Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Behav Brain Res ; 467: 115002, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636779

RESUMO

Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries.


Assuntos
Concussão Encefálica , Catecolaminas , Tomada de Decisões , Córtex Pré-Frontal , Recompensa , Assunção de Riscos , Animais , Masculino , Feminino , Tomada de Decisões/fisiologia , Catecolaminas/metabolismo , Córtex Pré-Frontal/metabolismo , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ratos Sprague-Dawley , Ratos , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo
2.
J Mol Neurosci ; 73(9-10): 843-852, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37801210

RESUMO

Mild traumatic brain injury (mTBI) and repetitive mTBI (RmTBI) are silent epidemics, and so far, there is no objective diagnosis. The severity of the injury is solely based on the Glasgow Coma Score (GCS) scale. Most patients suffer from one or more behavioral abnormalities, such as headache, amnesia, cognitive decline, disturbed sleep pattern, anxiety, depression, and vision abnormalities. Additionally, most neuroimaging modalities are insensitive to capture structural and functional alterations in the brain, leading to inefficient patient management. Metabolomics is one of the established omics technologies to identify metabolic alterations, mostly in biofluids. NMR-based metabolomics provides quantitative metabolic information with non-destructive and minimal sample preparation. We employed whole-blood NMR analysis to identify metabolic markers using a high-field NMR spectrometer (800 MHz). Our approach involves chemical-free sample pretreatment and minimal sample preparation to obtain a robust whole-blood metabolic profile from a rat model of concussion. A single head injury was given to the mTBI group, and three head injuries to the RmTBI group. We found significant alterations in blood metabolites in both mTBI and RmTBI groups compared with the control, such as alanine, branched amino acid (BAA), adenosine diphosphate/adenosine try phosphate (ADP/ATP), creatine, glucose, pyruvate, and glycerphosphocholine (GPC). Choline was significantly altered only in the mTBI group and formate in the RmTBI group compared with the control. These metabolites corroborate previous findings in clinical and preclinical cohorts. Comprehensive whole-blood metabolomics can provide a robust metabolic marker for more accurate diagnosis and treatment intervention for a disease population.


Assuntos
Concussão Encefálica , Ratos , Humanos , Animais , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/metabolismo , Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Ansiedade , Neuroimagem
3.
Neurochem Int ; 166: 105524, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030326

RESUMO

Mild traumatic brain injury affects the largest proportion of individuals in the United States and world-wide. Pre-clinical studies of repetitive and mild traumatic brain injury (rmTBI) have been limited in their ability to recapitulate human pathology (i.e. diffuse rotational injury). We used the closed-head impact model of engineered rotation acceleration (CHIMERA) to simulate rotational injury observed in patients and to study the pathological outcomes post-rmTBI using C57BL/6J mice. Enhanced cytokine production was observed in both the cortex and hippocampus to suggest neuroinflammation. Furthermore, microglia were assessed via enhanced iba1 protein levels and morphological changes using immunofluorescence. In addition, LC/MS analyses revealed excess glutamate production, as well as diffuse axonal injury via Bielschowsky's silver stain kit. Moreover, the heterogeneous nature of rmTBI has made it challenging to identify drug therapies that address rmTBI, therefore we sought to identify novel targets in the concurrent rmTBI pathology. The pathophysiological findings correlated with a time-dependent decrease in protein arginine methyltransferase 7 (PRMT7) protein expression and activity post-rmTBI along with dysregulation of PRMT upstream mediators s-adenosylmethionine and methionine adenosyltransferase 2 (MAT2) in vivo. In addition, inhibition of the upstream mediator MAT2A using the HT22 hippocampal neuronal cell line suggest a mechanistic role for PRMT7 via MAT2A in vitro. Collectively, we have identified PRMT7 as a novel target in rmTBI pathology in vivo and a mechanistic link between PRMT7 and upstream mediator MAT2A in vitro.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Humanos , Camundongos , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Metionina Adenosiltransferase/metabolismo , Camundongos Endogâmicos C57BL , Proteína-Arginina N-Metiltransferases/metabolismo
4.
Cell Mol Neurobiol ; 43(2): 907-923, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35499776

RESUMO

Repetitive mild traumatic brain injury (rmTBI) is associated with a range of neural changes which is characterized by axonal injury and neuroinflammation. Ketogenic diet (KD) is regarded as a potential therapy for facilitating recovery after moderate-severe traumatic brain injury (TBI). However, its effect on rmTBI has not been fully studied. In this study, we evaluated the anti-neuroinflammation effects of KD after rmTBI in adolescent mice and explored the potential mechanisms. Experimentally, specific pathogen-free (SPF) adolescent male C57BL/6 mice received a sham surgery or repetitive mild controlled cortical impacts consecutively for 7 days. The uninjured mice received the standard diet, and the mice with rmTBI were fed either the standard diet or KD for 7 days. One week later, all mice were subjected to behavioral tests and experimental analysis. Results suggest that KD significantly increased blood beta-hydroxybutyrate (ß-HB) levels and improved neurological function. KD also reduced white matter damage, microgliosis, and astrogliosis induced by rmTBI. Aryl hydrocarbon receptor (AHR) signaling pathway, which was mediated by indole-3-acetic acid (3-IAA) from Lactobacillus reuteri (L. reuteri) in gut and activated in microglia and astrocytes after rmTBI, was inhibited by KD. The expression level of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) in inflammatory cells, which mediates the NF-κB pathway, was also attenuated by KD. Taken together, our results indicated that KD can promote recovery following rmTBI in adolescent mice. KD may modulate neuroinflammation by altering L. reuteri in gut and its metabolites. The inhibition of indole/AHR pathway and the downregulation of TLR4/MyD88 may play a role in the beneficial effect of KD against neuroinflammation in rmTBI mice.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Dieta Cetogênica , Limosilactobacillus reuteri , Camundongos , Masculino , Animais , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças
5.
Artigo em Inglês | MEDLINE | ID: mdl-33976431

RESUMO

INTRODUCTION: Loss of consciousness (LOC) is used as a diagnostic feature of mild traumatic brain injury (MTBI). However, only 10% of concussions result in LOC. There are only a limited number of in-vivo studies dealing with unconsciousness and structural and functional integrity of the brainstem in patients with MTBI. The aim of our pilot study was to assess the sensitivity of proton magnetic resonance spectroscopy (1H-MRS) to detect metabolic changes in the brainstem in patients after MTBI with unconscioussness. METHODS: Twenty-four patients (12 with LOC, and 12 without LOC) within 3 days of MTBI and 19 healthy controls were examined. All subjects underwent single-voxel 1H-MRS examination of the upper brainstem. Spectra were evaluated using LCModel software. Ratios of total N-acetylaspartate (tNAA), total choline-containing compounds (tCho) and glutamate plus glutamine (Glx) to total creatine (tCre) were used for calculations. RESULTS: We found a significant decrease in tNAA/tCre and tCho/tCre ratios in the patient group with LOC when compared with the control group of healthy volunteers (P=0.002 and P=0.041, respectively), and a significant decrease in the tNAA/tCre ratio in the LOC group when compared with patients without LOC (P=0.04). Other metabolite ratios in the brainstem did not show any significant group differences. CONCLUSION: Our findings indicate that decrease of tNAA/tCre ratio in the upper brainstem using single-voxel 1H-MRS may provide a potential biomarker for MTBI associated with LOC.


Assuntos
Concussão Encefálica , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/metabolismo , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/metabolismo , Humanos , Projetos Piloto , Espectroscopia de Prótons por Ressonância Magnética , Inconsciência/etiologia
6.
Brain Res Bull ; 180: 1-11, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954227

RESUMO

Sports-related concussions are particularly common during adolescence, and there is insufficient knowledge about how recurrent concussions in this phase of life alter the metabolism of essential structures for memory in adulthood. In this sense, our experimental data revealed that seven recurrent concussions (RC) in 35-day-old rats decreased short-term and long-term memory in the object recognition test (ORT) 30 days after injury. The RC protocol did not alter motor and anxious behavior and the immunoreactivity of brain-derived neurotrophic factor (BDNF) in the cerebral cortex. Recurrent concussions induced the inflammatory/oxidative stress characterized here by increased glial fibrillary acidic protein (GFAP), interleukin 1ß (IL 1ß), 4-hydroxynonenal (4 HNE), protein carbonyl immunoreactivity, and 2',7'-dichlorofluorescein diacetate oxidation (DCFH) levels and lower total antioxidant capacity (TAC). Inhibited Na+,K+-ATPase activity (specifically isoform α2/3) followed by Km (Michaelis-Menten constant) for increased ATP levels and decreased immunodetection of alpha subunit of this enzyme, suggesting that cognitive impairment after RC is caused by the inability of surviving neurons to maintain ionic gradients in selected targets to inflammatory/oxidative damage, such as Na,K-ATPase activity.


Assuntos
Concussão Encefálica , Disfunção Cognitiva , Hipocampo , Transtornos da Memória , Doenças Neuroinflamatórias , Estresse Oxidativo/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Memória Espacial/fisiologia , Fatores Etários , Animais , Concussão Encefálica/complicações , Concussão Encefálica/imunologia , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/imunologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Ratos , Ratos Wistar
7.
PLoS One ; 16(5): e0251315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961674

RESUMO

The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.


Assuntos
Concussão Encefálica/genética , Encéfalo/metabolismo , Inflamação/genética , Animais , Encéfalo/patologia , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
8.
J Neurotrauma ; 38(17): 2373-2383, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858214

RESUMO

The diagnosis and management of concussion is hindered by its diverse clinical presentation and assessment tools reliant on subjectively experienced symptoms. The biomechanical threshold of concussion is also not well understood, and asymptomatic concussion or "subconcussive impacts" of variable magnitudes are common in contact sports. Concerns have risen because athletes returning to activity too soon have an increased risk of prolonged recovery or long-term adverse health consequences. To date, little is understood on a molecular level regarding concussion and subconcussive impacts. Recent research suggests that neuroinflammatory mechanisms may serve an important role subsequent to concussion and possibly to subconcussive impacts. These studies suggest that autoantibodies may be a valuable tool for detection of acute concussion and monitoring for changes caused by cumulative exposure to subconcussive impacts. Hence, we aimed to profile the immunoglobulin (Ig)A autoantibody repertoire in saliva by screening a unique sport-related head trauma biobank. Saliva samples (n = 167) were donated by male and female participants enrolled in either the concussion (24-48 h post-injury) or subconcussion (non-concussed participants having moderate or high cumulative subconcussive impact exposure) cohorts. Study design included discovery and verification phases. Discovery aimed to identify new candidate autoimmune targets of IgA. Verification tested whether concussion and subconcussion cohorts increased IgA reactivity and whether cohorts showed similarities. The results show a significant increase in the prevalence of IgA toward protein fragments representing 5-hydroxytryptamine receptor 1A (HTR1A), serine/arginine repetitive matrix 4 (SRRM4) and FAS (tumor necrosis factor receptor superfamily member 6) after concussion and subconcussion. These results may suggest that concussion and subconcussion induce similar physiological effects, especially in terms of immune response. Our study demonstrates that saliva is a potential biofluid for autoantibody detection in concussion and subconcussion. After rigorous confirmation in much larger independent study sets, a validated salivary autoantibody assay could provide a non-subjective quantitative means of assessing concussive and subconcussive events.


Assuntos
Traumatismos em Atletas/metabolismo , Autoanticorpos/metabolismo , Concussão Encefálica/metabolismo , Imunoglobulina A Secretora/metabolismo , Saliva/imunologia , Adolescente , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/imunologia , Receptor 5-HT1A de Serotonina/imunologia , Fatores de Tempo , Adulto Jovem , Receptor fas/imunologia
9.
Biol. Res ; 54: 5-5, 2021. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1505796

RESUMO

BACKGROUND: Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS: The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.


Assuntos
Animais , Masculino , Camundongos , Concussão Encefálica/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Exocitose , Camundongos Endogâmicos C57BL
10.
J Neuroinflammation ; 17(1): 370, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278887

RESUMO

BACKGROUND: Neuroinflammation has been implicated in the pathogenesis of chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disease association with exposure to repetitive head impacts (RHI) received though playing contact sports such as American football. Past work has implicated early and sustained activation of microglia as a potential driver of tau pathology within the frontal cortex in CTE. However, the RHI induced signals required to recruit microglia to areas of damage and pathology are unknown. METHODS: Postmortem brain tissue was obtained from 261 individuals across multiple brain banks. Comparisons were made using cases with CTE, cases with Alzheimer's disease (AD), and cases with no neurodegenerative disease and lacked exposure to RHI (controls). Recruitment of Iba1+ cells around the CTE perivascular lesion was compared to non-lesion vessels. TMEM119 staining was used to characterize microglia or macrophage involvement. The potent chemoattractant CCL2 was analyzed using frozen tissue from the dorsolateral frontal cortex (DLFC) and the calcarine cortex. Finally, the amounts of hyperphosphorylated tau (pTau) and Aß42 were compared to CCL2 levels to examine possible mechanistic pathways. RESULTS: An increase in Iba1+ cells was found around blood vessels with perivascular tau pathology compared to non-affected vessels in individuals with RHI. TMEM119 staining revealed the majority of the Iba1+ cells were microglia. CCL2 protein levels in the DLFC were found to correlate with greater years of playing American football, the density of Iba1+ cells, the density of CD68+ cells, and increased CTE severity. When comparing across multiple brain regions, CCL2 increases were more pronounced in the DLFC than the calcarine cortex in cases with RHI but not in AD. When examining the individual contribution of pathogenic proteins to CCL2 changes, pTau correlated with CCL2, independent of age at death and Aß42 in AD and CTE. Although levels of Aß42 were not correlated with CCL2 in cases with CTE, in males in the AD group, Aß42 trended toward an inverse relationship with CCL2 suggesting possible gender associations. CONCLUSION: Overall, CCL2 is implicated in the pathways recruiting microglia and the development of pTau pathology after exposure to RHI, and may represent a future therapeutic target in CTE.


Assuntos
Concussão Encefálica/metabolismo , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Encefalopatia Traumática Crônica/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Concussão Encefálica/patologia , Encefalopatia Traumática Crônica/patologia , Feminino , Futebol Americano/lesões , Humanos , Macrófagos/patologia , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Bancos de Tecidos , Adulto Jovem
11.
Life Sci ; 257: 118049, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634430

RESUMO

AIMS: Mild traumatic brain injury (mTBI) is an important risk factor for cognitive impairment. Despite intense efforts to develop efficient treatments, the current therapies are not often effective and far from satisfactory. Silymarin has been suggested as a therapeutic agent in the treatment of traumatic brain injury. This study aimed to determine whether silymarin can exert neuroprotective effects on memory impairment following mTBI in mice. MAIN METHODS: After mTBI induction, mice were treated with silymarin once daily for 20 consecutive days by oral gavage. To investigate cognitive functions, animals were subjected to Y-maze, novel-object recognition, and Morris-water maze. Levels of tumor necrosis factor (TNF)-α, glutamate, and brain derived neurotrophic factor (BDNF) were measured in the hippocampus. KEY FINDINGS: Our findings showed that mTBI resulted in a significant decline in memory in the Y-maze and Morris-water maze in both sexes, whereas only impaired cognitive function in males in the novel-object recognition. We found notable increases in TNF-α and glutamate levels in the hippocampus of both sexes, while there was only a significant decrease in hippocampal BDNF in mTBI-induced females. In addition, silymarin treatment improved cognitive impairments in mTBI-induced males but not in females. Silymarin significantly reduced TNF-α and glutamate levels, and increased BDNF levels in the hippocampus of mTBI-induced male but not in female mice. SIGNIFICANCE: This study demonstrates that silymarin treatment sex-dependently improves cognitive impairment in mTBI-induced mice, and suggests that silymarin may be a therapeutic agent for cognitive decline following mTBI in males. Further studies are needed to establish the validity of these findings in humans.


Assuntos
Concussão Encefálica/tratamento farmacológico , Cognição/efeitos dos fármacos , Silimarina/uso terapêutico , Animais , Animais não Endogâmicos , Concussão Encefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores Sexuais , Silimarina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
J Neurotrauma ; 37(17): 1910-1917, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292111

RESUMO

The worldwide incidence of traumatic brain injury (TBI) is ∼0.5% per year and the frequency is significantly higher among military personnel and athletes. Repetitive TBIs are associated with military and athletic activities, and typically involve more severe consequences. The majority of TBIs are mild; however, these still can result in long-term cognitive deficits, and there is currently no effective treatment. tert-Butylhydroquinone (tBHQ) and pioglitazone can activate the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) transcription factors, respectively, and each has been shown to be neuroprotective in various model systems. We examined behavioral and gene expression changes after repetitive mild TBI followed by simultaneous treatment with both factors. We used a repetitive closed head injury of mice involving five injuries with a 1-week interval between each TBI. We found that memory performance was significantly reduced by the injuries, unless the TBIs were followed by the tBHQ and pioglitazone administrations. Certain genes; for example, growth hormone and osteopontin, were downregulated by the injury, and this was reversed by the treatment, whereas other genes; for example, a tumor necrosis factor receptor, were upregulated by the injury and restored if the post-injury treatment was administered. Analysis of gene expression levels affected by the injury and/or the treatment point to potential mechanisms that could be exploited therapeutically.


Assuntos
Concussão Encefálica/genética , Concussão Encefálica/metabolismo , Aprendizagem em Labirinto/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
14.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059364

RESUMO

Sport-related traumatic brain injury (TBI) elicits a multifaceted inflammatory response leading to brain injury and morbidity. This response could be a predictive tool for the progression of TBI and to stratify the injury of which mild TBI is most prevalent. Therefore, we examined the differential expression of serum inflammatory markers overtime and identified novel markers in repetitively concussed athletes. Neuropsychological assessment by Wechsler Adult Intelligence Scale (WAIS) and Immediate Post Concussion Assessment and Cognitive Test (ImPACT) was performed on rugby players and serum was taken from healthy, concussed and repetitively concussed athletes. Serum was also obtained <1 week and >1 week after trauma and analyzed for 92 inflammatory protein markers. Fibroblast growth factor 21 (FGF21) and interleukin-7 (IL-7) differentiated repetitively concussed athletes. Macrophage chemotactic protein-1 (MCP-1), tumor necrosis factor superfamily member 14 (TNFSF14) were significantly reduced >1 week and chemokine (C-X3-C motif) ligand 1 (CX3CL1) upregulated <1 week after injury. FGF21 and MCP-1 negatively correlated with symptoms and their severity. We have identified dynamic changes in the inflammatory response overtime and in different classes of concussion correlating with disease progression. This data supports the use of inflammatory biomarkers as predictors of symptom development due to secondary complications of sport-related mTBI.


Assuntos
Atletas , Traumatismos em Atletas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Adolescente , Adulto , Traumatismos em Atletas/complicações , Traumatismos em Atletas/fisiopatologia , Biomarcadores , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Quimiocina CCL2/metabolismo , Quimiocina CX3CL1/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Inflamação , Interleucina-7/metabolismo , Masculino , Testes Neuropsicológicos , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Reino Unido , Adulto Jovem
15.
Can J Neurol Sci ; 47(3): 289-300, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32029015

RESUMO

Cannabidiol (CBD) has been generating increasing interest in medicine due to its therapeutic properties and an apparent lack of negative side effects. Research has suggested that high dosages of CBD can be taken acutely and chronically with little to no risk. This review focuses on the neuroprotective effects of a CBD, with an emphasis on its implications for recovering from a mild traumatic brain injury (TBI) or concussion. CBD has been shown to influence the endocannabinoid system, both by affecting cannabinoid receptors and other receptors involved in the endocannabinoid system such as vanilloid receptor 1, adenosine receptors, and 5-hydroxytryptamine via cannabinoid receptor-independent mechanisms. Concussions can result in many physiological consequences, potentially resulting in post-concussion syndrome. While impairments in cerebrovascular and cardiovascular physiology following concussion have been shown, there is unfortunately still no single treatment available to enhance recovery. CBD has been shown to influence the blood brain barrier, brain-derived neurotrophic factors, cognitive capacity, the cerebrovasculature, cardiovascular physiology, and neurogenesis, all of which have been shown to be altered by concussion. CBD can therefore potentially provide treatment to enhance neuroprotection by reducing inflammation, regulating cerebral blood flow, enhancing neurogenesis, and protecting the brain against reactive oxygen species. Double-blind randomized controlled trials are still required to validate the use of CBD as medication following mild TBIs, such as concussion.


Assuntos
Concussão Encefálica/tratamento farmacológico , Canabidiol/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Síndrome Pós-Concussão/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Barreira Hematoencefálica/metabolismo , Concussão Encefálica/imunologia , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Circulação Cerebrovascular , Cognição , Endocanabinoides/metabolismo , Humanos , Inflamação , Neurogênese , Neuroproteção , Estresse Oxidativo , PPAR gama/metabolismo , Síndrome Pós-Concussão/imunologia , Síndrome Pós-Concussão/metabolismo , Síndrome Pós-Concussão/fisiopatologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Purinérgicos P1/metabolismo , Canais de Cátion TRPV/metabolismo
16.
ACS Chem Neurosci ; 11(8): 1117-1128, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32017529

RESUMO

Traumatic brain injury (TBI) is one of the main causes of death in young people for which currently no efficacious treatment exists. Recently, we have reported that mice with mild-TBI with a specific injury in the insula showed elevated levels of a little investigated N-acyl amino acid, N-oleoylglycine (OlGly). N-acyl amino acids have recently experienced an increased interest because of their important biological activities. They belong to the endocannabinoidome family of lipids with structural similarities with the endocannabinoids (eCBs). The aim of this study was to test the neuroprotective and antihyperalgesic actions of OlGly in a model of mouse mild-TBI (mTBI) and its effect on levels of eCBs and N-acylethanolamines at the end of treatment. Following mTBI, mice were administered a daily injection of OlGly (10-50-100 mg/kg i.p.) for 14 days. Treatment with OlGly normalized motor impairment and behavior in the light/dark box test, ameliorated TBI-induced thermal hyperalgesia and mechanical allodynia, and normalized aggressiveness and depression. Moreover, levels of eCBs and some N-acylethanolamines underwent significant changes 60 days after TBI, especially in the prefrontal cortex and hypothalamus, and OlGly reversed some of these changes. In conclusion, our findings reveal that OlGly ameliorates the behavioral alterations associated with mTBI in mice, while concomitantly modulating eCB and eCB-like mediator tone.


Assuntos
Concussão Encefálica/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Glicina/análogos & derivados , Ácidos Oleicos/farmacologia , Aminoácidos/metabolismo , Animais , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Glicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Mol Ther ; 28(2): 503-522, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843449

RESUMO

Repetitive mild traumatic brain injury (rmTBI) is considered to be an important risk factor for long-term neurodegenerative disorders such as Alzheimer's disease, which is characterized by ß-amyloid abnormalities and impaired cognitive function. Microglial exosomes have been reported to be involved in the transportation, distribution, and clearance of ß-amyloid in Alzheimer's disease. However, their impacts on the development of neurodegeneration after rmTBI are not yet known. The role of miRNAs in microglial exosomes on regulating post-traumatic neurodegeneration was investigated in the present study. We demonstrated that miR-124-3p level in microglial exosomes from injured brain was significantly altered in the acute, sub-acute, and chronic phases after rmTBI. In in vitro experiments, microglial exosomes with upregulated miR-124-3p (EXO-124) alleviated neurodegeneration in repetitive scratch-injured neurons. The effects were exerted by miR-124-3p targeting Rela, an inhibitory transcription factor of ApoE that promotes the ß-amyloid proteolytic breakdown, thereby inhibiting ß-amyloid abnormalities. In mice with rmTBI, the intravenously injected microglial exosomes were taken up by neurons in injured brain. Besides, miR-124-3p in the exosomes was transferred into hippocampal neurons and alleviated neurodegeneration by targeting the Rela/ApoE signaling pathway. Consequently, EXO-124 treatments improved the cognitive outcome after rmTBI, suggesting a promising therapeutic strategy for future clinical translation.


Assuntos
Concussão Encefálica/etiologia , Concussão Encefálica/metabolismo , Cognição , Exossomos/metabolismo , MicroRNAs/genética , Microglia/metabolismo , Doenças Neurodegenerativas/etiologia , Animais , Apolipoproteínas E/metabolismo , Concussão Encefálica/patologia , Concussão Encefálica/reabilitação , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/reabilitação , Neurônios/metabolismo , Interferência de RNA , Índice de Gravidade de Doença , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
18.
Neuroimage ; 200: 250-258, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201986

RESUMO

A key event in the pathophysiology of traumatic brain injury (TBI) is the influx of substantial amounts of Ca2+ into neurons, particularly in the thalamus. Detection of this calcium influx in vivo would provide a window into the biochemical mechanisms of TBI with potentially significant clinical implications. In the present work, our central hypothesis was that the Ca2+ influx could be imaged in vivo with the relatively recent MRI technique of quantitative susceptibility mapping (QSM). Wistar rats were divided into five groups: naive controls, sham-operated experimental controls, single mild TBI, repeated mild TBI, and single severe TBI. We employed the lateral fluid percussion injury (FPI) model, which replicates clinical TBI without skull fracture, performed 9.4 Tesla MRI with a 3D multi-echo gradient-echo sequence at weeks 1 and 4 post-injury, computed susceptibility maps using V-SHARP and the QUASAR-HEIDI technique, and performed histology. Sham, experimental controls animals, and injured animals did not demonstrate calcifications at 1 week after the injury. At week 4, calcifications were found in the ipsilateral thalamus of 25-50% of animals after a single TBI and 83% of animals after repeated mild TBI. The location and appearance of calcifications on stained sections was consistent with the appearance on the in vivo susceptibility maps (correlation of volumes: r = 0.7). Our findings suggest that persistent calcium deposits represent a primary pathology of repeated injury and that FPI-QSM has the potential to become a sensitive tool for studying pathophysiology related to mild TBI in vivo.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Cálcio/metabolismo , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tálamo/diagnóstico por imagem , Animais , Biomarcadores , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Calcinose/metabolismo , Calcinose/patologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Tálamo/metabolismo , Tálamo/patologia
19.
Neuroscience ; 413: 264-278, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31254543

RESUMO

Repetitive mild traumatic brain injury (RmTBI) is a prevalent and costly head injury particularly among adolescents. These injuries may result in long-term consequences, especially during this critical period of development. Insomnia and sleeping difficulties are frequently reported following RmTBI and greatly impair recovery. We sought to develop an animal model of exacerbated deficits following RmTBI by disrupting the hypothalamic circadian system. To accomplish this, we conducted RmTBI on adolescent rats that had received neonatal injections of monosodium glutamate (MSG), a known hypothalamic neurotoxin. We then examined behavioral, circadian, and epigenetic changes. MSG treated rats showed lower anxiety-like behaviors and displayed poor short-term working memory. We also showed changes in the morphology of the circadian clock in the suprachiasmatic nucleus (SCN) vasoactive intestinal polypeptide (VIP) immunostaining. VIP optical density in the SCN increased with MSG but decreased with RmTBI. There were changes in the expression of the clock genes and upregulation of the orexin receptors in response to RmTBI. MSG treated rats had longer telomere lengths than controls. Finally, although both MSG and RmTBI alone produced attenuated circadian amplitudes of activity and body temperature, exacerbated deficits were not identified in animals that received MSG and RmTBI. In sum, both MSG and RmTBI can alter behavior, circadian rhythm amplitude, SCN morphology, and gene expression independently, but the effects do not appear to be additive. Specific damage in the hypothalamus and SCN should be considered when patients experience sleeping problems following RmTBI, as this may improve therapeutic strategies.


Assuntos
Concussão Encefálica/metabolismo , Hipotálamo/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Temperatura Corporal , Concussão Encefálica/patologia , Ritmo Circadiano/fisiologia , Feminino , Expressão Gênica , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/patologia , Masculino , Memória de Curto Prazo/fisiologia , Atividade Motora/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Recidiva , Glutamato de Sódio/efeitos adversos , Núcleo Supraquiasmático/crescimento & desenvolvimento , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/patologia , Telômero
20.
Behav Brain Res ; 368: 111895, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-30978410

RESUMO

Mild traumatic brain injury is a common outcome of blast exposure, and current literature indicates high rates of comorbid posttraumatic stress disorder (PTSD) in military personnel. Blast-exposed rats display PTSD-like behavior, suggesting relationships may exist between PTSD and blast exposure. Other studies demonstrate the roles of stathmin and corticosterone associated with fear- and anxiety-like behaviors in rodent models. Furthermore, studies have observed ranges of responses to both physical and psychological trauma in animal populations (Elder 2012, Ritov 2016). This study exposed rodents to repeated blast overpressure (BOP) and analyzed behavioral responses and molecular variables at 3 weeks and 6 months after exposure. We applied a modified version of a previously reported behavioral profiling approach that separates "affected" and "unaffected" rats based on the presence of anxiety-like behaviors (Ritov, 2016). We report that "affected" 3 week animals showed higher plasma corticosterone and amygdalar stathmin levels, while "affected" 6 month animals had lower prefrontal cortex stathmin. Higher corticosterone also paralleled anxiety behavior in "affected" 3 week animals, which was not observed in 6 month animals, indicating possible negative feedback loop mechanisms. Elevated levels of amygdalar stathmin correlated with anxiety behaviors in "affected" 3 week and 6 month animals, indicating sustained molecular changes. We conclude that this unique analysis may provide more information about response to blast. This type of analysis should also be considered when treating clinical populations, since individual differences may affect behavioral and long-term outcomes. Future studies should elucidate relationships of stress and fear responses in the context of BOP.


Assuntos
Ansiedade/fisiopatologia , Concussão Encefálica/metabolismo , Concussão Encefálica/psicologia , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/psicologia , Traumatismos por Explosões/psicologia , Lesões Encefálicas/psicologia , Comorbidade , Corticosterona/análise , Corticosterona/sangue , Modelos Animais de Doenças , Medo/fisiologia , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Long-Evans , Estatmina/análise , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA