Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602359

RESUMO

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Assuntos
Peixes , Formaldeído , Limite de Detecção , Compostos de Tritil , Formaldeído/análise , Formaldeído/química , Animais , Compostos de Tritil/química , Compostos de Tritil/análise , Gases/química , Gases/análise , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Soluções , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Espectrometria de Fluorescência/métodos
2.
Bioresour Technol ; 399: 130591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490463

RESUMO

Malachite Green (MG) is a widely used industrial dye that is hazardous to health. Herein, the decolourisation and detoxification of MG were achieved using the engineered Saccharomyces cerevisiae expressing novel thermostable laccase lcc1 from Trametes trogii. The engineered strain RCL produced a high laccase activity of 121.83 U L-1. Lcc1 was stable at temperatures ranging from 20 ℃ to 60 ℃ and showed a high tolerance to organic solvents. Moreover, Lcc1 could decolorize different kinds of dyes (azo, anthraquinone and triphenylmethane), among which, the decolorization ability of MG is the highest, reaching 95.10 %, and the decolorization rate of other triphenylmethane dyes also over 50 %. The RCL decolorized about 95 % of 50 mg L-1 of MG dye in 10 h at 30 ℃. The MG degradation products were analyzed. The industrial application potential of the RCL was evaluated by treating industrial wastewater and the decolourisation rates were over 90 %.


Assuntos
Lacase , Polyporaceae , Corantes de Rosanilina , Trametes , Compostos de Tritil , Lacase/genética , Lacase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corantes/metabolismo , Biodegradação Ambiental
3.
Anal Chem ; 95(2): 946-954, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36537829

RESUMO

Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Neoplasias , Oxigênio , Compostos de Tritil , Animais , Camundongos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Concentração de Íons de Hidrogênio , Hipóxia , Oxigênio/química , Microambiente Tumoral , Compostos de Tritil/química , Técnicas Biossensoriais
4.
PLoS One ; 17(10): e0276044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228035

RESUMO

Fenghuang Dancong, Tieguanyin, and Dahongpao teas are belonged to semi-fermented oolong teas and are famous for their unique aroma. However, reports regarding the systematic comparison, differentiation, and classification of the volatile components of these three types of oolong teas are lacking. In this study, we aimed to establish a method for distinguishing these three types of oolong teas. The volatile components in a total of 21 tea samples of these three types of oolong teas were extracted, determined, and identified by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). In addition, chemometric methods such as hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used for distinguishing and classifying the three types of oolong teas on the basis of the similarities and differences in the volatile components. The results showed that 125 volatile components were extracted and identified from the three types of oolong teas, among which 53 volatile components overlapped among the samples. The results of HCA indicated that the samples of each of the three types of oolong teas could be placed in one category when the t value was 220. The results of PCA and OPLS-DA showed that the volatile components such as dehydrolinalool, linalool oxide II, linalool, α-farnesene, linalool oxide I, ß-ocimene, nerolidol, cis-3-butyric acid folate, myrcene, and (Z)-hexanoic acid-3-hexenyl ester are the characteristic components, which can be used to distinguish the three types of oolong teas. We developed a simple, fast, and efficient method for distinguishing three types of oolong teas and provided a feasible technique for the identification of oolong tea types.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Monoterpenos Acíclicos , Ácido Butírico , Camellia sinensis/química , Quimiometria , Cicloexanóis , Ésteres/análise , Ácido Fólico/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Chá/química , Compostos de Tritil , Compostos Orgânicos Voláteis/análise
5.
Chemosphere ; 308(Pt 1): 136214, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057345

RESUMO

In this paper, we present the synthesis of C@Fe3O4-MoO3 binary composite were prepared through the facile hydrothermal process. The ultrasonic aided adsorption efficacy was evaluated by studying triphenylmethane dye's adsorption potential. The ultrasonic aided adsorption capacity towards crystal violet was 993.6 mg/g, which is remarkably higher and best fitted with the Langmuir isotherm model and followed pseudo-second-order kinetics. The electrochemical studies working electrode have been prepared with 80 wt% active material, 10 wt% carbon black, and 10% polyvinylidene difluoride to evaluate energy storage characteristics. The C@Fe3O4-MoO3 demonstrated an excellent specific capacitance of 40.94 F/g with better retention and stability, making it a potential cathode material for next-generation electrochemical energy storage devices.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Corantes , Violeta Genciana , Nanocompostos/química , Fuligem , Têxteis , Compostos de Tritil , Ultrassom , Poluentes Químicos da Água/química
6.
Br J Pharmacol ; 179(10): 2175-2192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34623632

RESUMO

BACKGROUND AND PURPOSE: Acute respiratory distress syndrome (ARDS) is characterized by pulmonary oedema and severe hypoxaemia. We investigated whether genetic deficit or blockade of calcium-activated potassium (KCa 3.1) channels would counteract pulmonary oedema and hypoxaemia in ventilator-induced lung injury, an experimental model for ARDS. EXPERIMENTAL APPROACH: KCa 3.1 channel knockout (Kccn4-/- ) mice were exposed to ventilator-induced lung injury. Control mice exposed to ventilator-induced lung injury were treated with the KCa 3.1 channel inhibitor, senicapoc. The outcomes were oxygenation (PaO2 /FiO2 ratio), lung compliance, lung wet-to-dry weight and protein and cytokines in bronchoalveolar lavage fluid (BALF). KEY RESULTS: Ventilator-induced lung injury resulted in lung oedema, decreased lung compliance, a severe drop in PaO2 /FiO2 ratio, increased protein, neutrophils and tumour necrosis factor-alpha (TNF-α) in BALF from wild-type mice compared with Kccn4-/- mice. Pretreatment with senicapoc (10-70 mg·kg-1 ) prevented the reduction in PaO2 /FiO2 ratio, decrease in lung compliance, increased protein and TNF-α. Senicapoc (30 mg·kg-1 ) reduced histopathological lung injury score and neutrophils in BALF. After injurious ventilation, administration of 30 mg·kg-1 senicapoc also improved the PaO2 /FiO2 ratio and reduced lung injury score and neutrophils in the BALF compared with vehicle-treated mice. In human lung epithelial cells, senicapoc decreased TNF-α-induced permeability. CONCLUSIONS AND IMPLICATIONS: Genetic deficiency of KCa 3.1 channels and senicapoc improved the PaO2 /FiO2 ratio and decreased the cytokines after a ventilator-induced lung injury. Moreover, senicapoc directly affects lung epithelial cells and blocks neutrophil infiltration in the injured lung. These findings indicate that blocking KCa 3.1 channels is a potential treatment in ARDS-like disease.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Acetamidas , Animais , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Pulmão/metabolismo , Camundongos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Compostos de Tritil/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
7.
J Environ Sci (China) ; 112: 291-306, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955213

RESUMO

Triphenylmethane (tpm) derivatives (e.g. tpmCV) have threatened the safety of the aquatic environment due to the potential toxicity and carcinogenicity. In this study, the novel ultrasonic/persulfate/chlorite (US/S2O82-/ClO2-) oxidation process was developed for the effective removal of tpmCV in wastewater. The apparent non-integer kinetics (n around 1.20) of tpmCV degradation under different factors (R2Adj > 0.990) were investigated, respectively. Inhibiting effects of anions were greater than those of cations (except Fe(II/III)). The adding of micromolecule organic acids could regulate degradation towards positive direction. The double response surface methodology (RSM) was designed to optimize tpmCV removal process, and the acoustic-piezoelectric interaction was simulated to determine the propagation process of acoustic wave in the reactor. The possible degradation pathway was explored to mainly include carbonylation, carboxylation, and demethylation. The estimated effective-mean temperature at the bubble-water interface was calculated from 721 to 566 K after introducing the ClO2-, however, the adsorption or partitioning capacity of tpmCV in the reactive zone was widened from 0.0218 to 0.0982. The proposed co-catalysis of US/S2O82-/ClO2- was based on the determined active species mainly including ClO2, SO4⋅-, and ⋅OH. Compared with other US-based processes, the operating cost (3.97 $/m3) of US/S2O82-/ClO2- with the EE/O value (16.8 kWh/m3) was relatively reduced.


Assuntos
Poluentes Químicos da Água , Catálise , Cloretos , Oxirredução , Compostos de Tritil , Poluentes Químicos da Água/análise
8.
Amino Acids ; 53(9): 1455-1466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34410506

RESUMO

Solid-phase synthesis of cyclic, branched or side-chain-modified peptides typically involves introduction of a residue carrying a temporary side-chain protecting group that undergoes selective on-resin removal. In particular, Nα-Fmoc-Nε-(4-methyltriphenylmethyl) (Mtt)-protected lysine and its shorter analogues are commercially available and extensively used in this context. Nevertheless, rapid reliable methods for on-resin removal of Mtt groups in the presence of tert-butyloxycarbonyl (Boc) groups are needed. Current commonly used conditions involve low concentrations (1-3%) of trifluoroacetic acid (TFA) in dichloromethane, albeit adjustment to each specific application is required to avoid premature removal of Boc groups or cleavage from the linker. Hence, a head-to-head comparison of several deprotection conditions was performed. The selected acids represent a wide range of acidity from TFA to trifluoroethanol. Also, on-resin removal of the N-(4-methoxytriphenylmethyl) (Mmt) and O-trityl groups (on serine) was investigated under similar conditions. The mildest conditions identified for Mtt deprotection involve successive treatments with 30% hexafluoroisopropanol (HFIP) or 30% perfluoro-tert-butanol [(CF3)3COH] in dichloromethane (3 × 5 or 3 × 15 min, respectively), while 30% HFIP, 30% (CF3)3COH, or 10% AcOH-20% trifluoroethanol (TFE) in CH2Cl2 (3 × 5 min) as well as 5% trichloroacetic acid in CH2Cl2 (3 × 2 min) enabled Mmt removal. Treatment with 1% TFA with/without 2% triisopropylsilane added (3 × 5 min), but also prolonged treatment with 30% (CF3)3COH (5 × 15 min), led to selective deprotection of an O-Trt group on a serine residue. In all cases, the sequences also contained N-Boc or O-tBu protecting groups, which were not affected by 30% HFIP or 30% (CF3)3COH even after a prolonged reaction time of 4 h. Finally, the optimized conditions involving HFIP or (CF3)3COH proved applicable also for selective deprotection of a longer resin-bound peptide [i.e., Ac-Gly-Leu-Leu-Lys(Mtt)-Arg(Pbf)-Ile-Lys(Boc)-Ser(tBu)-Leu-Leu-RAM-PS] as well as allowed for an almost complete deprotection of a Dab(Mtt) residue.


Assuntos
Peptídeos/síntese química , Resinas Sintéticas/química , Técnicas de Síntese em Fase Sólida/métodos , Ácido Trifluoracético/química , Compostos de Tritil/química , terc-Butil Álcool/química , Estrutura Molecular
9.
Cell Physiol Biochem ; 55(S3): 131-144, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34043300

RESUMO

The Kca3.1 channels, previously designated as IK1 or SK4 channels and encoded by the KCNN4 gene, are activated by a rise of the intracellular Ca2+ concentration. These K+ channels are widely expressed in many organs and involved in many pathologies. In particular, Kca3.1 channels have been studied intensively in the context of cancer. They are not only a marker and a valid prognostic tool for cancer patients, but have an important share in driving cancer progression. Their function is required for many characteristic features of the aggressive cancer cell behavior such as migration, invasion and metastasis as well as proliferation and therapy resistance. In the context of cancer, another property of Kca3.1 is now emerging. These channels can be a target for novel small molecule-based imaging probes, as it has been validated in case of fluorescently labeled senicapoc-derivatives. The aim of this review is (i) to give an overview on the role of Kca3.1 channels in cancer progression and in shaping the cancer microenvironment, (ii) discuss the potential of using Kca3.1 targeting drugs for cancer imaging, (iii) and highlight the possibility of combining molecular dynamics simulations to image inhibitor binding to Kca3.1 channels in order to provide a deeper understanding of Kca3.1 channel pharmacology. Alltogether, Kca3.1 is an attractive therapeutic target so that senicapoc, originally developed for the treatment of sickle cell anemia, should be repurposed for the treatment of cancer patients.


Assuntos
Acetamidas/uso terapêutico , Antineoplásicos/uso terapêutico , Cálcio/metabolismo , Neoplasias/tratamento farmacológico , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Compostos de Tritil/uso terapêutico , Antineoplásicos/química , Antidrepanocíticos/química , Antidrepanocíticos/uso terapêutico , Sítios de Ligação , Sinalização do Cálcio , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular/métodos , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Bloqueadores dos Canais de Potássio/química , Estrutura Secundária de Proteína , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
10.
J Chromatogr A ; 1646: 462089, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848643

RESUMO

As an important natural product, the sufficient separation of plant essential oil (EO) is helpful to improve its utilization value. In this work, deep eutectic solvent-homogenate based microwave-assisted hydrodistillation (DES-HMAHD) was developed and applied to isolate EO from the fruits of Litsea cubeba (Lour.) Pers. Different types of DES were investigated in terms of the EO kinetics and composition, among which oxalic acid/choline chloride (OA/ChCl) had obvious advantages. Following, molar ratio of OA and ChCl (1:1), water content (50%), liquid-solid ratio (12.5:1 mL/g), homogenate time (2 min), and microwave power (700 W) were found to be the optimum conditions. Gas chromatography-mass spectrometer (GC-MS) analysis showed that the EO isolated from DES-HMAHD contained a large proportion of m-cymene and trans-linalool oxide, which were quite different from the conventionally reported L. cubeba EO. In addition, the proposed DES-HMAHD resulted in higher separation efficiency and economic value, as well as lower environmental impact, as compared with other techniques. Afterwards, the EO isolated by different methods was evaluated from the perspective of biological activity. The EO obtained by DES-HMAHD showed higher antioxidant activity (DPPH and ABTS) but lower antifungal activity, which was related to its chemical composition. In general, DES-HMAHD produced a kind of L. cubeba EO with different components, which provided a scientific foundation for the sufficient isolation of plant EO and its application in the natural products.


Assuntos
Litsea/química , Micro-Ondas , Óleos Voláteis/química , Monoterpenos Acíclicos , Antibacterianos/análise , Antioxidantes/análise , Cicloexanóis , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Óleos de Plantas/análise , Solventes/análise , Compostos de Tritil
11.
Aquat Toxicol ; 235: 105815, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838494

RESUMO

Tris(4-chlorophenyl)methanol (TCPMOH) is a water contaminant with unknown etiology, but is believed to be a byproduct of DDT manufacturing. It is highly persistent in the environment, and bioaccumulates in marine species. TCPMOH has also been measured in human breast milk, which poses a risk for developing infants. However, almost no toxicity data is currently available. In this study, we investigate the hazard posed by developmental TCPMOH exposures using the zebrafish model (Danio rerio). Zebrafish (Danio rerio) embryos were exposed to 0, 0.1, 0.5, 1, or 5 µM TCPMOH beginning at 24 h post fertilization (hpf). Embryonic mortality and incidence of morphological deformities increased in a concentration-dependent manner with TCPMOH exposure. RNA sequencing assessed changes in gene expression associated with acute (4 hour) exposures to 50 nM TCPMOH. Developmental exposure to TCPMOH decreased expression of ahr2, as well as metabolic enzymes cyp1a1, cyp1b1, cyp1c1, cyp1c2, and cyp2y3 (p<0.05). These findings were concordant with decreased Cyp1a1 induction measured by the ethoxyresorufin-O-deethylase (EROD) assay (p<0.05). Pathways associated with xenobiotic metabolism, lipid metabolism, and transcriptional and translational regulation were decreased. Pathways involved in DNA replication and repair, carbohydrate metabolism, and endocrine function were upregulated. Overall, this study demonstrates that TCPMOH is acutely toxic to zebrafish embryos at elevated concentrations.


Assuntos
Compostos de Tritil/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Ecotoxicologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Humanos , Inativação Metabólica , Metanol/metabolismo , Ativação Transcricional , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
12.
Eur J Med Chem ; 215: 113288, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640763

RESUMO

Kinesin spindle protein (KSP) is expressed only in cells undergoing cell division, and hence represents an attractive target for the treatment of cancer. Several KSP inhibitors have been developed and undergone clinical trial, but their clinical use is limited by their toxicity to rapidly proliferating non-cancerous cells. To create new KSP inhibitors that are highly selective for cancer cells, we optimized the amino acid moiety of S-trityl-l-cysteine (STLC) derivative 1 using in silico modeling. Molecular docking and molecular dynamics simulation were performed to investigate the binding mode of 1 with KSP. Consistent with the structure activity relationship studies, we found that a cysteine amino moiety plays an important role in stabilizing the interaction. Based on these findings and the structure of GSH, a substrate of γ-glutamyltransferase (GGT), we designed and synthesized the prodrug N-γ-glutamylated STLC derivative 9, which could be hydrolyzed by GGT to produce 1. The KSP ATPase inhibitory activity of 9 was lower than that of 1, and LC-MS analysis indicated that 9 was converted to 1 only in the presence of GGT in vitro. In addition, the cytotoxic activity of 9 was significantly attenuated in GGT-knockdown A549 cells. Since GGT is overexpressed on the cell membrane of various cancer cells, these results suggest that compound 9 could be a promising prodrug that selectively inhibits the proliferation of GGT-expressing cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cisteína/farmacologia , Dibenzocicloeptenos/farmacologia , Cinesinas/antagonistas & inibidores , Pró-Fármacos/farmacologia , Compostos de Tritil/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bovinos , Linhagem Celular Tumoral , Cisteína/síntese química , Cisteína/metabolismo , Dibenzocicloeptenos/síntese química , Dibenzocicloeptenos/metabolismo , Humanos , Cinesinas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica , Compostos de Tritil/síntese química , Compostos de Tritil/metabolismo , gama-Glutamiltransferase/metabolismo
13.
Bioconjug Chem ; 31(12): 2685-2690, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33274932

RESUMO

Antibody-drug conjugates (ADCs) constitute an emerging class of anticancer agents that deliver potent payloads selectively to tumors while avoiding systemic toxicity associated with conventional chemotherapeutics. Critical to ADC development is a serum-stable linker designed to decompose inside targeted cells thereby releasing the toxic payload. A protease-cleavable linker comprising a valine-citrulline (Val-Cit) motif has been successfully incorporated into three FDA-approved ADCs and is found in numerous preclinical candidates. Herein, we present a high-yielding and facile synthetic strategy for a Val-Cit linker that avoids extensive protecting group manipulation and laborious chromatography associated with previous syntheses and provides yields that are up to 10-fold higher than by standard methods. This method is easily scalable and takes advantage of cost-effective coupling reagents and high loading 2-chlorotrityl chloride (2-CTC) resin. Modularity allows for introduction of various conjugation handles in final stages of the synthesis. Facile access to such analogues serves to expand the repertoire of available enzymatically cleavable linkers for ADC generation. This methodology empowers a robust and facile library generation and future exploration into linker analogues containing unnatural amino acids as a selectivity tuning tool.


Assuntos
Catepsina B/metabolismo , Imunoconjugados/química , Imunoconjugados/metabolismo , Terapia de Alvo Molecular , Linhagem Celular Tumoral , Humanos , Imunoconjugados/uso terapêutico , Cinética , Extração em Fase Sólida , Compostos de Tritil/química
14.
ChemMedChem ; 15(24): 2462-2469, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33043595

RESUMO

The Ca2+ activated potassium channel 3.1 (KCa 3.1) is involved in critical steps of the metastatic cascade, such as proliferation, migration, invasion and extravasation. Therefore, a fast and efficient protocol for imaging of KCa 3.1 channels was envisaged. The novel fluorescently labeled small molecule imaging probes 1 and 2 were synthesized by connecting a dimethylpyrrole-based BODIPY dye with a derivative of the KCa 3.1 channel inhibitor senicapoc via linkers of different length. Patch-clamp experiments revealed the inhibition of KCa 3.1 channels by the probes confirming interaction with the channel. Both probes 1 and 2 were able to stain KCa 3.1 channels in non-small-cell lung cancer (NSCLC) cells following a simple, fast and efficient protocol. Pre-incubation with unlabeled senicapoc removed the punctate staining pattern showing the specificity of the new probes 1 and 2. Staining of the channel with the fluorescently labeled senicapoc derivatives 1 or 2 or with antibody-based indirect immunofluorescence yielded identical or very similar densities of stained KCa 3.1 channels. However, co-staining using both methods did not lead to the expected overlapping punctate staining pattern. This observation was explained by docking studies showing that the antibody used for indirect immunofluorescence and the probes 1 and 2 label different channel populations. Whereas the antibody binds at the closed channel conformation, the probes 1 and 2 bind within the open channel.


Assuntos
Acetamidas/farmacologia , Compostos de Boro/farmacologia , Corantes Fluorescentes/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Compostos de Tritil/farmacologia , Células A549 , Acetamidas/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Compostos de Boro/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Camundongos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica , Coloração e Rotulagem , Compostos de Tritil/metabolismo
15.
PLoS One ; 15(9): e0239493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32956424

RESUMO

Deep eutectic solvents (DESs) have received significant attention as potential extracting agents in recent years due to their favorable characteristics including low cost, easy preparation and environmentally safe starting materials. Experimentally screening for highly efficient DESs meeting various requirements for natural gas sweetening remains a challenging task. Thus, an extensive database of estimated Henry's law constants (Hi) and solubilities (xi) of CO2 in 170 different DESs at 25°C has been constructed using the COSMO-RS method to select potential DESs. Based on the COSMO-RS study, three DESs, namely tetrabutylammonium bromide (TBAB)+polyethylene glycol (PEG-8) (on a molar basis 1:4), TBAB+octanoic acid (OCT) (1:4), and methyltriphenylphosphonium bromide (MTPB)+PEG-8 (1:10), were chosen for further experimentation up to 2 bar at 25°C using a vapor-liquid equilibria (VLE) apparatus. Reliable thermophysical properties were determined experimentally, and a detailed equilibrium-based model was developed for one of the glycol-based DESs (i.e., TBAB+PEG-8 (1:4)). This information is an essential prerequisite for carrying out process simulations of natural gas sweetening plants using ASPEN PLUS. The simulation results for the proposed DES were compared to those of monoethylene glycol (MEG). Here, we find that the aqueous TBAB+PEG-8 (1:4) solvent shows ~60% lower total energy consumption and higher CO2 removal when compared to those using the MEG solvent.


Assuntos
Gás Natural/análise , Indústria de Petróleo e Gás/métodos , Polietilenoglicóis/química , Solventes/química , Absorção Fisico-Química , Brometos , Caprilatos , Dióxido de Carbono/análise , Colina , Simulação por Computador , Poluição Ambiental/prevenção & controle , Desenho de Equipamento , Ligação de Hidrogênio , Modelos Químicos , Estrutura Molecular , Indústria de Petróleo e Gás/economia , Indústria de Petróleo e Gás/instrumentação , Oniocompostos , Compostos de Amônio Quaternário , Sais , Temperatura , Termodinâmica , Temperatura de Transição , Compostos de Tritil
16.
Biochem Biophys Res Commun ; 530(2): 367-373, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32800337

RESUMO

Choroidal neovascularization (CNV) is the hallmark of wet age-related macular degeneration (AMD), a leading cause of irreversible blindness in the modern world. The objective for this study was to investigate the therapeutic potential of known antiangiogenic agents: thalidomide, senicapoc, and sodium butyrate. Dose-dependent effect of the agents on growth of ARPE-19 cells and human umbilical vein endothelial cells (HUVECs) was investigated with cell counting assays. Half-maximal inhibitory concentrations of thalidomide (765 µM and 1520 µM), senicapoc (50 µM and 79 µM), and sodium butyrate (933 µM and 557 µM) were determined for HUVECs and ARPE-19 cells, respectively. Immunofluorescence analysis showed decrease of VEGFA expression in both ARPE-19 cells and HUVECs after treatment only with thalidomide but not with senicapoc or sodium butyrate. Efficacy of the agents was studied in vivo with laser-induced CNV in C57BL/6 mice. Thalidomide (24 µg), senicapoc (4 µg), or sodium butyrate (100 µg) was intravitreally injected the day after CNV induction. Thalidomide, senicapoc, and sodium butyrate inhibited CNV size by 56%, 24%, and 21% respectively on day 7 post-laser. Thalidomide also reduced cobalt chloride induced increase of VEGFA mRNA in ARPE-19 (-33%) and protein in culture medium (-20%). Our results suggest that thalidomide may have more therapeutic potential than senicapoc or sodium butyrate for treatment of CNV or wet AMD.


Assuntos
Acetamidas/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Ácido Butírico/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Talidomida/uso terapêutico , Compostos de Tritil/uso terapêutico , Acetamidas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Ácido Butírico/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Talidomida/farmacologia , Compostos de Tritil/farmacologia
17.
Bioorg Med Chem Lett ; 30(19): 127458, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755678

RESUMO

Sirtuin proteins are a highly conserved class of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases. The pleiotropic human isoform 2 of Sirtuins (SIRT2) has been engaged in the pathogenesis of cancer in a plethora of reports around the globe. Thus, SIRT2 modulation is deemed as a promising approach for pharmaceutical intervention. Previously, we reported S-Trityl-l-Cysteine (STLC)-ornamented dimethylaminopyridine chemical entity named STC4 with a significant SIRT2 inhibitory capacity; this was separate from the conventional application of STLC scaffold as a kinesin-5 inhibitor. An interactive molecular docking study of SIRT2 and STC4 showed interaction between Asn168 of SIRT2 and the methyl ester of STC4, that appears to hinder STC4 to reach the selective pocket of the protein unlike strong SIRT2 inhibitor SirReal2. To improve its activity, herein, we utilized S-trityl cysteamine pharmacophore lacking the methyl ester. Nine compounds were synthesized and assayed affording three biopertinent SIRT2 inhibitors, and two of them, STCY1 and STCY6 showed higher inhibitory activity than STC4. These compounds have pronounced anti-proliferative activities against different cancer cell lines. A molecular docking study was executed to shed light on the supposed binding mode of the lead compound, STCY1, into the selective pocket of SIRT2 by interaction of the nitrogen of pyridine ring of the compound and Ala135 of the protein. The outcome of the study exposes that the active compounds are effective intermediates to construct more potent biological agents.


Assuntos
Aminopiridinas/farmacologia , Cisteamina/análogos & derivados , Cisteamina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Sirtuína 2/antagonistas & inibidores , Compostos de Tritil/farmacologia , Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteamina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Compostos de Tritil/síntese química , Compostos de Tritil/metabolismo
18.
J Org Chem ; 85(16): 10388-10398, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32698583

RESUMO

Stable tetrathiatriarylmethyl radicals have significantly contributed to the recent progress in biomedical electron paramagnetic resonance (EPR) due to their unmatched stability in biological media and long relaxation times. However, the lipophilic core of the most commonly used structure (Finland trityl) is responsible for its interaction with plasma biomacromolecules, such as albumin, and self-aggregation at high concentrations and/or low pH. While Finland trityl is generally considered inert toward many reactive radical species, we report that sulfite anion radical efficiently substitutes the three carboxyl moieties of Finland trityl with a high rate constant of 3.53 × 108 M-1 s-1, leading to a trisulfonated Finland trityl radical. This newly synthesized highly hydrophilic trityl radical shows an ultranarrow linewidth (ΔBpp = 24 mG), a lower affinity for albumin than Finland trityl, and a high aqueous solubility even at acidic pH. Therefore, this new tetrathiatriarylmethyl radical can be considered as a superior spin probe in comparison to the widely used Finland trityl. One of its potential applications was demonstrated by in vivo mapping oxygen in a mouse model of breast cancer. Moreover, we showed that one of the three sulfo groups can be easily substituted with S-, N-, and P-nucleophiles, opening access to various monofunctionalized sulfonated trityl radicals.


Assuntos
Oxigênio , Compostos de Tritil , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Interações Hidrofóbicas e Hidrofílicas , Camundongos
19.
PLoS One ; 15(3): e0222619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32150577

RESUMO

Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-ß1 (60-fold), IL-6 (33-fold), and TNFα (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-ß1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target.


Assuntos
Eczema/genética , Epiderme/patologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Ceratose/genética , Pele/metabolismo , Transgenes , Acetamidas/farmacologia , Animais , Citocinas/metabolismo , Doxiciclina/farmacologia , Eczema/tratamento farmacológico , Feminino , Homeostase/genética , Hiperplasia/tratamento farmacológico , Hiperplasia/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Queratinócitos/metabolismo , Ceratose/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transativadores/metabolismo , Compostos de Tritil/farmacologia
20.
Macromol Biosci ; 20(4): e2000005, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32104975

RESUMO

The pathogenic yeast Candida auris has received increasing attention due to its ability to cause fatal infections, its resistance toward important fungicides, and its ability to persist on surfaces including medical devices in hospitals. To brace health care systems for this considerable risk, alternative therapeutic approaches such as antifungal peptides are urgently needed. In clinical wound care, a significant focus has been directed toward novel surgical (wound) dressings as first defense lines against C. auris. Inspired by Cerberus the Greek mythological "hound of Hades" that prevents the living from entering and the dead from leaving hell, the preparation of a gatekeeper hybrid hydrogel is reported featuring lectin-mediated high-affinity immobilization of C. auris cells from a collagen gel as a model substratum in combination with a release of an antifungal peptide drug to kill the trapped cells. The vision is an efficient and safe two-layer medical composite hydrogel for the treatment of severe wound infections that typically occur in hospitals. Providing this new armament to the repertoire of possibilities for wound care in critical (intensive care) units may open new routes to shield and defend patients from infections and clinical facilities from spreading and invasion of C. auris and probably other fungal pathogens.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Hidrogéis/farmacologia , Peptídeos/farmacologia , Animais , Antifúngicos/síntese química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bandagens , Candida/crescimento & desenvolvimento , Candida/patogenicidade , Colágeno/química , Expressão Gênica , Humanos , Hidrogéis/química , Lectinas/genética , Lectinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Metionina/química , Testes de Sensibilidade Microbiana , Compostos Organofosforados/química , Peptídeos/síntese química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Soroalbumina Bovina/química , Pele/efeitos dos fármacos , Suínos , Compostos de Tritil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA