome proliferator-activated receptor γ. Zebrafish larvae were exposed from 4 th day post-fertilization until the end of the experiment (day 18), to six different treatments: experimental control, solvent control, tributyltin at 100 ng/L Sn and 200 ng/L Sn (positive control), and wastewater treatment plant influent at 1.25% and 2.5%. Exposure to tributyltin and to 2.5% influent led to a significant accumulation of lipids, with white adipose tissue deposits concentrating in the perivisceral area. The highest in vitro tested influent concentration (10%) was able to significantly transactivate the human heterodimer PPARγ/RXRα, thus suggesting the presence in the influent of HsPPARγ/RXRα agonists. Our results demonstrate, for the first time, the ability of complex environmental samples from a municipal waste water treatment plant influent to induce lipid accumulation in zebrafish larvae.


Assuntos
Larva/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/induzido quimicamente , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Relação Dose-Resposta a Droga , Homeostase , Humanos , Larva/metabolismo , Obesidade/metabolismo , Águas Residuárias/química , Purificação da Água
19.
Aquat Toxicol ; 214: 105232, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271907

RESUMO

Understanding the mode of action of the different pollutants in human and wildlife health is a key step in environmental risk assessment. The aim of this study was to determine signatures that could link morphological phenotypes to the toxicity mechanisms of four Endocrine Disrupting Chemicals (EDCs): bisphenol A (BPA), perfluorooctanesulfonate potassium salt (PFOS), tributyltin chloride (TBT), and 17-ß-estradiol (E2). Zebrafish (Danio rerio) eleutheroembryos were exposed from 2 to 5 dpf to a wide range of BPA, PFOS, TBT and E2 concentrations. At the end of the exposures several morphometric features were assessed. Common and non-specific effects on larvae pigmentation or swim bladder area were observed after exposures to all compounds. BPA specifically induced yolk sac malabsorption syndrome and altered craniofacial parameters, whereas PFOS had specific effects on the notochord formation presenting higher rates of scoliosis and kyphosis. The main effect of E2 was an increase in the body length of the exposed eleutheroembryos. In the case of TBT, main alterations on the morphological traits were related to developmental delays. When integrating all morphometrical parameters, BPA showed the highest rates of malformations in terms of equilethality, followed by PFOS and, distantly, by TBT and E2. In the case of BPA and PFOS, we were able to relate our results with effects on the transcriptome and metabolome, previously reported. We propose that methodized morphometric analyses in zebrafish embryo model can be used as an inexpensive and easy screening tool to predict modes of action of a wide-range number of contaminants.


Assuntos
Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Ácidos Alcanossulfônicos/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Estradiol/toxicidade , Fluorocarbonos/toxicidade , Humanos , Larva/efeitos dos fármacos , Análise dos Mínimos Quadrados , Análise Multivariada , Fenóis/toxicidade , Análise de Componente Principal , Análise de Sobrevida , Testes de Toxicidade , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade
20.
J Toxicol Sci ; 44(7): 471-479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31270303

RESUMO

M1-microglia (neurotoxic microglia) regulate neuronal development and cell death and are involved in many pathologies in the brain. Although organotypic brain slice cultures are widely used to study the crosstalk between neurons and microglia, little is known about the properties of microglia in the mouse cerebral cortex slices. Here, we aimed to optimize the mouse cerebral slice cultures that reflect microglial functions and evaluate the effects of neurotoxic metals on M1-microglial activation. Most microglia in the cerebral slices prepared from postnatal day (P) 7 mice were similar to mature microglia in adult mice brains, but those in the slices prepared from P2 mice were immature, which is a conventional preparation condition. The degree of expression of M1-microglial markers (CD16 and CD32) and inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß) by lipopolysaccharide, a representative microglia activator, in the cerebral slices of P7 mice were higher than that in the slices of P2 mice. These results indicate that M1-microglial activation can be evaluated more accurately in the cerebral slices of P7 mice than in those of P2 mice. Therefore, we next examined the effects of various neurotoxic metals on M1-microglial activation using the cerebral slices of P7 mice and found that methylmercury stimulated the activation to M1-microglia, but arsenite, lead, and tributyltin did not induce such activation. Altogether, the optimized mouse cerebral slice cultures used in this study can be a helpful tool to study the influence of various chemicals on the central nervous system in the presence of functionally mature microglia.


Assuntos
Córtex Cerebral/citologia , Metais/toxicidade , Microglia/efeitos dos fármacos , Microglia/fisiologia , Animais , Animais Recém-Nascidos , Arsenitos/toxicidade , Células Cultivadas , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Expressão Gênica , Mediadores da Inflamação/metabolismo , Chumbo/toxicidade , Compostos de Metilmercúrio/toxicidade , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/fisiologia , Receptores de IgG/genética , Receptores de IgG/metabolismo , Compostos de Trialquitina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA