Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Br J Pharmacol ; 179(10): 2175-2192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34623632

RESUMO

BACKGROUND AND PURPOSE: Acute respiratory distress syndrome (ARDS) is characterized by pulmonary oedema and severe hypoxaemia. We investigated whether genetic deficit or blockade of calcium-activated potassium (KCa 3.1) channels would counteract pulmonary oedema and hypoxaemia in ventilator-induced lung injury, an experimental model for ARDS. EXPERIMENTAL APPROACH: KCa 3.1 channel knockout (Kccn4-/- ) mice were exposed to ventilator-induced lung injury. Control mice exposed to ventilator-induced lung injury were treated with the KCa 3.1 channel inhibitor, senicapoc. The outcomes were oxygenation (PaO2 /FiO2 ratio), lung compliance, lung wet-to-dry weight and protein and cytokines in bronchoalveolar lavage fluid (BALF). KEY RESULTS: Ventilator-induced lung injury resulted in lung oedema, decreased lung compliance, a severe drop in PaO2 /FiO2 ratio, increased protein, neutrophils and tumour necrosis factor-alpha (TNF-α) in BALF from wild-type mice compared with Kccn4-/- mice. Pretreatment with senicapoc (10-70 mg·kg-1 ) prevented the reduction in PaO2 /FiO2 ratio, decrease in lung compliance, increased protein and TNF-α. Senicapoc (30 mg·kg-1 ) reduced histopathological lung injury score and neutrophils in BALF. After injurious ventilation, administration of 30 mg·kg-1 senicapoc also improved the PaO2 /FiO2 ratio and reduced lung injury score and neutrophils in the BALF compared with vehicle-treated mice. In human lung epithelial cells, senicapoc decreased TNF-α-induced permeability. CONCLUSIONS AND IMPLICATIONS: Genetic deficiency of KCa 3.1 channels and senicapoc improved the PaO2 /FiO2 ratio and decreased the cytokines after a ventilator-induced lung injury. Moreover, senicapoc directly affects lung epithelial cells and blocks neutrophil infiltration in the injured lung. These findings indicate that blocking KCa 3.1 channels is a potential treatment in ARDS-like disease.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Acetamidas , Animais , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Pulmão/metabolismo , Camundongos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Compostos de Tritil/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
2.
Eur J Med Chem ; 215: 113288, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640763

RESUMO

Kinesin spindle protein (KSP) is expressed only in cells undergoing cell division, and hence represents an attractive target for the treatment of cancer. Several KSP inhibitors have been developed and undergone clinical trial, but their clinical use is limited by their toxicity to rapidly proliferating non-cancerous cells. To create new KSP inhibitors that are highly selective for cancer cells, we optimized the amino acid moiety of S-trityl-l-cysteine (STLC) derivative 1 using in silico modeling. Molecular docking and molecular dynamics simulation were performed to investigate the binding mode of 1 with KSP. Consistent with the structure activity relationship studies, we found that a cysteine amino moiety plays an important role in stabilizing the interaction. Based on these findings and the structure of GSH, a substrate of γ-glutamyltransferase (GGT), we designed and synthesized the prodrug N-γ-glutamylated STLC derivative 9, which could be hydrolyzed by GGT to produce 1. The KSP ATPase inhibitory activity of 9 was lower than that of 1, and LC-MS analysis indicated that 9 was converted to 1 only in the presence of GGT in vitro. In addition, the cytotoxic activity of 9 was significantly attenuated in GGT-knockdown A549 cells. Since GGT is overexpressed on the cell membrane of various cancer cells, these results suggest that compound 9 could be a promising prodrug that selectively inhibits the proliferation of GGT-expressing cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cisteína/farmacologia , Dibenzocicloeptenos/farmacologia , Cinesinas/antagonistas & inibidores , Pró-Fármacos/farmacologia , Compostos de Tritil/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bovinos , Linhagem Celular Tumoral , Cisteína/síntese química , Cisteína/metabolismo , Dibenzocicloeptenos/síntese química , Dibenzocicloeptenos/metabolismo , Humanos , Cinesinas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica , Compostos de Tritil/síntese química , Compostos de Tritil/metabolismo , gama-Glutamiltransferase/metabolismo
3.
ChemMedChem ; 15(24): 2462-2469, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33043595

RESUMO

The Ca2+ activated potassium channel 3.1 (KCa 3.1) is involved in critical steps of the metastatic cascade, such as proliferation, migration, invasion and extravasation. Therefore, a fast and efficient protocol for imaging of KCa 3.1 channels was envisaged. The novel fluorescently labeled small molecule imaging probes 1 and 2 were synthesized by connecting a dimethylpyrrole-based BODIPY dye with a derivative of the KCa 3.1 channel inhibitor senicapoc via linkers of different length. Patch-clamp experiments revealed the inhibition of KCa 3.1 channels by the probes confirming interaction with the channel. Both probes 1 and 2 were able to stain KCa 3.1 channels in non-small-cell lung cancer (NSCLC) cells following a simple, fast and efficient protocol. Pre-incubation with unlabeled senicapoc removed the punctate staining pattern showing the specificity of the new probes 1 and 2. Staining of the channel with the fluorescently labeled senicapoc derivatives 1 or 2 or with antibody-based indirect immunofluorescence yielded identical or very similar densities of stained KCa 3.1 channels. However, co-staining using both methods did not lead to the expected overlapping punctate staining pattern. This observation was explained by docking studies showing that the antibody used for indirect immunofluorescence and the probes 1 and 2 label different channel populations. Whereas the antibody binds at the closed channel conformation, the probes 1 and 2 bind within the open channel.


Assuntos
Acetamidas/farmacologia , Compostos de Boro/farmacologia , Corantes Fluorescentes/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Compostos de Tritil/farmacologia , Células A549 , Acetamidas/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Compostos de Boro/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Camundongos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica , Coloração e Rotulagem , Compostos de Tritil/metabolismo
4.
Bioorg Med Chem Lett ; 30(19): 127458, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755678

RESUMO

Sirtuin proteins are a highly conserved class of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases. The pleiotropic human isoform 2 of Sirtuins (SIRT2) has been engaged in the pathogenesis of cancer in a plethora of reports around the globe. Thus, SIRT2 modulation is deemed as a promising approach for pharmaceutical intervention. Previously, we reported S-Trityl-l-Cysteine (STLC)-ornamented dimethylaminopyridine chemical entity named STC4 with a significant SIRT2 inhibitory capacity; this was separate from the conventional application of STLC scaffold as a kinesin-5 inhibitor. An interactive molecular docking study of SIRT2 and STC4 showed interaction between Asn168 of SIRT2 and the methyl ester of STC4, that appears to hinder STC4 to reach the selective pocket of the protein unlike strong SIRT2 inhibitor SirReal2. To improve its activity, herein, we utilized S-trityl cysteamine pharmacophore lacking the methyl ester. Nine compounds were synthesized and assayed affording three biopertinent SIRT2 inhibitors, and two of them, STCY1 and STCY6 showed higher inhibitory activity than STC4. These compounds have pronounced anti-proliferative activities against different cancer cell lines. A molecular docking study was executed to shed light on the supposed binding mode of the lead compound, STCY1, into the selective pocket of SIRT2 by interaction of the nitrogen of pyridine ring of the compound and Ala135 of the protein. The outcome of the study exposes that the active compounds are effective intermediates to construct more potent biological agents.


Assuntos
Aminopiridinas/farmacologia , Cisteamina/análogos & derivados , Cisteamina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Sirtuína 2/antagonistas & inibidores , Compostos de Tritil/farmacologia , Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisteamina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Compostos de Tritil/síntese química , Compostos de Tritil/metabolismo
5.
Appl Microbiol Biotechnol ; 104(7): 3193-3204, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32067057

RESUMO

Malachite green is a carcinogenic dye that has been detected in fish tissues and freshwater. Here we evaluated the malachite green decoloring ability of a photoautotrophic cyanobacterium, Synechococcus elongatus PCC 7942 (Synechococcus), that lives in freshwater. Results show that 99.5% of the dye was removed by Synechococcus through bioabsorption and bioaccumulation; however, the dye was not degraded or chemically modified. Next, we established an engineered Synechococcus strain to degrade the dye after uptake. The triphenylmethane reductase gene katmr was heterologously expressed, resulting in high production of a soluble recombinant protein. The engineered strain showed advanced decoloring abilities at a low cell density and in stressful environments. It degraded malachite green into the smaller molecules 4-methylaminobenzoic acid and 4-hydroxyl-aniline. After treatment with the engineered cyanobacterium, the growth of wheat seeds was fully recovered in the presence of malachite green. These results demonstrate the potential application of the engineered Synechococcus as a photosynthetic cell factory for the removal of malachite green from wastewater.


Assuntos
Proteínas de Bactérias/genética , Corantes/metabolismo , Oxirredutases/genética , Corantes de Rosanilina/metabolismo , Synechococcus/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Enterobacter aerogenes/enzimologia , Enterobacter aerogenes/genética , Engenharia Metabólica , Oxirredutases/metabolismo , Fotobiorreatores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechococcus/genética , Compostos de Tritil/metabolismo
6.
J Agric Food Chem ; 67(34): 9468-9476, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31379158

RESUMO

The aroma quality of citrus fruit is determined by volatiles that are present at extremely low levels in the citrus fruit juice sacs; it can be greatly improved by increasing volatiles. In this study, we showed that the contents of cis- and trans-linalool oxides were significantly increased in the juice sacs of three pummelos artificially pollinated with the Citrus mangshanensis (MS) pollen. A novel cytochrome P450 78A7 gene (CitLO1) was significantly upregulated in the juice sacs of Huanong Red pummelo pollinated with MS pollen in comparison to that with open pollination. Compared to wild-type tobacco Bright-Yellow2 cells, transgenic cells overexpressing CitLO1 promoted a 3- to 4-fold more conversion of (-)-linalool to cis- and trans-linalool oxides. Overall, our results suggest that MS pollen has a xenia effect on pummelo fruit aroma quality, and CitLO1 is a linalool oxide synthase gene that played an important role in the xenia effect.


Assuntos
Citrus/metabolismo , Cicloexanóis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Frutas/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/genética , Compostos de Tritil/metabolismo , Monoterpenos Acíclicos , Citrus/química , Citrus/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/química , Frutas/genética , Humanos , Odorantes/análise , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Paladar , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
7.
Mol Pharm ; 16(9): 3985-3995, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31356752

RESUMO

Folate-based small molecule drug conjugates (SMDCs) are currently under development and have shown promising preclinical and clinical results against various cancers and polycystic kidney disease. Two requisites for response to a folate-based SMDC are (i) folate receptor alpha (FRα) protein is expressed in the diseased tissues, and (ii) FRα in those tissues is accessible and functionally competent to bind systemically administered SMDCs. Here we report on the development of a small molecule reporter conjugate (SMRC), called EC2220, which is composed of a folate ligand for FRα binding, a multilysine containing linker that can cross-link to FRα in the presence of formaldehyde fixation, and a small hapten (fluorescein) used for immunohistochemical detection. Data show that EC2220 produces a far greater IHC signal in FRα-positive tissues over that produced with EC17, a folate-fluorescein SMRC that is released from the formaldehyde-denatured FRα protein. Furthermore, the extent of the EC2220 IHC signal was proportional to the level of FRα expression. This EC2220-based assay was qualified both in vitro and in vivo using normal tissue, cancer tissue, and polycystic kidneys. Overall, EC2220 is a sensitive and effective reagent for evaluating functional and accessible receptor expression in vitro and in vivo.


Assuntos
Receptor 1 de Folato/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Doenças Renais Policísticas/tratamento farmacológico , Células A549 , Animais , Doxiciclina/farmacologia , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Receptor 1 de Folato/análise , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/metabolismo , Células HeLa , Humanos , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Doenças Renais Policísticas/induzido quimicamente , Doenças Renais Policísticas/metabolismo , Proteína Quinase C/genética , Distribuição Tecidual , Compostos de Tritil/química , Compostos de Tritil/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Methods Mol Biol ; 1782: 157-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850999

RESUMO

Oxidative phosphorylation is an important energy-conserving mechanism coupling mitochondrial electron transfer to ATP synthesis. Coupling between respiration and phosphorylation is not fully efficient due to proton leaks. In this chapter, we present a method to measure proton leak activity in isolated mitochondria. The relative strength of a modular kinetic approach to probe oxidative phosphorylation is emphasized.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Prótons , Trifosfato de Adenosina/biossíntese , Animais , Respiração Celular , Eletrodos , Cinética , Potencial da Membrana Mitocondrial , Músculo Esquelético/citologia , Oniocompostos/metabolismo , Consumo de Oxigênio , Ratos , Compostos de Tritil/metabolismo
9.
Braz. j. microbiol ; 49(2): 285-295, Apr.-June 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889238

RESUMO

Abstract Different technologies may be used for decolorization of wastewater containing dyes. Among them, biological processes are the most promising because they seem to be environmentally safe. The aim of this study was to determine the efficiency of decolorization of two dyes belonging to different classes (azo and triphenylmethane dyes) by immobilized biomass of strains of fungi (Pleurotus ostreatus - BWPH, Gleophyllum odoratum - DCa and Polyporus picipes - RWP17). Different solid supports were tested for biomass immobilization. The best growth of fungal strains was observed on the washer, brush, grid and sawdust supports. Based on the results of dye adsorption, the brush and the washer were selected for further study. These solid supports adsorbed dyes at a negligible level, while the sawdust adsorbed 82.5% of brilliant green and 19.1% of Evans blue. Immobilization of biomass improved dye removal. Almost complete decolorization of diazo dye Evans blue was reached after 24 h in samples of all strains immobilized on the washer. The process was slower when the brush was used for biomass immobilization. Comparable results were reached for brilliant green in samples with biomass of strains BWPH and RWP17. High decolorization effectiveness was reached in samples with dead fungal biomass. Intensive removal of the dyes by biomass immobilized on the washer corresponded to a significant decrease in phytotoxicity and a slight decrease in zootoxicity of the dye solutions. The best decolorization results as well as reduction in toxicity were observed for the strain P. picipes (RWP17).


Assuntos
Basidiomycota/metabolismo , Poluentes Químicos da Água/metabolismo , Corantes/metabolismo , Compostos Azo/metabolismo , Compostos de Tritil/metabolismo , Biotransformação , Células Imobilizadas/metabolismo , Adsorção , Águas Residuárias
10.
Braz J Microbiol ; 49(2): 285-295, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29129408

RESUMO

Different technologies may be used for decolorization of wastewater containing dyes. Among them, biological processes are the most promising because they seem to be environmentally safe. The aim of this study was to determine the efficiency of decolorization of two dyes belonging to different classes (azo and triphenylmethane dyes) by immobilized biomass of strains of fungi (Pleurotus ostreatus - BWPH, Gleophyllum odoratum - DCa and Polyporus picipes - RWP17). Different solid supports were tested for biomass immobilization. The best growth of fungal strains was observed on the washer, brush, grid and sawdust supports. Based on the results of dye adsorption, the brush and the washer were selected for further study. These solid supports adsorbed dyes at a negligible level, while the sawdust adsorbed 82.5% of brilliant green and 19.1% of Evans blue. Immobilization of biomass improved dye removal. Almost complete decolorization of diazo dye Evans blue was reached after 24h in samples of all strains immobilized on the washer. The process was slower when the brush was used for biomass immobilization. Comparable results were reached for brilliant green in samples with biomass of strains BWPH and RWP17. High decolorization effectiveness was reached in samples with dead fungal biomass. Intensive removal of the dyes by biomass immobilized on the washer corresponded to a significant decrease in phytotoxicity and a slight decrease in zootoxicity of the dye solutions. The best decolorization results as well as reduction in toxicity were observed for the strain P. picipes (RWP17).


Assuntos
Basidiomycota/metabolismo , Corantes/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Compostos Azo/metabolismo , Biotransformação , Células Imobilizadas/metabolismo , Compostos de Tritil/metabolismo , Águas Residuárias
11.
Appl Microbiol Biotechnol ; 97(4): 1799-806, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22573270

RESUMO

Triphenylmethane dyes are extensively utilized in textile industries, medicinal products, biological stains, and food processing industries, etc. They are generally considered as xenobiotic compounds, which are very recalcitrant to biodegradation. The widespread persistence of such compounds has generated concerns with regard to remediation of them because of their potential carcinogenicity, teratogenicity, and mutagenicity. In this study, we present a system of phytoremediation by Arabidopsis plants developed on the basis of overexpression of triphenylmethane reductase (TMR) from the Citrobacter sp. The morphology and growth of TMR transgenic Arabidopsis plants showed significantly enhanced tolerances to crystal violet (CV) and malachite green (MG). Further, HPLC and HPLC-MS analyses of samples before and after dye decolorization in culture media revealed that TMR transgenic plants exhibited strikingly higher capabilities of removing CV from their media and high efficiencies of converting CV to non-toxic leucocrystal violet (LCV). This work indicates that microbial degradative gene may be transgenically exploited in plants for bioremediation of triphenylmethane dyes in the environment.


Assuntos
Arabidopsis/metabolismo , Corantes/metabolismo , Recuperação e Remediação Ambiental/métodos , Oxirredutases/genética , Plantas Geneticamente Modificadas/metabolismo , Compostos de Tritil/metabolismo , Arabidopsis/genética , Biodegradação Ambiental , Expressão Gênica , Violeta Genciana/metabolismo , Oxirredutases/metabolismo , Plantas Geneticamente Modificadas/genética
12.
PLoS One ; 7(12): e51808, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251629

RESUMO

Malachite green (MG), N-methylated diaminotriphenylmethane, is one of the most common dyes in textile industry and has also been used as an effective antifungal agent. However, due to its negative impact on the environment and carcinogenic effects to mammalian cells, there is a significant interest in developing microbial agents to degrade this type of recalcitrant molecules. Here, an Exiguobacterium sp. MG2 was isolated from a river in Yunnan Province of China as one of the best malachite green degraders. This strain had a high decolorization capability even at the concentration of 2500 mg/l and maintained its stable activity within the pH range from 5.0 to 9.0. High-pressure liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry were employed to detect the catabolic pathway of MG. Six intermediate products were identified and a potential biodegradation pathway was proposed. This pathway involves a series of reactions of N-demethylation, reduction, benzene ring-removal, and oxidation, which eventually converted N-methylated diaminotriphenylmethane into N, N-dimethylaniline that is the key precursor to MG. Furthermore, our molecular biology experiments suggested that both triphenylmethane reductase gene tmr and cytochrome P450 participated in MG degradation, consistent with their roles in the proposed pathway. Collectively, our investigation is the first report on a biodegradation pathway of triphenylmethane dye MG in bacteria.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Corantes/metabolismo , Rios/microbiologia , Corantes de Rosanilina/metabolismo , Biodegradação Ambiental , China , Concentração de Íons de Hidrogênio , Oxirredutases/metabolismo , Indústria Têxtil , Compostos de Tritil/metabolismo , Microbiologia da Água
13.
Nucleosides Nucleotides Nucleic Acids ; 27(9): 1011-23, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18711664

RESUMO

N-Acylated derivatives of 8-(6-aminohexyl) amino-adenosine-5 '-phosphate were prepared and studied with regard to their effect on DNA synthesis by the Moloney leukemia virus reverse transcriptase. N-palmitoyl and N-nicotinyl derivatives and bis-8-(6-aminohexyl) amino-5'-AMP inhibited the enzyme partially using poly (rA).oligo d(pT)(16-18) as template-primer with [(3)H]dTTP. In order to increase hydrophobicity in the acyl component tethered to the 8-(6-aminohexyl) amino group on the adenine nucleotide, N-trityl-L-phenylalanine and the N-trityl derivatives of the o, m, and p-fluoro-DL-phenylalanine were initially examined for inhibition of the enzyme using the above template-primer system. The compounds all inhibited the reverse transcriptase with IC(50) values of approximately 60-80 microM. However, when N-trityl-m-fluoro-DL-phenylalanine was coupled to the nucleotide 8-(6-aminohexyl) amino-adenosine-5'-phosphate, the inhibitory activity of this compound increased significantly (IC(50) = 5 microM).


Assuntos
Monofosfato de Adenosina/análogos & derivados , Aminoácidos/metabolismo , DNA/biossíntese , Vírus da Leucemia Murina de Moloney/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Compostos de Tritil/metabolismo , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/metabolismo , Aminoácidos/síntese química , Concentração Inibidora 50 , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Compostos de Tritil/síntese química
14.
J Biol Chem ; 282(24): 17395-404, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17434874

RESUMO

Analysis of the atp operon from the thermoalkaliphilic Bacillus sp. TA2.A1 and comparison with other atp operons from alkaliphilic bacteria reveals the presence of a conserved lysine residue at position 180 (Bacillus sp. TA2.A1 numbering) within the a subunit of these F(1)F(o)-ATP synthases. We hypothesize that the basic nature of this residue is ideally suited to capture protons from the bulk phase at high pH. To test this hypothesis, a heterologous expression system for the ATP synthase from Bacillus sp. TA2.A1 (TA2F(1)F(o)) was developed in Escherichia coli DK8 (Deltaatp). Amino acid substitutions were made in the a subunit of TA2F(1)F(o) at position 180. Lysine (aK180) was substituted for the basic residues histidine (aK180H) or arginine (aK180R), and the uncharged residue glycine (aK180G). ATP synthesis experiments were performed in ADP plus P(i)-loaded right-side-out membrane vesicles energized by ascorbate-phenazine methosulfate. When these enzyme complexes were examined for their ability to perform ATP synthesis over the pH range from 7.0 to 10.0, TA2F(1)F(o) and aK180R showed a similar pH profile having optimum ATP synthesis rates at pH 9.0-9.5 with no measurable ATP synthesis at pH 7.5. Conversely, aK180H and aK180G showed maximal ATP synthesis at pH values 8.0 and 7.5, respectively. ATP synthesis under these conditions for all enzyme forms was sensitive to DCCD. These data strongly imply that amino acid residue Lys(180) is a specific adaptation within the a subunit of TA2F(1)F(o) to facilitate proton capture at high pH. At pH values near the pK(a) of Lys(180), the trapped protons readily dissociate to reach the subunit c binding sites, but this dissociation is impeded at neutral pH values causing either a blocking of the proposed H(+) channel and/or mechanism of proton translocation, and hence ATP synthesis is inhibited.


Assuntos
Trifosfato de Adenosina/biossíntese , Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Indicadores e Reagentes/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , Mutação , Oniocompostos/metabolismo , Óperon , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Compostos de Tritil/metabolismo
15.
Biochem J ; 400(1): 199-208, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16948637

RESUMO

Lipophilic monocations can pass through phospholipid bilayers and accumulate in negatively-charged compartments such as the mitochondrial matrix, driven by the membrane potential. This property is used to visualize mitochondria, to deliver therapeutic molecules to mitochondria and to measure the membrane potential. In theory, lipophilic dications have a number of advantages over monocations for these tasks, as the double charge should lead to a far greater and more selective uptake by mitochondria, increasing their therapeutic potential. However, the double charge might also limit the movement of lipophilic dications through phospholipid bilayers and little is known about their interaction with mitochondria. To see whether lipophilic dications could be taken up by mitochondria and cells, we made a series of bistriphenylphosphonium cations comprising two triphenylphosphonium moieties linked by a 2-, 4-, 5-, 6- or 10-carbon methylene bridge. The 5-, 6- and 10-carbon dications were taken up by energized mitochondria, whereas the 2- and 4-carbon dications were not. The accumulation of the dication was greater than that of the monocation methyltriphenylphosphonium. However, the uptake of dications was only described by the Nernst equation at low levels of accumulation, and beyond a threshold membrane potential of 90-100 mV there was negligible increase in dication uptake. Interestingly, the 5- and 6-carbon dications were not accumulated by cells, due to lack of permeation through the plasma membrane. These findings indicate that conjugating compounds to dications offers only a minor increase over monocations in delivery to mitochondria. Instead, this suggests that it may be possible to form dications within mitochondria that then remain within the cell.


Assuntos
Membranas Intracelulares/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Compostos Organofosforados/metabolismo , Compostos de Terfenil/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Ionóforos/farmacologia , Células Jurkat , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/fisiologia , Nigericina/farmacologia , Oniocompostos/química , Oniocompostos/metabolismo , Compostos Organofosforados/química , Cloreto de Potássio/farmacologia , Ratos , Rotenona/farmacologia , Radioisótopos de Rubídio/metabolismo , Compostos de Terfenil/química , Trítio/metabolismo , Compostos de Tritil/química , Compostos de Tritil/metabolismo , Desacopladores/farmacologia
16.
Biochemistry ; 44(28): 9703-13, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16008355

RESUMO

The yeast ABC (ATP-binding cassette protein) multidrug transporter Pdr5p transports a broad spectrum of xenobiotic compounds, including antifungal and antitumor agents. Previously, we demonstrated that substrate size is an important factor in substrate-transporter interaction and that Pdr5p has at least three substrate-binding sites. In this study, we use a combination of whole cell transport assays and photoaffinity labeling of Pdr5p with [(125)I]iodoarylazidoprazosin in purified plasma membrane vesicles to study the behavior of two series of novel substrates: trityl (triphenylmethyl) and carbazole derivatives. The results indicate that site 2, defined initially by tritylimidazole efflux, requires at least a single hydrogen bond acceptor group (electron pair donor). In contrast, complete inhibition of rhodamine 6G efflux and [(125)I]iodoarylazidoprazosin binding at site 1 requires substrates with three electronegative groups. Carbazole and trityl substrates with two groups show saturating, incomplete inhibition at this site. This type of inhibition is frequently observed in bacterial multidrug-binding proteins that use a pocket with multiple binding sites. The presence of multiple sites with different requirements for substrate-Pdr5p interaction may explain the broad specificity of xenobiotic compounds transported by this protein.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenobióticos/metabolismo , Antifúngicos/metabolismo , Antineoplásicos/metabolismo , Azidas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Carbazóis/química , Carbazóis/metabolismo , Clotrimazol/análogos & derivados , Clotrimazol/antagonistas & inibidores , Clotrimazol/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Elipticinas/química , Elipticinas/metabolismo , Ligação de Hidrogênio/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Prazosina/análogos & derivados , Prazosina/metabolismo , Rodaminas/antagonistas & inibidores , Rodaminas/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Trítio , Compostos de Tritil/química , Compostos de Tritil/metabolismo , Xenobióticos/química
17.
Arch Biochem Biophys ; 424(1): 81-8, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15019839

RESUMO

Superoxide radicals can be measured by redox methods which utilize the oxidation/reduction reactions of specific compounds. The redox methods, however, suffer from various interferences, which limit their use in the assay of superoxide. Electron paramagnetic resonance (EPR) spectroscopy using spin traps has been widely used as an alternative and direct technique to measure superoxide radicals. In our recent study, we have demonstrated the detection of superoxide in cellular system by EPR spectroscopy with triarylmethyl (trityl) free radical, TAM Ox063. TAM is highly water-soluble and stable in the presence of many biological oxidizing and reducing agents such as hydrogen peroxide, ascorbate, and glutathione. TAM reacts with superoxide with an apparent second order rate constant of 3.1x10(3)M(-1)s(-1). In the present work, we investigated the feasibility of a spectrophotometric assay of superoxide by taking advantage of the newly formed distinct absorption peak corresponding to the product formed from the reaction between TAM and superoxide. The effects of different fluxes of superoxide and concentrations of TAM on the efficiency and sensitivity of quantification of superoxide were investigated and compared with the widely used cytochrome c method of superoxide determination. The results demonstrated that the TAM method is comparable to the cytochrome c method for the assay of superoxide and further revealed that the assay is not affected by the presence of hydrogen peroxide. In summary, the TAM spectrophotometric assay of superoxide provides a suitable alternative method to the cytochrome c assay to measure superoxide and further complements our earlier reported TAM-EPR assay of superoxide.


Assuntos
Superóxidos/análise , Superóxidos/metabolismo , Compostos de Tritil/metabolismo , Ácido Ascórbico/metabolismo , Citocromos c/metabolismo , Compostos Ferrosos/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Neutrófilos/química , Neutrófilos/metabolismo , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta , Compostos de Tritil/química , Xantina Oxidase/metabolismo
18.
J Pept Sci ; 6(6): 264-70, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10912906

RESUMO

The selective deprotection of Lys(Mtt)-containing peptidyl resins was successfully monitored by RP-HPLC using very short linear gradients. RP-HPLC analyses of the acidic filtrates also revealed the partial cleavage of the Trt groups and of the peptide-resin bond. The absorbance of the Mtt carbocation at 470 nm is only twice that of the Trt cation. Thus, the UV monitoring at 470 nm seems to be inappropriate, especially at the end of the deprotection, when the Mtt and the Trt levels are comparable.


Assuntos
Lisina/análogos & derivados , Lisina/metabolismo , Compostos de Tritil/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Lisina/química , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/metabolismo , Compostos de Tritil/química , Raios Ultravioleta
19.
Chemosphere ; 39(5): 709-24, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10448550

RESUMO

Tris(4-chlorophenyl)methanol (TCPM) is a global contaminant of unknown origin that is structurally related to the endocrine modulating pesticides 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and Dicofol. Therefore, the potential reproductive toxic effects of TCPM were investigated in sexually mature male Sprague Dawley rats (n = 20) treated with 1.0, 10.0 or 100 ppm of TCPM mixed in the diet for 28 days. The calculated TCPM intake was 0.0, 0.1, 1.2 and 12.4 mg/kg/day, respectively. Serum concentrations of follicle stimulating hormone (FSH) in terminal blood samples were significantly (P < 0.02) elevated in the highest dose group compared to the controls. In contrast, dietary exposure to TCPM had no effect on circulating levels of luteinizing hormone (LH), testosterone (T) and the T/LH ratio. Incubation of MCF-7 cells with increasing concentrations of TCPM failed to either induce proliferation or to block the proliferative effect induced by estradiol indicating that TCPM is neither estrogenic or anti-estrogenic. Relative binding affinity studies using androgen receptors from the prostate revealed that TCPM has a binding affinity comparable to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), the principle metabolite of DDT. In addition, the calculated Ki (0.62 microM) for TCPM is lower than the reported Ki's for the antiandrogenic pesticides p,p'-DDE and vinclozolin. Although TCPM binds with the androgen receptor in vitro, the absence of both an effect on serum T levels and morphological changes in the testis suggests that the mechanism of action for elevated FSH levels seen in vivo may not involve an antiandrogenic effect of TCPM at the dose level used in this study. The no adverse effect level for reproductive effects of TCPM is 10 ppm which is equivalent to a calculated intake of 1.2 mg/kg/day.


Assuntos
Poluentes Ambientais/toxicidade , Reprodução/efeitos dos fármacos , Compostos de Tritil/toxicidade , Animais , Apoptose , Divisão Celular/efeitos dos fármacos , DDT/metabolismo , Epididimo/efeitos dos fármacos , Epididimo/patologia , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Masculino , Próstata/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Testículo/efeitos dos fármacos , Testículo/patologia , Testosterona/sangue , Compostos de Tritil/metabolismo , Células Tumorais Cultivadas
20.
Arch Biochem Biophys ; 315(1): 142-52, 1994 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-7979391

RESUMO

Treatment of isolated mitochondria with calcium and inorganic phosphate induces inner membrane permeability that is thought to be mediated through a non-selective, calcium-dependent pore. The inner membrane permeability results in the rapid efflux of small matrix solutes such as glutathione and calcium, loss of coupled functions, and large amplitude swelling. We have identified conditions of permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing calcium and inorganic phosphate abolished large-amplitude swelling of mitochondria but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial glutathione and calcium. The release of both glutathione and calcium was inhibited by the addition of cyclosporin A, a potent inhibitor of permeability transition. Transmission electron microscopy analysis, combined with the glutathione and calcium release data, indicate that permeability transition can be observed in the absence of large-amplitude swelling. Permeability transition occurring both with and without large-amplitude swelling was accompanied by a collapse of the membrane potential. We conclude that cyclosporin A-sensitive permeability transition can occur without obvious morphological changes such as large-amplitude swelling. Monitoring the cyclosporin A-sensitive release of concentrated endogenous matrix solutes, such as GSH, may be a sensitive and useful indicator of permeability transition.


Assuntos
Cálcio/metabolismo , Ciclosporina/farmacologia , Glutationa/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Dilatação Mitocondrial/fisiologia , Animais , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Transporte Biológico , Cálcio/farmacologia , Masculino , Microscopia Eletrônica , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Oligomicinas/farmacologia , Oniocompostos/metabolismo , Permeabilidade , Fosfatos/farmacologia , Ratos , Ratos Sprague-Dawley , Sulfetos/farmacologia , Fatores de Tempo , Compostos de Tritil/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA