Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.148
Filtrar
1.
Poult Sci ; 103(4): 103534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401226

RESUMO

The poultry skeletal system serves multiple functions, not only providing structural integrity but also maintaining the balance of essential minerals such as calcium and phosphorus. However, in recent years, the consideration of skeletal traits has been overlooked in the selective breeding of broilers, resulting in an inadequate adaptation of the skeletal system to cope with the rapid increase in body weight. Consequently, this leads to lameness and bone diseases such as tibial dyschondroplasia (TD), which significantly impact the production performance of broilers. Accumulating evidence has shown that microRNAs (miRNA) play a crucial role in the differentiation, formation, and disease of cartilage. However, the miRNA-mediated molecular mechanism underlying chicken TD formation is still poorly understood. The objective of this study was to investigate the biological function and regulatory mechanism of miRNA in chicken TD formation. Based on transcriptome sequencing of tibial cartilage in the healthy group and TD group, miR-206a-3p was found to be highly expressed in TD cartilage. The function of miR-206a-3p was explored through the transfection test of miR-206a-3p mimics and miR-206a-3p inhibitor. In this study, we utilized qRT-PCR, CCK-8, EdU, western blot, and flow cytometry to detect the proliferation, differentiation, and apoptosis of chondrocytes. The results revealed that miR-206a-3p suppressed the proliferation and differentiation of TD chondrocytes while promoting their programmed cell death. Furthermore, through biosynthesis and dual luciferase assays, it was determined that BMP6 was the direct target gene of miR-206a-3p. This finding was further supported by rescue experiments which confirmed the involvement of BMP6 in the regulatory pathway governed by miR-206a-3p. Our results suggest that miR-206a-3p can inhibits the proliferation and differentiation promote apoptosis through the target gene BMP-6 and suppressing the Smad2/3 signaling pathway in chicken TD chondrocytes.


Assuntos
MicroRNAs , Osteocondrodisplasias , Animais , Condrócitos/fisiologia , Galinhas/genética , Galinhas/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Proteína Morfogenética Óssea 6/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Apoptose
2.
Methods Mol Biol ; 2598: 289-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355299

RESUMO

Viral gene transfer, known as transduction, is a powerful research tool for studying the biology of chondrocytes in novel ways and also a technology enabling the use of gene therapy for regenerating cartilage and treating diseases that affect cartilage, such as osteoarthritis. Adenovirus, retrovirus, lentivirus, and adeno-associated virus (AAV) are most commonly used to transduce chondrocytes. Although AAV is able to transduce chondrocytes in situ by intra-articular injection, chondrocytes are most commonly transduced in monolayer culture using the four vectors mentioned above. Protocols for achieving this are described, along with a discussion of the variables that can influence transduction efficiency.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/fisiologia , Transdução Genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Dependovirus/genética , Terapia Genética/métodos , Genes Virais
3.
Osteoarthritis Cartilage ; 30(12): 1547-1560, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150678

RESUMO

Articular cartilage (AC) has limited capacity for repair. The first attempt to repair cartilage using tissue engineering was reported in 1977. Since then, cell-based interventions have entered clinical practice in orthopaedics, and several tissue engineering approaches to repair cartilage are in the translational pipeline towards clinical application. Classically, these involve a scaffold, substrate or matrix to provide structure, and cells such as chondrocytes or mesenchymal stromal cells to generate the tissue. We discuss the advantages and drawbacks of the use of various cell types, natural and synthetic scaffolds, multiphasic or gradient-based scaffolds, and self-organizing or self-assembling scaffold-free systems, for the engineering of cartilage constructs. Several challenges persist including achieving zonal tissue organization and integration with the surrounding tissue upon implantation. Approaches to improve cartilage thickness, organization and mechanical properties include mechanical stimulation, culture under hypoxic conditions, and stimulation with growth factors or other macromolecules. In addition, advanced technologies such as bioreactors, biosensors and 3D bioprinting are actively being explored. Understanding the underlying mechanisms of action of cell therapy and tissue engineering approaches will help improve and refine therapy development. Finally, we discuss recent studies of the intrinsic cellular and molecular mechanisms of cartilage repair that have identified novel signals and targets and are inspiring the development of molecular therapies to enhance the recruitment and cartilage reparative activity of joint-resident stem and progenitor cells. A one-fits-all solution is unrealistic, and identifying patients who will respond to a specific targeted treatment will be critical.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Humanos , Engenharia Tecidual , Condrócitos/fisiologia , Células-Tronco Mesenquimais/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Alicerces Teciduais/química
4.
Ann Biomed Eng ; 50(12): 1911-1922, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35879583

RESUMO

Mechanical stimuli are fundamental in the development of organs and tissues, their growth, regeneration or disease. They influence the biochemical signals produced by the cells, and, consequently, the development and spreading of a disease. Moreover, tumour cells are usually characterized by a decrease in the cell mechanical properties that may be directly linked to their metastatic potential. Thus, recently, the experimental and computational study of cell biomechanics is facing a growing interest. Various experimental approaches have been implemented to describe the passive response of cells; however, cell variability and complex experimental procedures may affect the obtained mechanical properties. For this reason, in-silico computational models have been developed through the years, to overcome such limitations, while proposing valuable tools to understand cell mechanical behaviour. This being the case, we propose a combined continuous-tensegrity finite element (FE) model to analyse the mechanical response of a cell and its subcomponents, observing how every part contributes to the overall mechanical behaviour. We modelled both Atomic Force Microscopy (AFM) indentation and micropipette aspiration techniques, as common mechanical tests for cells and elucidated also the role of cell cytoplasm and cytoskeleton in the global cell mechanical response.


Assuntos
Condrócitos , Citoesqueleto , Fenômenos Biomecânicos , Microscopia de Força Atômica , Condrócitos/fisiologia , Simulação por Computador , Estresse Mecânico , Modelos Biológicos
5.
PLoS One ; 17(2): e0263430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139106

RESUMO

BMP7 is a morphogen capable of counteracting the OA chondrocyte hypertrophic phenotype via NKX3-2. NKX3-2 represses expression of RUNX2, an important transcription factor for chondrocyte hypertrophy. Since RUNX2 has previously been described as an inhibitor for 47S pre-rRNA transcription, we hypothesized that BMP7 positively influences 47S pre-rRNA transcription through NKX3-2, resulting in increased protein translational capacity. Therefor SW1353 cells and human primary chondrocytes were exposed to BMP7 and rRNA (18S, 5.8S, 28S) expression was determined by RT-qPCR. NKX3-2 knockdown was achieved via transfection of a NKX3-2-specific siRNA duplex. Translational capacity was assessed by the SUNsET assay, and 47S pre-rRNA transcription was determined by transfection of a 47S gene promoter-reporter plasmid. BMP7 treatment increased protein translational capacity. This was associated by increased 18S and 5.8S rRNA and NKX3-2 mRNA expression, as well as increased 47S gene promotor activity. Knockdown of NKX3-2 led to increased expression of RUNX2, accompanied by decreased 47S gene promotor activity and rRNA expression, an effect BMP7 was unable to restore. Our data demonstrate that BMP7 positively influences protein translation capacity of SW1353 cells and chondrocytes. This is likely caused by an NKX3-2-dependent activation of 47S gene promotor activity. This finding connects morphogen-mediated changes in cellular differentiation to an aspect of ribosome biogenesis via key transcription factors central to determining the chondrocyte phenotype.


Assuntos
Proteína Morfogenética Óssea 7/fisiologia , Condrócitos/metabolismo , Proteínas de Homeodomínio/fisiologia , Biossíntese de Proteínas/genética , RNA Ribossômico/metabolismo , Fatores de Transcrição/fisiologia , Proteína Morfogenética Óssea 7/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216245

RESUMO

RUNX2 and SOX9 are two pivotal transcriptional regulators of chondrogenesis. It has been demonstrated that RUNX2 and SOX9 physically interact; RUNX2 transactivation may be inhibited by SOX9. In addition, RUNX2 exerts reciprocal inhibition on SOX9 transactivity. Epigenetic control of gene expression plays a major role in the alternative differentiation fates of stem cells; in particular, it has been reported that SOX9 can promote the expression of miRNA (miR)-204. Our aim was therefore to investigate the miR-204-5p role during chondrogenesis and to identify the relationship between this miR and the transcription factors plus downstream genes involved in chondrogenic commitment and differentiation. To evaluate the role of miR-204 in chondrogenesis, we performed in vitro transfection experiments by using Mesenchymal Stem Cells (MSCs). We also evaluated miR-204-5p expression in zebrafish models (adults and larvae). By silencing miR-204 during the early differentiation phase, we observed the upregulation of SOX9 and chondrogenic related genes compared to controls. In addition, we observed the upregulation of COL1A1 (a RUNX2 downstream gene), whereas RUNX2 expression of RUNX2 was slightly affected compared to controls. However, RUNX2 protein levels increased in miR-204-silenced cells. The positive effects of miR204 silencing on osteogenic differentiation were also observed in the intermediate phase of osteogenic differentiation. On the contrary, chondrocytes' maturation was considerably affected by miR-204 downregulation. In conclusion, our results suggest that miR-204 negatively regulates the osteochondrogenic commitment of MSCs, while it positively regulates chondrocytes' maturation.


Assuntos
Condrogênese/genética , MicroRNAs/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação para Baixo/genética , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/genética , Fatores de Transcrição SOX9/genética , Células-Tronco/fisiologia , Ativação Transcricional/genética , Regulação para Cima/genética , Peixe-Zebra
7.
Endocrinology ; 163(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041746

RESUMO

Longitudinal bone growth is achieved by a tightly controlled process termed endochondral bone formation. C-type natriuretic peptide (CNP) stimulates endochondral bone formation through binding to its specific receptor, guanylyl cyclase (GC)-B. However, CNP/GC-B signaling dynamics in different stages of endochondral bone formation have not been fully clarified, especially in terms of the interaction between the cyclic guanine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) pathways. Here, we demonstrated that CNP activates the cAMP/protein kinase A (PKA) pathway and that this activation contributed to the elongation of the hypertrophic zone in the growth plate. Cells of the chondrogenic line ATDC5 were transfected with Förster resonance energy transfer (FRET)-based cGMP and PKA biosensors. Dual-FRET imaging revealed that CNP increased intracellular cGMP levels and PKA activities in chondrocytes. Further, CNP-induced PKA activation was enhanced following differentiation of ATDC5 cells. Live imaging of the fetal growth plate of transgenic mice, expressing a FRET biosensor for PKA, PKAchu mice, showed that CNP predominantly activates the PKA in the hypertrophic chondrocytes. Additionally, histological analysis of the growth plate of PKAchu mice demonstrated that CNP increased the length of the growth plate, but coadministration of a PKA inhibitor, H89, inhibited the growth-promoting effect of CNP only in the hypertrophic zone. In summary, we revealed that CNP-induced cGMP elevation activated the cAMP/PKA pathway, and clarified that this PKA activation contributed to the bone growth-promoting effect of CNP in hypertrophic chondrocytes. These results provide insights regarding the cross-talk between cGMP and cAMP signaling in endochondral bone formation and in the physiological role of the CNP/GC-B system.


Assuntos
Condrócitos/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Osteogênese/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , GMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Osteoarthritis Cartilage ; 30(2): 302-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767957

RESUMO

OBJECTIVE: In knee cartilage from patients with osteoarthritis (OA), both preserved cartilage and damaged cartilage are observed. In this study, we aim to compare preserved with damaged cartilage to identify the molecule(s) that may be responsible for the mechanical loading-induced differences within cartilage degradation. METHODS: Preserved and damaged cartilage were harvested from the same OA knee joint. RNA Sequencing was performed to examine the transcriptomic differences between preserved and damaged cartilage cells. Estrogen receptor-α (ERα) was identified, and its function of was tested through gene knockin and knockout. The role of ERα in mediating chondrocyte response to mechanical loading was examined via compression of chondrocyte-laded hydrogel in a strain-controlled manner. Findings from the studies on human samples were verified in animal models. RESULTS: Level of estrogen receptor α (ERα) was significantly reduced in damaged cartilage compared to preserved cartilage, which were observed in both human and mice samples. Knockdown of ESR1, the gene encoding ERα, resulted in an upregulation of senescence- and OA-relevant markers in chondrocytes. Conversely, knockin of ESR1 partially reversed the osteoarthritic and senescent phenotype of OA chondrocytes. Using a three-dimensional (3D) culture model, we demonstrated that mechanical overload significantly suppressed ERα level in chondrocytes with concomitant upregulation of osteoarthritic phenotype. When ESR1 expression was suppressed, mechanical loading enhanced hypertrophic and osteogenic transition. CONCLUSION: Our study demonstrates a new estrogen-independent role of ERα in mediating chondrocyte phenotype and its response to mechanical loading, and suggests that enhancing ERα level may represent a new method to treat osteoarthritis.


Assuntos
Condrócitos/fisiologia , Receptor alfa de Estrogênio/fisiologia , Osteoartrite do Joelho/patologia , Suporte de Carga/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
9.
Osteoarthritis Cartilage ; 30(2): 315-328, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767958

RESUMO

OBJECTIVE: To determine the Dynamin-related protein 1 (DRP1) regulation of mitochondrial fission in chondrocytes under pathological conditions, an area which is underexplored in osteoarthritis pathogenesis. DESIGN: DRP1 protein expression was determined by immunohistochemistry (IHC) or immunofluorescence (IF) staining of cartilage sections. IL-1ß-induced DRP1 mRNA expression in chondrocytes was quantified by qPCR and protein expression by immunoblotting. Mitochondrial fragmentation in chondrocytes was visualized by MitoTracker staining or IF staining of mitochondrial marker proteins or by transient expression of mitoDsRed. Mitochondrial reactive oxygen species (ROS) levels were determined by MitoSOX staining. Apoptosis was determined by lactate dehydrogenase (LDH) release assay, Caspase 3/7 activity assay, propidium iodide (PI), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and IF staining of cleaved caspase 3. Cytochrome c release was determined by confocal microscopy. Surgical destabilization of the medial meniscus (DMM) was used to induce osteoarthritis (OA) in mice. RESULTS: Expression of DRP1 and mitochondrial damage was high in human OA cartilage and in the joints of mice subjected to DMM surgery which also showed increased chondrocytes apoptosis. IL-1ß-induced mitochondrial network fragmentation and chondrocyte apoptosis via modulation of DRP1 expression and activity and induce apoptosis via Bax-mediated release of Cytochrome c. Pharmacological inhibition of DRP1 activity by Mdivi-1 blocked IL-1ß-induced mitochondrial damage and apoptosis in chondrocytes. Additionally, IL-1ß-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is crucial for DRP1 activation and induction of mitochondrial network fragmentation in chondrocytes as these were blocked by inhibiting ERK1/2 activation. CONCLUSIONS: These findings demonstrate that ERK1/2 is a critical player in DRP1-mediated induction of mitochondrial fission and apoptosis in IL-1ß-stimulated chondrocytes.


Assuntos
Apoptose/fisiologia , Condrócitos/fisiologia , Dinaminas/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Dinâmica Mitocondrial/fisiologia , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
10.
Int J Mol Med ; 49(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779488

RESUMO

Cartilage extracellular matrix (ECM) metabolism disorder caused by mechanical instability is a leading cause of osteoarthritis (OA), but the exact mechanisms have not been fully elucidated. Recent studies have suggested an important role of circular RNAs (circRNAs/circs) in OA. The present study aimed to investigate whether circRNAs might have a role in mechanical instability­regulated chondrocyte matrix metabolism in OA. The expression levels of circPhc3 in human and mouse OA cartilage samples were measured using reverse transcription­quantitative PCR and fluorescence in situ hybridization. The effects of circPhc3 on chondrocyte ECM metabolism were further investigated by overexpressing and knocking down circPhc3 in OA chondrocytes. The downstream target of circPhc3 was examined by performing a luciferase reporter assay. The results showed that the expression of circPhc3 was reduced in human and mouse OA cartilage. Moreover, circPhc3 was involved in mechanical loading­regulated production of ECM and cartilage­degrading enzymes. Further studies showed that circPhc3 regulated chondrocyte matrix metabolism primarily by binding to microRNA (miR)­93­3p, and mechanistic studies found that miR­93­3p targeting of FoxO1 was involved in chondrocyte matrix metabolism. Taken together, these results indicated that circPhc3 may serve an important role in the progression of OA and may be a good target for the treatment of OA.


Assuntos
Condrócitos/patologia , Osteoartrite/patologia , RNA Circular/genética , Adulto , Idoso , Animais , Fenômenos Biomecânicos , Condrócitos/fisiologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia
11.
Biomed Res Int ; 2021: 9011548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938811

RESUMO

The inability of cartilage to self-repair necessitates an effective therapeutic approach to restore damaged tissues. Extracellular vesicles (EVs) are attractive options because of their roles in cellular communication and tissue repair where they regulate the cellular processes of proliferation, differentiation, and recruitment. However, it is a challenge to determine the relevant cell sources for isolation of EVs with high chondrogenic potential. The current study aims to evaluate the chondrogenic potential of EVs derived from chondrocytes (Cho-EV) and mesenchymal stem cells (MSC-EV). The EVs were separately isolated from conditioned media of both rabbit bone marrow MSCs and chondrocyte cultures. The isolated vesicles were assessed in terms of size, morphology, and surface marker expression. The chondrogenic potential of MSCs in the presence of different concentrations of EVs (50, 100, and 150 µg/ml) was evaluated during 21 days, and chondrogenic surface marker expressions were checked by qRT-PCR and histologic assays. The extracted vesicles had a spherical morphology and a size of 44.25 ± 8.89 nm for Cho-EVs and 112.1 ± 10.10 nm for MSC-EVs. Both groups expressed the EV-specific surface markers CD9 and CD81. Higher expression of chondrogenic specified markers, especially collagen type II (COL II), and secretion of glycosaminoglycans (GAGs) and proteoglycans were observed in MSCs treated with 50 and 100 µg/ml MSC-EVs compared to the Cho-EVs. The results from the use of EVs, particularly MSC-EVs, with high chondrogenic ability will provide a basis for developing therapeutic agents for cartilage repair.


Assuntos
Condrócitos/fisiologia , Condrogênese/fisiologia , Vesículas Extracelulares/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Biomarcadores/metabolismo , Cartilagem/metabolismo , Cartilagem/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Vesículas Extracelulares/metabolismo , Glicosaminoglicanos/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Proteoglicanas/metabolismo , Coelhos
12.
Biomed Res Int ; 2021: 9962861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873576

RESUMO

OBJECTIVES: Combining the advantages of static magnetic fields (SMF) and coculture systems, we investigated the effect of moderate-intensity SMF on the chondrogenesis and proliferation of mandibular bone marrow mesenchymal stem cells (MBMSCs) in the MBMSC/mandibular condylar chondrocyte (MCC) coculture system. The main aim of the present study was to provide an experimental basis for obtaining better cartilage tissue engineering seed cells for the effective repair of condylar cartilage defects in clinical practice. METHODS: MBMSCs and MCCs were isolated from SD (Sprague Dawley) rats. Flow cytometry, three-lineage differentiation, colony-forming assays, immunocytochemistry, and toluidine blue staining were used for the identification of MBMSCs and MCCs. MBMSCs and MCCs were seeded into the lower and upper Transwell chambers, respectively, at a ratio of 1 : 2, and exposed to a 280 mT SMF. MBMSCs were harvested after 3, 7, or 14 days for analysis. CCK-8 was used to detect cell proliferation, Alcian blue staining was utilized to evaluate glycosaminoglycan (GAG), and western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) detected protein and gene expression levels of SOX9, Col2A1 (Collagen Type II Alpha 1), and Aggrecan (ACAN). RESULTS: The proliferation of MBMSCs was significantly enhanced in the experimental group with MBMSCs cocultured with MCCs under SMF stimulation relative to controls (P < 0.05). GAG content was increased, and SOX9, Col2A1, and ACAN were also increased at the mRNA and protein levels (P < 0.05). CONCLUSIONS: Moderate-intensity SMF improved the chondrogenesis and proliferation of MBMSCs in the coculture system, and it might be a promising approach to repair condylar cartilage defects in the clinical setting.


Assuntos
Células da Medula Óssea/fisiologia , Condrogênese/fisiologia , Células-Tronco Mesenquimais/fisiologia , Agrecanas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/fisiologia , Técnicas de Cocultura/métodos , Glicosaminoglicanos/metabolismo , Campos Magnéticos , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
13.
Int J Biol Sci ; 17(15): 4140-4153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803488

RESUMO

Systemic application of glucocorticoids is an essential anti-inflammatory and immune-modulating therapy for severe inflammatory or autoimmunity conditions. However, its long-term effects on articular cartilage of patients' health need to be further investigated. In this study, we studied the effects of dexamethasone (Dex) on the homeostasis of articular cartilage and the progress of destabilization of medial meniscus (DMM)-induced osteoarthritis (OA) in adult mice. Long-term administration of Dex aggravates the proteoglycan loss of articular cartilage and drastically accelerates cartilage degeneration under surgically induced OA conditions. In addition, Dex increases calcium content in calcified cartilage layer of mice and the samples from OA patients with a history of long-term Dex treatment. Moreover, long term usage of Dex results in decrease subchondral bone mass and bone density. Further studies showed that Dex leads to calcification of extracellular matrix of chondrocytes partially through activation of AKT, as well as promotes apoptosis of chondrocytes in calcified cartilage layer. Besides, Dex weakens the stress-response autophagy with the passage of time. Taken together, our data indicate that long-term application of Dex may predispose patients to OA and or even accelerate the OA disease progression development of OA patients.


Assuntos
Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Dexametasona/efeitos adversos , Matriz Extracelular/efeitos dos fármacos , Osteoartrite/etiologia , Animais , Calcinose , Dexametasona/administração & dosagem , Esquema de Medicação , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/patologia
14.
Int J Biol Sci ; 17(15): 4192-4206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803492

RESUMO

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stromal cells that have a critical role in the maintenance of skeletal tissues such as bone, cartilage, and the fat in bone marrow. In addition to providing microenvironmental support for hematopoietic processes, BM-MSCs can differentiate into various mesodermal lineages including osteoblast/osteocyte, chondrocyte, and adipocyte that are crucial for bone metabolism. While BM-MSCs have high cell-to-cell heterogeneity in gene expression, the cell subtypes that contribute to this heterogeneity in vivo in humans have not been characterized. To investigate the transcriptional diversity of BM-MSCs, we applied single-cell RNA sequencing (scRNA-seq) on freshly isolated CD271+ BM-derived mononuclear cells (BM-MNCs) from two human subjects. We successfully identified LEPRhiCD45low BM-MSCs within the CD271+ BM-MNC population, and further codified the BM-MSCs into distinct subpopulations corresponding to the osteogenic, chondrogenic, and adipogenic differentiation trajectories, as well as terminal-stage quiescent cells. Biological functional annotations of the transcriptomes suggest that osteoblast precursors induce angiogenesis coupled with osteogenesis, and chondrocyte precursors have the potential to differentiate into myocytes. We also discovered transcripts for several clusters of differentiation (CD) markers that were either highly expressed (e.g., CD167b, CD91, CD130 and CD118) or absent (e.g., CD74, CD217, CD148 and CD68) in BM-MSCs, representing potential novel markers for human BM-MSC purification. This study is the first systematic in vivo dissection of human BM-MSCs cell subtypes at the single-cell resolution, revealing an insight into the extent of their cellular heterogeneity and roles in maintaining bone homeostasis.


Assuntos
Células da Medula Óssea/classificação , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência de RNA , Análise de Célula Única/métodos , Idoso , Idoso de 80 Anos ou mais , Animais , Densidade Óssea , Células da Medula Óssea/metabolismo , Antígeno CD56/genética , Antígeno CD56/metabolismo , Diferenciação Celular , Condrócitos/fisiologia , Análise por Conglomerados , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo
15.
Cells ; 10(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34831109

RESUMO

Osteoarthritis (OA) is a common degenerative disease that can lead to persistent pain and motion restriction. In the last decade, stem cells, particularly mesenchymal stem cells (MSCs), have been explored as a potential alternative OA therapy due to their regenerative capacity. Furthermore, it has been shown that trophic factors enveloped in extracellular vesicles (EVs), including exosomes, are a crucial aspect of MSC-based treatment for OA. Evidently, EVs derived from different MSC sources might rescue the OA phenotype by targeting many biological processes associated with cartilage extracellular matrix (ECM) degradation and exerting protective effects on different joint cell types. Despite this advancement, different studies employing EV treatment for OA have revealed reverse outcomes depending on the EV cargo, cell source, and pathological condition. Hence, in this review, we aim to summarize and discuss the possible effects of MSC-derived EVs based on recent findings at different stages of OA development, including effects on cartilage ECM, chondrocyte biology, osteocytes and bone homeostasis, inflammation, and pain management. Additionally, we discuss further strategies and technical advances for manipulating EVs to specifically target OA to bring the therapy closer to clinical use.


Assuntos
Condrócitos/fisiologia , Matriz Extracelular/metabolismo , Vesículas Extracelulares/transplante , Inflamação/terapia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/terapia , Osteócitos/fisiologia , Dor/patologia , Animais , Humanos
16.
Front Endocrinol (Lausanne) ; 12: 734988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745003

RESUMO

The purpose of this study was to investigate growth plate dynamics in surgical and loading murine models of osteoarthritis, to understand whether abnormalities in these dynamics are associated with osteoarthritis development. 8-week-old C57BL/6 male mice underwent destabilisation of medial meniscus (DMM) (n = 8) surgery in right knee joints. Contralateral left knee joints had no intervention (controls). In 16-week-old C57BL/6 male mice (n = 6), osteoarthritis was induced using non-invasive mechanical loading of right knee joints with peak force of 11N. Non-loaded left knee joints were internal controls. Chondrocyte transiency in tibial articular cartilage and growth plate was confirmed by histology and immunohistochemistry. Tibial subchondral bone parameters were measured using microCT and correlated to 3-dimensional (3D) growth plate bridging analysis. Higher expression of chondrocyte hypertrophy markers; Col10a1 and MMP13 were observed in tibial articular cartilage chondrocytes of DMM and loaded mice. In tibial growth plate, Col10a1 and MMP13 expressions were widely expressed in a significantly enlarged zone of proliferative and hypertrophic chondrocytes in DMM (p=0.002 and p<0.0001, respectively) and loaded (both p<0.0001) tibiae of mice compared to their controls. 3D quantification revealed enriched growth plate bridging and higher bridge densities in medial compared to lateral tibiae of DMM and loaded knee joints of the mice. Growth plate dynamics were associated with increased subchondral bone volume fraction (BV/TV; %) in medial tibiae of DMM and loaded knee joints and epiphyseal trabecular bone volume fraction in medial tibiae of loaded knee joints. The results confirm articular cartilage chondrocyte transiency in a surgical and loaded murine models of osteoarthritis. Herein, we reveal spatial variation of growth plate bridging in surgical and loaded osteoarthritis models and how these may contribute to anatomical variation in vulnerability of osteoarthritis development.


Assuntos
Desenvolvimento Ósseo/fisiologia , Lâmina de Crescimento/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Animais , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Condrócitos/patologia , Condrócitos/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Lâmina de Crescimento/patologia , Articulação do Joelho/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho/patologia , Microtomografia por Raio-X
17.
Sci Rep ; 11(1): 21307, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716346

RESUMO

Cartilage tissues have poor self-repairing abilities. Regenerative medicine can be applied to recover cartilage tissue damage in the oral and maxillofacial regions. However, hitherto it has not been possible to predict the maturity of the tissue construction after transplantation or to prepare mature cartilage tissues before transplantation that can meet clinical needs. Macrophages play an important role in cartilage tissue regeneration, although the exact mechanisms remain unknown. In this study, we established and verified an in vitro experimental system for the direct co-culture of cell pellets prepared from mouse auricular chondrocytes and macrophages polarized into four phenotypes (M1-like, M1, M2-like, and M2). We demonstrate that cartilage pellets co-cultured with M1-like promoted collagen type 2 and aggrecan production and induced the most significant increase in chondrogenesis. Furthermore, M1-like shifted to M2 on day 7 of co-culture, suggesting that the cartilage pellet supplied factors that changed the polarization of M1-like. Our findings suggest that cartilage regenerative medicine will be most effective if the maturation of cartilage tissues is induced in vitro by co-culture with M1-like before transplantation.


Assuntos
Cartilagem/crescimento & desenvolvimento , Condrócitos/fisiologia , Condrogênese/fisiologia , Macrófagos/fisiologia , Agrecanas/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura/métodos , Colágeno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Regeneração , Engenharia Tecidual
18.
Nat Protoc ; 16(12): 5484-5532, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716451

RESUMO

The development of biocompatible and precisely printable bioink addresses the growing demand for three-dimensional (3D) bioprinting applications in the field of tissue engineering. We developed a methacrylated photocurable silk fibroin (SF) bioink for digital light processing 3D bioprinting to generate structures with high mechanical stability and biocompatibility for tissue engineering applications. Procedure 1 describes the synthesis of photocurable methacrylated SF bioink, which takes 2 weeks to complete. Digital light processing is used to fabricate 3D hydrogels using the bioink (1.5 h), which are characterized in terms of methacrylation, printability, mechanical and rheological properties, and biocompatibility. The physicochemical properties of the bioink can be modulated by varying photopolymerization conditions such as the degree of methacrylation, light intensity, and concentration of the photoinitiator and bioink. The versatile bioink can be used broadly in a range of applications, including nerve tissue engineering through co-polymerization of the bioink with graphene oxide, and for wound healing as a sealant. Procedure 2 outlines how to apply 3D-printed SF hydrogels embedded with chondrocytes and turbinate-derived mesenchymal stem cells in one specific in vivo application, trachea tissue engineering, which takes 2-9 weeks.


Assuntos
Bioimpressão/métodos , Fibroínas/química , Hidrogéis/química , Tecido Nervoso/efeitos dos fármacos , Engenharia Tecidual/métodos , Traqueia/efeitos dos fármacos , Animais , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Fibroínas/farmacologia , Grafite/química , Humanos , Hidrogéis/farmacologia , Luz , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Metacrilatos/química , Camundongos , Tecido Nervoso/citologia , Tecido Nervoso/fisiologia , Impressão Tridimensional/instrumentação , Coelhos , Alicerces Teciduais , Traqueia/citologia , Traqueia/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
19.
Life Sci ; 285: 119968, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543642

RESUMO

AIMS: The development of osteoarthritis (OA), the most common form of arthritis, is commonly associated with oxidative stress. Indeed, the lack of antioxidant responses largely increases OA incidence. OA is a leading cause of disability in the elderly, which reduces the quality of life and places high socioeconomic burdens on them. Several polyphenolic compounds, including chlorogenic acid (CGA), have shown cytoprotective effects via their antioxidant activity, but the exact mechanism (s) remain elusive. In this study, we demonstrated how CGA protects human chondrocytes against H2O2-induced apoptosis. MATERIALS AND METHODS: The cytoprotective effect by CGA in 500 µM hydrogen peroxide-treated C28/I2 cells was evaluated by cell viability, TUNEL assay, and Western blotting analyses, and autophagy assessment was further performed by AO and MDC staining and tandem mRFP-GFP fluorescence analyses. KEY FINDINGS: Treatment of CGA to the human chondrocytes under oxidative stress significantly decreased apoptosis markers, such as cleaved caspase 3 and cleaved PARP, and increased anti-apoptotic marker Bcl-xL and the antioxidant response proteins NRF2 and NF-κB. Furthermore, CGA-dependent activation of antioxidant response proteins NRF2 and NF-κB and its protective effects in chondrocytes depended on autophagy. Indeed, CGA treatment and autophagy induction significantly decreased reactive oxygen species (ROS)-induced apoptosis. SIGNIFICANCE: CGA exhibited the protective effect to human chondrocyte C28/I2 cells against oxidative stress-induced cell death by activating autophagy. These findings indicate that CGA is a potential therapeutic agent for the development of OA drugs.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Condrócitos/efeitos dos fármacos , Citoproteção , Estresse Oxidativo/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Condrócitos/fisiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Osteoartrite/prevenção & controle
20.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502113

RESUMO

The renin-angiotensin system (RAS) controls not only systemic functions, such as blood pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II receptor type 1 (AT1R) and type 2 (AT2R), two RAS components, are expressed in chondrocytes. However, the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism are not fully understood. In this study, we investigated the effects of ANG II and AT1R blockade on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Additionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan (Acan) expression increased. Losartan, an AT1R antagonist, blocked the ANG II-induced decrease in CCN2 production and Acan expression in RCS cells. These findings suggest that AT1R blockade reduces ANG II-induced chondrocyte degeneration. Interestingly, AT1R-positive cells, which were localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage degeneration through the ANG II-AT1R axis.


Assuntos
Angiotensina II/farmacologia , Condrócitos/efeitos dos fármacos , Agrecanas/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/fisiologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Feminino , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA