Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Pak J Pharm Sci ; 37(1): 79-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741403

RESUMO

Vanadyl sulfate (VS), is a component of some food supplements and experimental drugs. This study was carried out to present a novel method for induction of Type 2 diabetes in rats, then for the first time in literature, for evaluating the effect of VS on metabolic parameters and gene expression, simultaneously. 40 male wistar rats were distributed between the four groups, equally. High fat diet and fructose were used for diabetes induction. Diabetic rats treated by two different dose of VS for 12 weeks. Metabolic profiles were evaluated by commercial available kits and gene expression were assayed by real time-PCR. Compared to controls, in non-treated diabetic rats, weight, glucose, triglyceride, total cholesterol, insulin and insulin resistance were increased significantly (p-value <0.05) that indicated induction of type 2 diabetes. Further, the results showed that VS significantly reduced weight, insulin secretion, Tumor Necrosis Factor-alpha (TNF-α) genes expression, lipid profiles except HDL that we couldn't find any significant change and increased Peroxisome Proliferator-Activated Receptor- gamma (PPAR-γ) gene expression in VS-treated diabetic animals in comparison with the non-treated diabetics. Our study demonstrated that vanadyl supplementation in diabetic rats had advantageous effects on metabolic profiles and related gene expression.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , PPAR gama , Ratos Wistar , Fator de Necrose Tumoral alfa , Compostos de Vanádio , Animais , Masculino , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Compostos de Vanádio/farmacologia , Resistência à Insulina , Ratos , Insulina/sangue , Hipoglicemiantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Toxicology ; 504: 153772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479551

RESUMO

Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 µM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.


Assuntos
Brônquios , Células Epiteliais , Mitocôndrias , Compostos de Vanádio , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular , Compostos de Vanádio/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Caderinas/metabolismo , Relação Dose-Resposta a Droga
3.
Colloids Surf B Biointerfaces ; 234: 113763, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262106

RESUMO

In the present study, the vanadium pentoxide (V2O5) nickel-doped vanadium pentoxide (Ni@V2O5) was prepared and determined for in vitro anticancer activity. The structural characterization of the prepared V2O5 and Ni@V2O5 was determined using diverse morphological and spectroscopic analyses. The DRS-UV analysis displayed the absorbance at 215 nm for V2O5 and 331 nm for Ni@V2O5 as the primary validation of the synthesis of V2O5 and Ni@V2O5. The EDS spectra exhibited the presence of 30% of O, 69% of V, and 1% of Ni and the EDS mapping showed the constant dispersion. The FE-SEM and FE-TEM analysis showed the V2O5 nanoparticles are rectangle-shaped and nanocomposites have excellent interfaces between nickel and V2O5. The X-ray photoelectron spectroscopy (XPS) investigation of Ni@V2O5 nanocomposite endorses the occurrence of elements V, O, and Ni. The in vitro MTT assay clearly showed that the V2O5 and Ni@V2O5 have significantly inhibited the proliferation of B16F10 skin cancer cells. In addition, the nanocomposite produces the endogenous reactive oxygen species in the mitochondria, causes the mitochondrial membrane and nuclear damage, and consequently induces apoptosis by caspase 9/3 enzymatic activity in skin cancer cells. Also, the western blot analysis showed that the nanocomposite suppresses the oncogenic marker proteins such as PI3K, Akt, and mTOR in the skin cancer cells. Together, the results showed that Ni@V2O5 can be used as an auspicious anticancer agent against skin cancer.


Assuntos
Nanocompostos , Neoplasias Cutâneas , Compostos de Vanádio , Humanos , Fosfatidilinositol 3-Quinases , Níquel/farmacologia , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Espectroscopia Fotoeletrônica , Apoptose , Neoplasias Cutâneas/tratamento farmacológico
4.
Chem Commun (Camb) ; 58(64): 9006-9009, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861736

RESUMO

A series of oxovanadium(V) compounds 1-4 were prepared and explored as stereodynamic chiroptical probes to detect a simulant of sarin known as diethyl chlorophosphate (DCP) without any interference from the competing analytes. Simultaneous CD cum UV/vis based bimodal instant recognition of DCP using optically active probes is unprecedented. Upon fabricating the vanadium compound with a polymer has yielded a chiroptical membrane, which showed a change in its dichroic as well as colorimetric signals on interaction with DCP vapour at 1 ppm. EPR and UV/vis studies revealed an irreversible change of the CD-active V(V) to the CD-silent ternary V(V) species in presence of DCP via a transient V(IV) species. Nucleophilic attack of the alkoxo oxygen of 1-4 to the electrophilic P atom of DCP resulted in the formation of ternary V(V) compounds as confirmed by 51V/31P NMR.


Assuntos
Agentes Neurotóxicos , Compostos de Vanádio , Fenômenos Químicos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Compostos de Vanádio/química
5.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159385

RESUMO

Despite some significant advancements, breast cancer has become the most prevalent cancer in the world. One of the main reasons for failure in treatment and metastasis has been attributed to the presence of cancer initiating cells-cancer stem cells. Consequently, research is now being focussed on targeting cancer cells along with their stem cell population. Non-oncology drugs are gaining increasing attention for their potent anticancer activities. Metformin, a drug commonly used to treat type 2 diabetes, is the best example in this regard. It exerts its therapeutic action by activating 5' adenosine monophosphate-activated protein kinase (AMPK). Activated AMPK subsequently phosphorylates and targets several cellular pathways involved in cell growth and proliferation and the maintenance of stem-like properties of cancer stem cells. Therefore, AMPK is emerging as a target of choice for developing effective anticancer drugs. Vanadium compounds are well-known PTP inhibitors and AMPK activators. They find extensive applications in treatment of diabetes and obesity via PTP1B inhibition and AMPK-mediated inhibition of adipogenesis. However, their role in targeting cancer stem cells has not been explored yet. This review is an attempt to establish the applications of insulin mimetic vanadium compounds for the treatment of breast cancer by AMPK activation and PTP1B inhibition pathways.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Mama , Células-Tronco Neoplásicas , Compostos de Vanádio , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Células-Tronco Neoplásicas/metabolismo , Compostos de Vanádio/uso terapêutico
6.
J Trace Elem Med Biol ; 69: 126887, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798510

RESUMO

An increasing evidence suggests that vanadium compounds are novel potential drugs in the treatment of diabetes, atherosclerosis, and cancer. Vanadium has also demonstrated activities against RNA viruses and is a promising candidate for treating acute respiratory diseases. The antidiabetic, antihypertensive, lipid-lowering, cardioprotective, antineoplastic, antiviral, and other potential effects of vanadium are summarized here. Given the beneficial antihyperglycemic and antiinflammatory effects as well as the potential mechanistic link between the COVID-19 and diabetes, vanadium compounds could be considered as a complement to the prescribed treatment of COVID-19. Thus, further clinical trials are warranted to confirm these favorable effects of vanadium treatment in COVID-19 patients, which appear not to be studied yet.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Vanádio/farmacologia , Anti-Inflamatórios/farmacologia , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , SARS-CoV-2 , Compostos de Vanádio/farmacologia
7.
Chem Biol Interact ; 351: 109750, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34813780

RESUMO

We have previously synthesized and characterized the chrysin coordination complex with the oxidovanadium(IV) cation (VIVO(chrys)2) and characterized in ethanolic solution and in solid state. Because suitable single crystals for X-ray diffraction determinations could not be obtained, in the present work, we elucidate the geometrical parameters of this complex by computational methodologies. The optimization and vibrational investigation were carried out both in ethanolic solution and in gas phase. The computational results support the experimentally proposed geometries of the VIVO(chrys)2 complex, thus leading to the conclusion that the complex exists as conformers with trans-octahedral geometry in ethanolic solution and as conformers with cis-octahedral geometry in the solid state. The complex also exists as conformers with trans-octahedral geometry in aqueous media. The active species formed after dissolution in DMSO showed anticancer and antimetastatic behavior in human lung cell line A549 with moderate binding (Kaca. 105 M-1) to bovine serum albumin (BSA). The interaction through hydrogen bonding and van der Waals forces resulted in a spontaneous process. Site marker competitive experiments showed binding sites for chrysin mainly located in site II (subdomain IIIA) and in site I (subdomain IIIA) for the complex. FT-IR spectral measurements showed evidences of the alterations of protein secondary structure in the presence of chrysin and VIVO(chrys)2.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Flavonoides/farmacologia , Soroalbumina Bovina/metabolismo , Compostos de Vanádio/farmacologia , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Humanos , Estrutura Molecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina/química , Compostos de Vanádio/química , Compostos de Vanádio/metabolismo
8.
Mol Brain ; 14(1): 155, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635126

RESUMO

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease, with no present cure. The progressive loss of MNs is the hallmark of ALS. We have previously shown the therapeutic effects of the phosphatase and tensin homolog (PTEN) inhibitor, potassium bisperoxo (picolinato) vanadium (bpV[pic]), in models of neurological injury and demonstrated significant neuroprotective effects on MN survival. However, accumulating evidence suggests PTEN is detrimental for MN survival in ALS. Therefore, we hypothesized that treating the mutant superoxide dismutase 1 G93A (mSOD1G93A) mouse model of ALS during motor neuron degeneration and an in vitro model of mSOD1G93A motor neuron injury with bpV(pic) would prevent motor neuron loss. To test our hypothesis, we treated mSOD1G93A mice intraperitoneally daily with 400 µg/kg bpV(pic) from 70 to 90 days of age. Immunolabeled MNs and microglial reactivity were analyzed in lumbar spinal cord tissue, and bpV(pic) treatment significantly ameliorated ventral horn motor neuron loss in mSOD1G93A mice (p = 0.003) while not significantly altering microglial reactivity (p = 0.701). Treatment with bpV(pic) also significantly increased neuromuscular innervation (p = 0.018) but did not affect muscle atrophy. We also cultured motor neuron-like NSC-34 cells transfected with a plasmid to overexpress mutant SOD1G93A and starved them in serum-free medium for 24 h with and without bpV(pic) and downstream inhibitor of Akt signaling, LY294002. In vitro, bpV(pic) improved neuronal viability, and Akt inhibition reversed this protective effect (p < 0.05). In conclusion, our study indicates systemic bpV(pic) treatment could be a valuable neuroprotective therapy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Compostos de Vanádio/uso terapêutico , Esclerose Lateral Amiotrófica/patologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Humanos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Modelos Animais , Morfolinas/farmacologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Mutação de Sentido Incorreto , Junção Neuromuscular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Mutação Puntual , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/genética , Compostos de Vanádio/farmacologia
9.
Inorg Chem ; 60(20): 15291-15309, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34597028

RESUMO

Five new anionic aqueous dioxidovanadium(V) complexes, [{VO2L1,2}A(H2O)n]α (1-5), with the aroylhydrazone ligands pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L1) and furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L2) incorporating different alkali metals (A = Na+, K+, Cs+) as countercation were synthesized and characterized by various physicochemical techniques. The solution-phase stabilities of 1-5 were determined by time-dependent NMR and UV-vis, and also the octanol/water partition coefficients were obtained by spectroscopic techniques. X-ray crystallography of 2-4 confirmed the presence of vanadium(V) centers coordinated by two cis-oxido-O atoms and the O, N, and O atoms of a dianionic tridentate ligand. To evaluate the biological behavior, all complexes were screened for their DNA/protein binding propensity through spectroscopic experiments. Finally, a cytotoxicity study of 1-5 was performed against colon (HT-29), breast (MCF-7), and cervical (HeLa) cancer cell lines and a noncancerous NIH-3T3 cell line. The cytotoxicity was cell-selective, being more active against HT-29 than against other cells. In addition, the role of hydrophobicity in the cytotoxicity was explained in that an optimal hydrophobicity is essential for high cytotoxicity. Moreover, the results of wound-healing assays indicated antimigration in case of HT-29 cells. Remarkably, 1 with an IC50 value of 5.42 ± 0.15 µM showed greater activity in comparison to cisplatin against the HT-29 cell line.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , DNA/química , Hidrazonas/farmacologia , Soroalbumina Bovina/química , Compostos de Vanádio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrazonas/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Estrutura Molecular , Células NIH 3T3 , Solubilidade , Compostos de Vanádio/química , Água/química
10.
Molecules ; 26(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577005

RESUMO

Vanadium has a good therapeutic potential, as several biological effects, but few side effects, have been demonstrated. Evidence suggests that vanadium compounds could represent a new class of non-platinum, metal antitumor agents. In the present study, we aimed to characterize the antiproliferative activities of fluorescent vanadyl complexes with acetylacetonate derivates bearing asymmetric substitutions on the ß-dicarbonyl moiety on different cell lines. The effects of fluorescent vanadyl complexes on proliferation and cell cycle modulation in different cell lines were detected by ATP content using the CellTiter-Glo Luminescent Assay and flow cytometry, respectively. Western blotting was performed to assess the modulation of mitogen-activated protein kinases (MAPKs) and relevant proteins. Confocal microscopy revealed that complexes were mainly localized in the cytoplasm, with a diffuse distribution, as in podocyte or a more aggregate conformation, as in the other cell lines. The effects of complexes on cell cycle were studied by cytofluorimetry and Western blot analysis, suggesting that the inhibition of proliferation could be correlated with a block in the G2/M phase of cell cycle and an increase in cdc2 phosphorylation. Complexes modulated mitogen-activated protein kinases (MAPKs) activation in a cell-dependent manner, but MAPK modulation can only partly explain the antiproliferative activity of these complexes. All together our results demonstrate that antiproliferative effects mediated by these compounds are cell type-dependent and involve the cdc2 and MAPKs pathway.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hidroxibutiratos/química , Pentanonas/química , Compostos de Vanádio/química , Compostos de Vanádio/farmacologia , Transporte Biológico , Proteína Quinase CDC2/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Corantes Fluorescentes , Humanos , Concentração Inibidora 50 , Microscopia Confocal , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/ultraestrutura , Inibidores de Proteínas Quinases/farmacologia
11.
J Med Chem ; 64(17): 12435-12452, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432460

RESUMO

Several reports have revealed the superior biological activity of metal ion-flavonoid complexes when compared with the parent flavonoid. Among the different metal ions explored, vanadium and its compounds are in the forefront because of their anticancer and antidiabetic properties. However, the toxicity of vanadium-based ions and their inorganic derivatives limits their therapeutic applications. Complexation of vanadium with flavonoids not only reduces its adverse effects but also augments its biological activity. This Review discusses the nature of coordination in vanadium-flavonoid complexes, their structure-activity correlations, with special emphasis on their therapeutic activities. Several investigations suggest that the superior biological activity of vanadium complexes arise because of their ability to regulate metabolic pathways distinct from those acted upon by vanadium alone. These studies serve to decipher the underlying molecular mechanism of vanadium-flavonoid complexes that can be explored further for generating a series of novel compounds with improved pharmacological and therapeutic performance.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Compostos de Vanádio/química , Compostos de Vanádio/farmacologia , Estrutura Molecular , Plantas/química , Relação Estrutura-Atividade
12.
Toxicology ; 459: 152859, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34273449

RESUMO

Vanadium dioxide nanoparticles (VO2 NPs) have been massively produced and widely applied due to their excellent metal-insulator transition property, making it extremely urgent to evaluate their safety, especially for low-dose long-term respiratory occupational exposure. Here, we report a comprehensive cytotoxicity and genotoxicity study on VO2 NPs to lung cell lines A549 and BEAS-2B following a long-term exposure. A commercial VO2 NP, S-VO2, was used to treat BEAS-2B (0.15-0.6 µg/mL) and A549 (0.3-1.2 µg/mL) cells for four exposure cycles, and each exposure cycle lasted for 4 consecutive days; then various bioassays were performed after each cycle. Significant proliferation inhibition was observed in both cell lines after long-term exposure of S-VO2 at low doses that did not cause apparent acute cytotoxicity; however, the genotoxicity of S-VO2, characterized by DNA damage and micronuclei, was only observed in A549 cells. These adverse effects of S-VO2 were exposure time-, dose- and cell-dependent, and closely related to the solubility of S-VO2. The oxidative stress in cells, i.e., enhanced reactive oxygen species (ROS) generation and suppressed reduced glutathione, was the main toxicity mechanism of S-VO2. The ROS-associated mitochondrial damage and DNA damage led to the genotoxicity, and cell proliferation retard, resulting in the cellular viability loss. Our results highlight the importance and urgent necessity of the investigation on the long-term toxicity of VO2 NPs.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Pulmão/patologia , Nanopartículas Metálicas/toxicidade , Mutagênicos/toxicidade , Óxidos/toxicidade , Compostos de Vanádio/toxicidade , Células A549 , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes para Micronúcleos , Estresse Oxidativo , Óxidos/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Compostos de Vanádio/farmacocinética
13.
Adv Mater ; 33(36): e2101467, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34296464

RESUMO

The development and optimization of sonosensitizers for elevating intratumoral reactive oxygen species (ROS) are definitely appealing in current sonodynamic therapy (SDT). Given this, branched vanadium tetrasulfide (VS4 ) nanodendrites with a narrower bandgap (compared with the most extensively explored sonosensitizers) are presented as a new source of sonosensitizer, which allows a more effortless separation of sono-triggered electron-hole pairs for ROS generation. Specifically, platinum (Pt) nanoparticles and endogenous high levels of glutathione (GSH) are rationally engineered to further optimize its sono-sensitized performance. As cocatalyst, Pt is conducive to trapping electrons, whereas GSH, as a natural hole-scavenger, tends to capture holes. Compared with the pristine VS4 sonosensitizer, the GSH-Pt-VS4 nanocomposite can greatly prolong the lifetime of the charge and confer a highly efficacious ROS production activity. Furthermore, such nanoplatforms are capable of reshaping tumor microenvironments to realize ROS overproduction, contributed by overcoming tumor hypoxia to improve SDT-triggered singlet oxygen production, catalyzing endogenic hydrogen peroxide into destructive hydroxyl radicals for chemodynamic therapy, and depleting GSH to amplify intratumoral oxidative stress. All these combined effects result in a significantly efficient tumor suppression outcome. This study enriches sonosensitizer research and proves that sonosensitizers can be rationally optimized by charge separation engineering strategy.


Assuntos
Glutationa/química , Nanopartículas Metálicas/química , Neoplasias/radioterapia , Platina/química , Sulfetos/química , Terapia por Ultrassom/métodos , Compostos de Vanádio/química , Animais , Catálise , Linhagem Celular Tumoral , Radicais Livres/química , Humanos , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/química , Transdução de Sinais , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
14.
ACS Appl Bio Mater ; 4(5): 4105-4118, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34056563

RESUMO

Existing fluorescent labels used in life sciences are based on organic compounds with limited lifetime or on quantum dots which are either expensive or toxic and have low kinetic stability in biological environments. To address these challenges, luminescent nanomaterials have been conceived as hierarchical, core-shell structures with spherical morphology and highly controlled dimensions. These tailor-made nanophosphors incorporate Ln:YVO4 nanoparticles (Ln = Eu(III) and Er(III)) as 50 nm cores and display intense and narrow emission maxima centered at ∼565 nm. These cores can be encapsulated in silica shells with highly controlled dimensions as well as functionalized with chitosan or PEG5000 to reduce nonspecific interactions with biomolecules in living cells. Confocal fluorescence microscopy in living prostate cancer cells confirmed the potential of these platforms to overcome the disadvantages of commercial fluorophores and their feasibility as labels for multiplexing, biosensing, and imaging in life science assays.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Imagem Óptica , Neoplasias da Próstata/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Elementos da Série dos Lantanídeos/química , Masculino , Teste de Materiais , Nanopartículas/química , Tamanho da Partícula , Compostos de Vanádio/química , Ítrio/química
15.
J Biol Inorg Chem ; 26(4): 511-531, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34057639

RESUMO

Vanadocene dichloride (VDC), a vanadium containing metallocene dihalide exhibits promising anticancer activity. However, its mechanism of action remains elusive as several diverse targets and pathways have been proposed for its anticancer activity. In this study, we observed that VDC inhibited the proliferation of mammalian cancer cells and induced apoptotic cell death by altering the mitochondrial membrane potential and the expression of bcl2 and bax. Probing further into its anticancer mechanism, we found that VDC caused depolymerization of interphase microtubules and blocked the cells at mitosis with considerable proportion of cells exhibiting monopolar spindles. The reassembly of cold depolymerized microtubules was strongly inhibited in the presence of 10 µM VDC. VDC perturbed the microtubule-kinetochore interactions during mitosis as indicated by the absence of cold stable spindle microtubules in the cells treated with 20 µM VDC. Using goat brain tubulin, we found that VDC inhibited the steady-state polymer mass of microtubules and bound to tubulin at a novel site with a Kd of 9.71 ± 0.19 µM and perturbed the secondary structure of tubulin dimer. In addition, VDC was also found to bind to the mitotic kinesin Eg5 and inhibit its basal as well as microtubule stimulated ATPase activity. The results suggest that disruption of microtubule assembly dynamics and inhibition of the ATPase activity of Eg5 could be a plausible mechanism for the antiproliferative and antimitotic activity of VDC.Graphic abstract.


Assuntos
Apoptose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Cinesinas/metabolismo , Microtúbulos/efeitos dos fármacos , Compostos de Vanádio/farmacologia , Laranja de Acridina , Proliferação de Células/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Cinesinas/genética , Microtúbulos/metabolismo
16.
Sci Rep ; 11(1): 1720, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462262

RESUMO

Exposure to Ionizing radiation (IR) poses a severe threat to human health. Therefore, there is an urgent need to develop potent and safe radioprotective agents for radio-nuclear emergencies. Phosphatidylinositol-3-kinase (PI3K) mediates its cytoprotective signaling against IR by phosphorylating membrane phospholipids to phosphatidylinositol 3,4,5 triphosphate, PIP3, that serve as a docking site for AKT. Phosphatase and Tensin Homolog on chromosome 10 (PTEN) antagonizes PI3K activity by dephosphorylating PIP3, thus suppressing PI3K/AKT signaling that could prevent IR induced cytotoxicity. The current study was undertaken to investigate the radioprotective potential of PTEN inhibitor (PTENi), bpV(HOpic). The cell cytotoxicity, proliferation index, and clonogenic survival assays were performed for assessing the radioprotective potential of bpV(HOpic). A safe dose of bpV(HOpic) was shown to be radioprotective in three radiosensitive tissue origin cells. Further, bpV(HOpic) significantly reduced the IR-induced apoptosis and associated pro-death signaling. A faster and better DNA repair kinetics was also observed in bpV(HOpic) pretreated cells exposed to IR. Additionally, bpV(HOpic) decreased the IR-induced oxidative stress and significantly enhanced the antioxidant defense mechanism in cells. The radioprotective effect of bpV(HOpic) was found to be AKT dependant and primarily regulated by the enhanced glycolysis and associated signaling. Furthermore, this in-vitro observation was verified in-vivo, where administration of bpV(HOpic) in C57BL/6 mice resulted in AKT activation and conferred survival advantage against IR-induced mortality. These results imply that bpV(HOpic) ameliorates IR-induced oxidative stress and cell death by inducing AKT signaling mediated antioxidant defense system and DNA repair pathways, thus strengthening its potential to be used as a radiation countermeasure.


Assuntos
Proliferação de Células/efeitos dos fármacos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Radiação Ionizante , Compostos de Vanádio/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Glicólise/efeitos dos fármacos , Glicólise/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Compostos de Vanádio/administração & dosagem , Irradiação Corporal Total
17.
Anticancer Agents Med Chem ; 21(16): 2111-2116, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33355058

RESUMO

BACKGROUND: Every year, we encounter more projects indicating the promising anticancer activity of vanadium molecules against different types of cancer cells. The new generation of metal-based drugs, targets the energy supplies of the cell through ROS generation leading them to cell arrest and apoptosis. The relatively low toxicity of vanadium metal, the different oxidation states that it can occur and in general, the lipophilicity of transition metals, gave attention to vanadium after the exhausting research in platinum-based drugs. Herein, the latest advances in the apoptotic activity of vanadium complex molecules have been reviewed and revealed the structure to action relationship. Future perspectives of vanadium anticancer drugs are also discussed. METHODS: Data were collected from Web of Science, Scopus, Pubmed, through searching of these keywords: "apoptosis", "anticancer drugs", "vanadium complexes", "synthesis" and "cell arrest". RESULTS: A good amount of vanadium complexes gave promising results over the past few years, showing that a more careful approach of a ligand design could give rise to the next generation of vanadium drugs. CONCLUSION: The low toxicity of vanadium ion in combination with its V(IV) species selectivity gives the vanadium a head starts against other transition metal complexes.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Vanádio/farmacologia , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Compostos de Vanádio/química
18.
Biomed Mater ; 16(1): 014101, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33355313

RESUMO

In the past few decades, various vanadium compounds have displayed potential in cancer treatment. However, fast clearness in the body and possible toxicity of vanadium compounds has hindered their further development. Vanadium-based nanomaterials not only overcome these limitations, but take advantage of the internal properties of vanadium in photics and magnetics, which enable them as a multimodal platform for cancer diagnosis and treatment. In this paper, we first introduced the basic biological and pharmacological functions of vanadium compounds in treating cancer. Then, the synthesis routes of three vanadium-based nanomaterials were discussed, including vanadium oxides, 2D vanadium sulfides, carbides and nitrides: VmXn (X = S, C, N) and water-insoluble vanadium salts. Finally, we highlighted the applications of these vanadium-based nanomaterials as tumor therapeutic and diagnostic agents.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Compostos de Vanádio/química , Compostos de Vanádio/uso terapêutico , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Meios de Contraste/química , Humanos , Luminescência , Imageamento por Ressonância Magnética/métodos , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Terapia Fototérmica/métodos , Compostos de Vanádio/síntese química
19.
ACS Appl Mater Interfaces ; 12(49): 55056-55063, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232105

RESUMO

Wearable conducting polymer-based NH3 sensors are highly desirable in real-time environmental monitoring and human health protection but still a challenge for their relatively long response/recovery time and moderate sensitivity at room temperature. Herein, we present an effective route to fulfill this challenge by constructing porous and neural network-like Au/polypyrrole (Au/PPy) electrospun nanofibrous film with hollow capsular units for NH3 sensor. Taking the unique architecture and synergistic effect between Au and PPy, our sensor exhibits not only super-rapid response/recovery time (both ∼7 s), faster than all reported sensors, but also stable and ultrahigh sensitivity (response reaches ∼2.3 for 1 ppm NH3) at room temperature even during repeated deformation. Furthermore, good selectivity has been also achieved. These outstanding properties make our sensor hold great potential in real-time NH3-related disease diagnosis and environmental monitoring at room temperature.


Assuntos
Amônia/análise , Cápsulas/química , Técnicas Eletroquímicas/métodos , Ouro/química , Nanofibras/química , Polímeros/química , Pirróis/química , Humanos , Limite de Detecção , Redes Neurais de Computação , Porosidade , Teoria Quântica , Temperatura , Compostos de Vanádio/química , Dispositivos Eletrônicos Vestíveis
20.
ACS Appl Mater Interfaces ; 12(47): 52370-52382, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196160

RESUMO

Sonodynamic therapy (SDT), a noninvasive and highly penetrating tumor therapy, which employs ultrasound and sonosensitizers, has attracted extensive attention because of its ability to treat deep tumors. However, many current sonosensitizers have drawbacks in phototoxicity and limited sonodynamic effect. Herein, as a novel kind of sonosensitizer, iron-doped vanadium disulfide nanosheets (Fe-VS2 NSs) are constructed by a high-temperature organic-solution method and further modified with polyethylene glycol (PEG). With Fe doping, the sonodynamic effect of Fe-VS2 NSs is greatly enhanced, owing to the prolonged electron-hole recombination time. Simultaneously, such Fe-VS2-PEG NSs as a good Fenton agent can be utilized for chemodynamic therapy (CDT) by using the endogenous H2O2 in the tumor microenvironment (TME). Moreover, the multivalent Fe and V elements in the Fe-VS2 NSs can consume glutathione to amplify the reactive oxygen species-induced oxidative stress by SDT and CDT. Utilizing the strong near-infrared optical absorbance and enhanced magnetic resonance (MR) contrast by Fe-VS2 NSs, photoacoustic/MR biomodal imaging reveals a high accumulation of Fe-VS2-PEG NSs in the tumor. The great tumor suppression effect is then achieved by the in vivo combined CDT&SDT treatment. Importantly, most of the injected Fe-VS2-PEG NSs can be gradually decomposed and excreted from the mice, making them as safe sonosensitizers for cancer treatment. Our work highlights a new type of biodegradable sonosensitizer with the ability of regulating TME for applications in cancer theranostics.


Assuntos
Ferro/química , Nanoestruturas/química , Compostos de Vanádio/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Glutationa/química , Glutationa/metabolismo , Peróxido de Hidrogênio/química , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/uso terapêutico , Nanoestruturas/toxicidade , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Estresse Oxidativo , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica , Terapia por Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA