Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Cell Commun Signal ; 22(1): 425, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223652

RESUMO

BACKGROUND: Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells. METHODS: Various POM derivatives were synthesised and characterised by infrared spectra, powder X-ray diffraction pattern and nuclear magnetic resonance spectroscopy. Estrogen receptor (ER) positive breast cancer cells, and their counterparts, which have developed resistance to the hormone therapy tamoxifen, were treated with POMs and their consequences assessed by gel retardation and chromatin immunoprecipitation to determine SOX2 binding to DNA. Effects on proliferation, migration, invasion and tumorigenicity were monitored and quantified using microscopy, clone formation, transwell, wound healing assays, flow cytometry and in vivo chick chorioallantoic membrane (CAM) models. Generation of lentiviral stable gene silencing and gene knock-out using CRISPR-Cas9 genome editing were applied to validate the inhibitory effects of the selected POM. Cancer stem cell subpopulations were quantified by mammosphere formation assays, ALDEFLUOR activity and CD44/CD24 stainings. Flow cytometry and western blotting were used to measure reactive oxygen species (ROS) and apoptosis. RESULTS: POMs blocked in vitro binding activity of endogenous SOX2. [P2W18O62]6- (PW) Wells-Dawson-type anion was the most effective at inhibiting proliferation in various cell line models of tamoxifen resistance. 10 µM PW also reduced cancer cell migration and invasion, as well as SNAI2 expression levels. Treatment of tamoxifen-resistant cells with PW impaired tumour formation by reducing CSC content, in a SOX2-dependent manner, which led to stem cell depletion in vivo. Mechanistically, PW induced formation of reactive oxygen species (ROS) and inhibited Bcl-2, leading to the death of tamoxifen-resistant cells. PW-treated tamoxifen-resistant cells showed restored sensitivity to tamoxifen. CONCLUSIONS: Together, these observations highlight the potential use of PW as a SOX2 inhibitor and the therapeutic relevance of targeting SOX2 to treat tamoxifen-resistant breast cancer.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição SOXB1 , Tamoxifeno , Compostos de Tungstênio , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Tamoxifeno/farmacologia , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Compostos de Tungstênio/farmacologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Animais
2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273113

RESUMO

Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.


Assuntos
Crescimento Neuronal , Fármacos Neuroprotetores , Compostos de Tungstênio , Humanos , Crescimento Neuronal/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Compostos de Tungstênio/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Neuroproteção/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
3.
ACS Nano ; 18(34): 23672-23683, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39137964

RESUMO

Engineering Z-scheme heterojunctions represents a promising strategy for optimizing the separation and migration of charge carriers in semiconductor sonosensitizers for enhanced reactive oxygen species (ROS) generation. Nevertheless, establishing a continuous and directional pathway for ultrasonic-induced charge flow in Z-scheme heterojunctions remains a significant challenge. In this study, we present a ternary Bi2WO6/TiO2-Pt heterojunction sonosensitizer achieved through the precise growth of Pt nanocrystals on a directionally assembled Bi2WO6/TiO2 Z-scheme structure. The construction of the Bi2WO6/TiO2-Pt heterojunction involves directional growth of Bi2WO6 in situ on the highly exposed (001) crystal facet of TiO2 nanosheets, followed by the precise deposition of nano Pt on the edge (101) crystal facet. The Z-scheme Bi2WO6/TiO2 in the ternary heterojunction ensures effective electron separation, while the Schottky TiO2-Pt interface establishes a well-defined charge flow path and robust redox capabilities. Moreover, nano Pt confers the Bi2WO6/TiO2-Pt heterojunction with excellent peroxidase-mimic and catalase-mimic activities, facilitating interactions with endogenous H2O2 to produce the hydroxyl radicals and O2. It effectively alleviates tumor hypoxia and enhances ROS production. This results in significantly higher efficiency in sonodynamically induced ROS generation compared to pure TiO2 or binary Bi2WO6/TiO2 heterojunctions, as confirmed by DFT theoretical calculation and experiments with both in vitro and in vivo anticancer performance. This study offers valuable insights for designing high-performance Z-scheme sonosensitizer systems.


Assuntos
Platina , Titânio , Titânio/química , Titânio/farmacologia , Animais , Platina/química , Platina/farmacologia , Humanos , Camundongos , Bismuto/química , Bismuto/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
4.
Curr Med Sci ; 44(4): 809-819, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096476

RESUMO

OBJECTIVE: Lindqvist-type polyoxometalates (POMs) exhibit potential antitumor activities. This study aimed to examine the effects of Lindqvist-type POMs against breast cancer and the underlying mechanism. METHODS: Using different cancer cell lines, the present study evaluated the antitumor activities of POM analogues that were modified at the body skeleton based on molybdenum-vanadium-centered negative oxygen ion polycondensations with different side strains. Cell colony formation assay, autophagy detection, mitochondrial observation, qRT-PCR, Western blotting, and animal model were used to evaluate the antitumor activities of POMs against breast cancer cells and the related mechanism. RESULTS: MO-4, a Lindqvist-type POM linking a proline at its side strain, was selected for subsequent experiments due to its low half maximal inhibitory concentration in the inhibition of proliferation of breast cancer cells. It was found that MO-4 induced the apoptosis of multiple types of breast cancer cells. Mechanistically, MO-4 activated intracellular mitophagy by elevating mitochondrial reactive oxygen species (ROS) levels and resulting in apoptosis. In vivo, breast tumor growth and distant metastasis were significantly reduced following MO-4 treatment. CONCLUSION: Collectively, the results of the present study demonstrated that the novel Lindqvist-type POM MO-4 may exhibit potential in the treatment of breast cancer.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Mitofagia , Espécies Reativas de Oxigênio , Compostos de Tungstênio , Humanos , Mitofagia/efeitos dos fármacos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Apoptose/efeitos dos fármacos , Compostos de Tungstênio/farmacologia , Animais , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Molibdênio/farmacologia , Polieletrólitos , Ânions
5.
Food Chem ; 460(Pt 3): 140731, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106757

RESUMO

17ß-E2 is used in animal growth regulation and agricultural fertilizer, and even ng L-1 mass concentration levels can show biological effects. In this work, Ag NPs was used as surface-enhanced Raman spectroscopy (SERS) source and WS2 was synthesized by a simple method to provide a uniform distribution platform for Ag NPs. The MIP was the shell, which can selectively enrich the target molecule, pull the distance between the target molecule and SERS source, and protect Ag NPs. A cyclable SERS substrate with high sensitivity for detecting 17ß-E2 in food was constructed. The optimized WS2/Ag@MIP as SERS substrate has the advantages of high Enhanced Factor (EF = 2.78 × 109), low detection limit (LOD = 0. 0958 pM), strong anti-interference ability, and good recycling performance. Moreover, the detection of 17ß-E2 in real samples still has good accuracy. This work provides a new possibility for the trace detection of 17ß-E2 in food.


Assuntos
Estradiol , Contaminação de Alimentos , Limite de Detecção , Nanopartículas Metálicas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Prata/química , Contaminação de Alimentos/análise , Nanopartículas Metálicas/química , Estradiol/análise , Animais , Compostos de Tungstênio/química
6.
ACS Nano ; 18(35): 24469-24483, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39172806

RESUMO

Bacterial infections claim millions of lives every year, with the escalating menace of microbial antibiotic resistance compounding this global crisis. Nanozymes, poised as prospective substitutes for antibiotics, present a significant frontier in antibacterial therapy, yet their precise enzymatic origins remain elusive. With the continuous development of nanozymes, the applications of elemental N-modulated nanozymes have spanned multiple fields, including sensing and detection, infection therapy, cancer treatment, and pollutant degradation. The introduction of nitrogen into nanozymes not only broadens their application range but also holds significant importance for the design of catalysts in biomedical research. The synergistic interplay between W and N induces pivotal alterations in electronic configurations, endowing tungsten nitride (WN) with a peroxidase-like functionality. Furthermore, the introduction of N vacancies augments the nanozyme activity, thus amplifying the catalytic potential of WN nanostructures. Rigorous theoretical modeling and empirical validation corroborate the genesis of the enzyme activity. The meticulously engineered WN nanoflower architecture exhibits an exceptional ability in traversing bacterial surfaces, exerting potent bactericidal effects through direct physical interactions. Additionally, the topological intricacies of these nanostructures facilitate precise targeting of generated radicals on bacterial surfaces, culminating in exceptional bactericidal efficacy against both Gram-negative and Gram-positive bacterial strains along with notable inhibition of bacterial biofilm formation. Importantly, assessments using a skin infection model underscore the proficiency of WN nanoflowers in effectively clearing bacterial infections and fostering wound healing. This pioneering research illuminates the realm of pseudoenzyme activity and bacterial capture-killing strategies, promising a fertile ground for the development of innovative, high-performance artificial peroxidases.


Assuntos
Antibacterianos , Nitrogênio , Antibacterianos/farmacologia , Antibacterianos/química , Nitrogênio/química , Testes de Sensibilidade Microbiana , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Peroxidase/metabolismo , Peroxidase/química , Animais , Tungstênio/química , Tungstênio/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Camundongos , Catálise , Nanoestruturas/química , Escherichia coli/efeitos dos fármacos , Humanos
7.
Int J Biol Macromol ; 277(Pt 1): 133847, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084982

RESUMO

Textiles with self-cleaning and anti-icing capabilities in cold climates are essential for outdoor workers and enthusiasts. Superhydrophobic modification of textile surfaces is effective in imparting these characteristics. Although there are numerous methods available for manufacturing superhydrophobic textiles, careful consideration is warranted for environmental concerns over fluorochemicals, stability of superhydrophobic coatings, and fabric breathability. In this work, we utilized biomass resources such as tung oil and behenic acid, along with zeolitic imidazolate framework (ZIF-8), to modify cotton fabrics, thereby creating an innovative behenic acid/tung oil/ZIF-8 modified cotton (BTZC) fabric with anti-icing and self-cleaning features. This material manifests a unique nanoflower-shaped surface morphology, demonstrating exceptional superhydrophobicity with a static water contact angle (CA) of 162° and a sliding angle (SA) of 2°. Moreover, BTZC excels in its thermal stability, breathability, and resistance to icing. Equally impressive is its robust stability, as evidenced through rigorous testing under continuous washing and abrasion, sustained high and low temperatures, extreme pH environments, and immersion in various chemical solvents. BTZC presents as a fluorine-free, durable, economically viable alternative for outdoor textile applications, marking substantial progress in the utilization of biomass and metal-organic framework materials in the textile industry and promising implications for value enhancement.


Assuntos
Fibra de Algodão , Interações Hidrofóbicas e Hidrofílicas , Têxteis , Zeolitas , Zeolitas/química , Compostos de Tungstênio/química
8.
Angew Chem Int Ed Engl ; 63(40): e202410649, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965041

RESUMO

Cluster aggregation states are thermodynamically favored at the subnanoscale, for which an inverse growth from nanoparticles to clusters may be realized on subnanometer supports. Herein, we develop Au-polyoxometalate-layered double hydroxide (Au-POM-LDH) sub-1 nm nanosheets (Sub-APL) based on the above strategy, where sub-1 nm Au clusters with negative valence are generated by the in situ disintegration of Au nanoparticles on POM-LDH supports. Sub-1 nm Au clusters with ultrahigh surface atom ratios exhibit remarkable efficiency for glutathione (GSH) depletion. The closely connected sub-1 nm Au with negative valence and POM hetero-units can promote the separation of hole-electrons, resulting in the enhanced reactive oxygen species (ROS) generation under ultrasound (US). Besides, the reversible redox of Mo in POM is able to deplete GSH and trigger chemodynamic therapy (CDT) simultaneously, further enhancing the oxidative stress. Consequently, the Sub-APL present 2-fold ROS generation under US and 7-fold GSH depletion compared to the discrete Au and POM-LDH mixture. Therefore, the serious imbalance of redox in the TME caused by the sharp increase of ROS and rapid decrease of GSH leads to death of tumor ultimately.


Assuntos
Ouro , Estresse Oxidativo , Espécies Reativas de Oxigênio , Ouro/química , Estresse Oxidativo/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Glutationa/química , Glutationa/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Hidróxidos/química , Camundongos , Nanoestruturas/química
9.
J Inorg Biochem ; 259: 112640, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38968927

RESUMO

The Preyssler-type polyoxotungstate ({P5W30}) belongs to the family of polyanionic metal-oxides formed by group V and VI metal ions, such as V, Mo and W, commonly known as polyoxometalates (POMs). POMs have demonstrated inhibitory effect on a significant number of ATP-binding proteins in vitro. Purinergic P2 receptors, widely expressed in eukaryotic cells, contain extracellularly oriented ATP-binding sites and play many biological roles with health implications. In this work, we use the immortalized mouse hippocampal neuronal HT-22 cells in culture to study the effects of {P5W30} on the cytosolic Ca2+ concentration. Changes in cytosolic Ca2+ concentration were monitored using fluorescence microscopy of HT-22 cells loaded with the fluorescent Ca2+ indicator Fluo3. 31P-Nuclear magnetic resonance measurements of {P5W30} indicate its stability in the medium used for cytosolic Ca2+ measurements for over 30 min. The findings reveal that addition of {P5W30} to the extracellular medium induces a sustained increase of the cytosolic Ca2+ concentration within minutes. This Ca2+ increase is triggered by extracellular Ca2+ entry into the cells and is dose-dependent, with a half-of-effect concentration of 0.25 ± 0.05 µM {P5W30}. In addition, after the {P5W30}-induced cytosolic Ca2+ increase, the transient Ca2+ peak induced by extracellular ATP is reduced up to 100% with an apparent half-of-effect concentration of 0.15 ± 0.05 µM {P5W30}. Activation of metabotropic purinergic P2 receptors affords about 80% contribution to the increase of Fluo3 fluorescence elicited by {P5W30} in HT-22 cells, whereas ionotropic receptors contribute, at most, with 20%. These results suggest that {P5W30} could serve as a novel agonist of purinergic P2 receptors.


Assuntos
Cálcio , Compostos de Tungstênio , Animais , Camundongos , Compostos de Tungstênio/farmacologia , Compostos de Tungstênio/química , Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Hipocampo/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2/farmacologia , Citosol/metabolismo
10.
ACS Sens ; 9(8): 4079-4088, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057835

RESUMO

Ambient pressure X-ray photoelectron spectroscopy (APXPS) is combined with simultaneous electrical measurements and supported by density functional theory calculations to investigate the sensing mechanism of tungsten disulfide (WS2)-based gas sensors in an operando dynamic experiment. This approach allows for the direct correlation between changes in the surface potential and the resistivity of the WS2 sensing active layer under realistic operating conditions. Focusing on the toxic gases NO2 and NH3, we concurrently demonstrate the distinct chemical interactions between oxidizing or reducing agents and the WS2 active layer and their effect on the sensor response. The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations. This methodology applied to NH3 concentrations of 100, 230, and 760 and 14 ppm of NO2 establishes a benchmark for future APXPS studies on sensing devices, providing fast acquisition times and a 1:1 correlation between electrical response and spectroscopy data in operando conditions. Our findings contribute to a deeper understanding of the sensing mechanism in 2D transition metal dichalcogenides, paving the way for optimizing chemiresistor sensors for various industrial applications and wireless platforms with low energy consumption.


Assuntos
Amônia , Espectroscopia Fotoeletrônica , Amônia/análise , Amônia/química , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/química , Compostos de Tungstênio/química , Teoria da Densidade Funcional , Pressão , Gases/análise , Gases/química , Tungstênio/química
11.
Dalton Trans ; 53(26): 10805-10813, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38836698

RESUMO

Polyoxometalates (POMs) have drawn significant attention on account of their structural designability, compositional diversity and great potential applications. As an indispensable branch of POMs, selenotungstates (SeTs) have been synthesized extensively. Some SeTs have been applied as sensing materials for detecting biomarkers (e.g., metabolites, hormones, cancer markers). To gain a comprehensive understanding of advancements in SeT-based sensing materials, we present an overview that encapsulates the sensing performances and mechanisms of SeT-based biosensors. SeT-based biosensors are categorized into electrochemical catalytic biosensors, electrochemical affinity biosensors, "turn-off" fluorescence biosensors and "turn-on" fluorescence biosensors. We anticipate the expansive potential of SeT-based biosensors in wearable and implantable sensing technologies, which promises to catalyze significant breakthroughs in SeT-based biosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Compostos de Tungstênio , Técnicas Biossensoriais/métodos , Compostos de Tungstênio/química , Humanos , Catálise , Compostos de Selênio/química , Compostos Organosselênicos/química
12.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884404

RESUMO

Zinc tungstate is a semiconductor known for its favorable photocatalytic, photoluminescence, and scintillation properties, coupled with its relatively low cost, reduced toxicity, and high stability in biological and catalytic environments. In particular, zinc tungstate evinces scintillation properties, namely the ability to emit visible light upon absorption of energetic radiation such as x rays, which has led to applications not only as radiation detectors but also for biomedical applications involving the delivery of optical light to deep tissue, such as photodynamic therapy and optogenetics. Here, we report on the synthesis of zinc tungstate nanorods generated via an optimized but facile method, which allows for synthetic control over the aspect ratio of the as-synthesized anisotropic motifs via rational variation of the solution pH. We investigate the effect of aspect ratio on their resulting photoluminescent and radioluminescent properties. We further demonstrate the potential of these zinc tungstate nanorods for biomedical applications, such as photodynamic therapy for cancer treatment, by analyzing their toxicological profile within cell lines and neurons.


Assuntos
Nanotubos , Compostos de Tungstênio , Compostos de Tungstênio/química , Compostos de Tungstênio/toxicidade , Nanotubos/química , Humanos , Animais , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Compostos de Zinco/química , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Zinco/química
13.
Antiviral Res ; 226: 105897, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38685531

RESUMO

Human respiratory viruses have an enormous impact on national health systems, societies, and economy due to the rapid airborne transmission and epidemic spread of such pathogens, while effective specific antiviral drugs to counteract infections are still lacking. Here, we identified two Keggin-type polyoxometalates (POMs), [TiW11CoO40]8- (TiW11Co) and [Ti2PW10O40]7- (Ti2PW10), endowed with broad-spectrum activity against enveloped and non-enveloped human respiratory viruses, i.e., coronavirus (HCoV-OC43), rhinovirus (HRV-A1), respiratory syncytial virus (RSV-A2), and adenovirus (AdV-5). Ti2PW10 showed highly favorable selectivity indexes against all tested viruses (SIs >700), and its antiviral potential was further investigated against human coronaviruses and rhinoviruses. This POM was found to inhibit replication of multiple HCoV and HRV strains, in different cell systems. Ti2PW10 did not affect virus binding or intracellular viral replication, but selectively inhibited the viral entry. Serial passaging of virus in presence of the POM revealed a high barrier to development of Ti2PW10-resistant variants of HRV-A1 or HCoV-OC43. Moreover, Ti2PW10 was able to inhibit HRV-A1 production in a 3D model of the human nasal epithelium and, importantly, the antiviral treatment did not determine cytotoxicity or tissue damage. A mucoadhesive thermosensitive in situ hydrogel formulation for nasal delivery was also developed for Ti2PW10. Overall, good biocompatibility on cell lines and human nasal epithelia, broad-spectrum activity, and absence of antiviral resistance development reveal the potential of Ti2PW10 as an antiviral candidate for the development of a treatment of acute respiratory viral diseases, warranting further studies to identify the specific target/s of the polyanion and assess its clinical potential.


Assuntos
Antivirais , Compostos de Tungstênio , Internalização do Vírus , Replicação Viral , Humanos , Internalização do Vírus/efeitos dos fármacos , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Compostos de Tungstênio/farmacologia , Rhinovirus/efeitos dos fármacos , Rhinovirus/fisiologia , Linhagem Celular , Infecções Respiratórias/virologia , Infecções Respiratórias/tratamento farmacológico , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/fisiologia , Animais
14.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664493

RESUMO

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Assuntos
Antibacterianos , Antineoplásicos , Bismuto , Nanocompostos , Compostos de Tungstênio , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Bismuto/química , Bismuto/farmacologia , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Nanotubos de Carbono/química , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2
15.
ACS Appl Mater Interfaces ; 16(17): 21546-21556, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626342

RESUMO

Radiodynamic therapy (RDT) has emerged as a promising modality for cancer treatment, offering notable advantages such as deep tissue penetration and radiocatalytic generation of oxygen free radicals. However, the oxygen-dependent nature of RDT imposes limitations on its efficacy in hypoxic conditions, particularly in modulating and eliminating radioresistant immune suppression cells. A novel approach involving the creation of a "super" tetrahedron polyoxometalate (POM) cluster, Fe12-POM, has been developed for radiation boosted chemodynamic catalysis to enable oxygen-independent RDT in hypoxic conditions. This nanoscale cluster comprises four P2W15 units functioning as energy antennas, while the Fe3 core serves as an electron receptor and catalytic center. Under X-ray radiation, a metal-to-metal charge transfer phenomenon occurs between P2W15 and the Fe3 core, resulting in the valence transition of Fe3+ to Fe2+ and a remarkable 139-fold increase in hydroxyl radical generation compared to Fe12-POM alone. The rapid generation of hydroxyl radicals, in combination with PD-1 therapy, induces a reprogramming of the immune environment within tumors. This reprogramming is characterized by upregulation of CD80/86, downregulation of CD163 and FAP, as well as the release of interferon-γ and tumor necrosis factor-α. Consequently, the occurrence of abscopal effects is facilitated, leading to significant regression of both local and distant tumors in mice. The development of oxygen-independent RDT represents a promising approach to address cancer recurrence and improve treatment outcomes.


Assuntos
Microambiente Tumoral , Animais , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Oxigênio/química , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Linhagem Celular Tumoral
16.
Small ; 20(34): e2401073, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644232

RESUMO

Single-atom enzymes (SAzymes) exhibit great potential for chemodynamic therapy (CDT); while, general application is still challenged by their instability and unavoidable side effects during delivery. Herein, a manganese-based polyoxometalate single-atom enzyme (Mn-POM SAE) is first introduced into tumor-specific CDT, which exhibits tumor microenvironment (TME)-activated transition of nontoxicity-to-toxicity. Different from traditional POM materials, the aggregates of low-toxic Mn-POM SAE nanospheres are obtained at neutral conditions, facilitating efficient delivery and avoiding toxicity problems in normal tissues. Under acid TME conditions, these nanospheres are degraded into smaller units of toxic Mn(II)-PW11; thus, initiating cancer cell-specific therapy. The released active units of Mn(II)-PW11 exhibit excellent multienzyme-like activities (including peroxidase (POD)-like, oxidase (OXD)-like, catalase (CAT)-like, and glutathione peroxidase (Gpx)-like activities) for the synergistic cancer therapy due to the stabilized high valence Mn species (MnIII/MnIV). As demonstrated by both intracellular evaluations and in vivo experiments, ROS is generated to cause damage to lysosome membranes, further facilitating acidification and impaired autophagy to enhance cancer therapy. This study provides a detailed investigation on the acid-triggered releasing of active units and the electron transfer in multienzyme-mimic-like therapy, further enlarging the application of POMs from catalytical engineering into cancer therapy.


Assuntos
Neoplasias , Compostos de Tungstênio , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Microambiente Tumoral/efeitos dos fármacos , Manganês/química , Linhagem Celular Tumoral , Enzimas/metabolismo , Enzimas/química , Nanosferas/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Polieletrólitos , Ânions
17.
Talanta ; 274: 125965, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552480

RESUMO

In this paper, a few-layer WS2 nanosheets-based electrochemical biosensor was fabricated for the highly sensitive detection of breast cancer tumor marker miRNA-4484. Firstly, few-layer WS2 nanosheets were prepared by shear stripping and characterized by SEM, TEM, AFM and UV spectrophotometer. After modification of few-layer WS2 nanosheets on the electrode surface, the miRNA probe was fixed on the few-layer WS2 nanosheets by polycytosine (PolyC). Then short-chain miRNA containing PolyC was used as the blocking agent to close the excess active sites on the surface of WS2 nanosheets to complete the fabrication of the sensor biosensing interface. Finally, the current changes caused by the specific binding of miRNA-4484 to the probe were analyzed by differential pulse voltammetry (DPV). The results showed that the sensor had a good linear relationship for the detection of miRNA-4484 in the concentration range of 1 aM-100 fM, and the detection limit was as low as 1.61 aM. In addition, the electrochemical sensor had excellent selectivity, stability and reproducibility. The artificial sample tests indicated that the developed biosensors have the potential for clinical application in the future.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs , Nanoestruturas , Sulfetos , Compostos de Tungstênio , Técnicas Biossensoriais/métodos , MicroRNAs/análise , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Humanos , Sulfetos/química , Nanoestruturas/química , Compostos de Tungstênio/química , Limite de Detecção , Eletrodos , Neoplasias da Mama/diagnóstico
18.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276630

RESUMO

Thyroid transcription factor 1 (TTF1) is an important cancer-related biomarker for clinical diagnosis, especially for carcinomas of lung and thyroid origin. Herein, a novel label-free electrochemical immunosensor was prepared for TTF1 detection based on nanohybrids of ribbon-like tungsten disulfide-reduced graphene oxide (WS2-rGO) and gold nanoparticles (AuNPs). The proposed immunosensor employed H2O2 as the electrochemical probe because of the excellent peroxidase-like activity of ribbon-like WS2-rGO. The introduction of AuNPs not only enhanced the electrocatalytic activity of the immunosensor, but also provided immobilization sites for binding TTF1 antibodies. The electrochemical signals can be greatly amplified due to their excellent electrochemical performance, which realized the sensitive determination of TTF1 with a wide linear range of 0.025-50 ng mL-1 and a lower detection limit of 0.016 ng mL-1 (S/N = 3). Moreover, the immunosensor exhibited high selectivity, good reproducibility, and robust stability, as well as the ability to detect TTF1 in human serum with satisfactory results. These observed properties of the immunosensor enhance its potential practicability in clinical applications. This method can also be used for the detection of other tumor biomarkers by using the corresponding antigen-antibody complex.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Sulfetos , Compostos de Tungstênio , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Fator Nuclear 1 de Tireoide , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Imunoensaio/métodos , Grafite/química , Biomarcadores Tumorais , Limite de Detecção
19.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240203

RESUMO

The present study presents the tertiary assembly of a POM, peptide, and biogenic amine, which is a concept to construct new hybrid bio-inorganic materials for antibacterial applications and will help to promote the development of antivirus agents in the future. To achieve this, a Eu-containing polyoxometalate (EuW10) was first co-assembled with a biogenic amine of spermine (Spm), which improved both the luminescence and antibacterial effect of EuW10. Further introduction of a basic peptide from HPV E6, GL-22, induced more extensive enhancements, both of them being attributed to the cooperation and synergistic effects between the constituents, particularly the adaptive responses of assembly to the bacterial microenvironment (BME). Further intrinsic mechanism investigations revealed in detail that the encapsulation of EuW10 in Spm and further GL-22 enhanced the uptake abilities of EuW10 in bacteria, which further improved the ROS generation in BME via the abundant H2O2 involved there and significantly promoted the antibacterial effects.


Assuntos
Peroxidase , Compostos de Tungstênio , Compostos de Tungstênio/farmacologia , Peróxido de Hidrogênio , Peptídeos , Corantes , Antibacterianos/farmacologia
20.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234988

RESUMO

Oxidative degradation by using reactive oxygen species (ROS) is an effective method to treat pollutants. The synthesis of artificial oxidase for the degradation of dyes is a hot spot in molecular science. In this study, a nanoscale sandwich-type polyoxometalate (POM) on the basis of a tetra-nuclear cobalt cluster and trivacant B-α-Keggin-type tungstoarsenate {[Co(C8H20N4)]4}{Co4(H2O)2[HAsW9O34]2}∙4H2O (abbreviated as CAW, C8H20N4 = cyclen) has been synthesized and structurally examined by infrared (IR) spectrum, ultraviolet-visible (UV-Vis) spectrum, X-ray photoelectron spectrum (XPS), single-crystal X-ray diffraction (SXRD), and bond valence sum (Σs) calculation. According to the structural analysis, the principal element of the CAW is derived from modifying sandwich-type polyanion {Co4(H2O)2 [HAsW9O34]2}8- with four [Co(Cyclen)]2+, in which 1,4,7,10-tetraazacyclododecane (cyclen) is firstly applied to modify POM. It is also demonstrated that CAW is capable of efficiently catalyzing the production of ROS by the synergistic effects of POM fragments and Co-cyclen complexes. Moreover, CAW can interfere with the morphology and proliferation of sensitive cells by producing ROS and exhibits ability in specifically eliminating methylene blue (MB) dyes from the solution system by both adsorption and catalytic oxidation.


Assuntos
Ciclamos , Poluentes Ambientais , Ânions , Arseniatos , Cobalto/química , Corantes , Azul de Metileno/química , Azul de Metileno/farmacologia , Oxirredutases , Polieletrólitos , Espécies Reativas de Oxigênio , Compostos de Tungstênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA