Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
FEBS Open Bio ; 10(5): 912-926, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237058

RESUMO

Odor adaptation allows the olfactory system to regulate sensitivity to different stimulus intensities, which is essential for preventing saturation of the cell-transducing machinery and maintaining high sensitivity to persistent and repetitive odor stimuli. Although many studies have investigated the structure and mechanisms of the mammalian olfactory system that responds to chemical sensation, few studies have considered differences in neuronal activation that depend on the manner in which the olfactory system is exposed to odorants, or examined activity patterns of olfactory-related regions in the brain under different odor exposure conditions. To address these questions, we designed three different odor exposure conditions that mimicked diverse odor environments and analyzed c-Fos-expressing cells (c-Fos+ cells) in the odor columns of the olfactory bulb (OB). We then measured differences in the proportions of c-Fos-expressing cell types depending on the odor exposure condition. Surprisingly, under the specific odor condition in which the olfactory system was repeatedly exposed to the odorant for 1 min at 5-min intervals, one of the lateral odor columns and the ipsilateral hemisphere of the olfactory tubercle had more c-Fos+ cells than the other three odor columns and the contralateral hemisphere of the olfactory tubercle. However, this interhemispheric asymmetry of c-Fos expression was not observed in the anterior piriform cortex. To confirm whether the anterior olfactory nucleus pars externa (AONpE), which connects the left and right OB, contributes to this asymmetry, AONpE-lesioned mice were analyzed under the specific odor exposure condition. Asymmetric c-Fos expression was not observed in the OB or the olfactory tubercle. These data indicate that the c-Fos expression patterns of the olfactory-related regions in the brain are influenced by the odor exposure condition and that asymmetric c-Fos expression in these regions was observed under a specific odor exposure condition due to synaptic linkage via the AONpE.


Assuntos
Tubérculo Olfatório/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Olfato/genética , Animais , Encéfalo/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Odorantes , Bulbo Olfatório/metabolismo , Córtex Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Percepção Olfatória/genética , Percepção Olfatória/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Olfato/fisiologia
2.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740517

RESUMO

The inter-regional connectivity of sensory structures in the brain allows for the modulation of sensory processing in manners important for perception. In the olfactory system, odor representations in the olfactory bulb (OB) are modulated by feedback centrifugal innervation from several olfactory cortices, including the piriform cortex (PCX) and anterior olfactory nucleus (AON). Previous studies reported that an additional olfactory cortex, the olfactory tubercle (OT), also centrifugally innervates the OB and may even shape the activity of OB output neurons. In an attempt to identify the cell types of this centrifugal innervation, we performed retrograde tracing experiments in mice utilizing three unique strategies, including retrobeads, retrograde adeno-associated virus (AAV) driving a fluorescent reporter, and retrograde AAV driving Cre-expression in the Ai9-floxed transgenic reporter line. Our results replicated the standing literature and uncovered robustly labeled neurons in the ipsilateral PCX, AON, and numerous other structures known to innervate the OB. Surprisingly, consistent throughout all of our approaches, no labeled soma were observed in the OT. These findings indicate that the OT is unique among other olfactory cortices in that it does not innervate the OB, which refines our understanding of the centrifugal modulation of the OB.


Assuntos
Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico
3.
Front Neural Circuits ; 11: 52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804450

RESUMO

The medial part of the olfactory tubercle (OT) is a brain structure located at the interface of the reward and olfactory system. It is closely related to pheromone-rewards, natural reinforcement, addiction and many other behaviors. However, the structure of the anatomic circuitry of the medial part of the OT is still unclear. In the present study, the medial part of the OT was found to be highly connected with a wide range of brain areas with the help of the pseudorabies virus tracing tool. In order to further investigate the detailed connections for specific neurons, another tracing tool - rabies virus was utilized for D1R-cre and D2R-cre mice. The D1R and D2R neurons in the medial part of the OT were both preferentially innervated by the olfactory areas, especially the piriform cortex, and both had similar direct input patterns. With the help of the adeno-associated virus labeling, it was found that the two subpopulations of neurons primarily innervate with the reward related brain regions, with slightly less axons projecting to the olfactory areas. Thus, the whole-brain input and output circuitry structures for specific types of neurons in the medial part of the OT were systematically investigated, and the results revealed many unique connecting features. This work could provide new insights for further study into the physiological functions of the medial part of the OT.


Assuntos
Neurônios/citologia , Tubérculo Olfatório/citologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Técnicas de Rastreamento Neuroanatômico , Neurônios/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Tubérculo Olfatório/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
4.
Brain Struct Funct ; 222(2): 717-733, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27259586

RESUMO

Novel neuromodulation techniques in the field of brain research, such as optogenetics, prompt to target specific cell populations. However, not every subpopulation can be distinguished based on brain area or activity of specific promoters, but rather on topology and connectivity. A fascinating tool to detect neuronal circuitry is based on the transsynaptic tracer, wheat germ agglutinin (WGA). When expressed in neurons, it is transported throughout the neuron, secreted, and taken up by synaptically connected neurons. Expression of a WGA and Cre recombinase fusion protein using a viral vector technology in Cre-dependent transgenic animals allows to trace neuronal network connections and to induce topological transgene expression. In this study, we applied and evaluated this technology in specific areas throughout the whole rodent brain, including the hippocampus, striatum, substantia nigra, and the motor cortex. Adeno-associated viral vectors (rAAV) encoding the WGA-Cre fusion protein under control of a CMV promoter were stereotactically injected in Rosa26-STOP-EYFP transgenic mice. After 6 weeks, both the number of transneuronally labeled YFP+/mCherry- cells and the transduced YFP+/mCherry+ cells were quantified in the connected regions. We were able to trace several connections using WGA-Cre transneuronal labeling; however, the labeling efficacy was region-dependent. The observed transneuronal labeling mostly occurred in the anterograde direction without the occurrence of multi-synaptic labeling. Furthermore, we were able to visualize a specific subset of newborn neurons derived from the subventricular zone based on their connectivity.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Integrases/genética , Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios/citologia , Neurônios/metabolismo , Aglutininas do Germe de Trigo/genética , Adenoviridae/fisiologia , Animais , Gânglios da Base/citologia , Gânglios da Base/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Córtex Motor/citologia , Córtex Motor/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Proteínas Recombinantes de Fusão/genética , Tálamo/citologia , Tálamo/metabolismo , Transgenes
5.
J Comp Neurol ; 525(3): 574-591, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27491021

RESUMO

Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neurônios Colinérgicos/citologia , Bulbo Olfatório/citologia , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/metabolismo , Dependovirus , Tomografia com Microscopia Eletrônica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Técnicas de Rastreamento Neuroanatômico , Bulbo Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Olfato/fisiologia
6.
J Neurophysiol ; 115(5): 2330-40, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823514

RESUMO

Ca(2+)-activated potassium currents [IK(Ca)] are an important link between the intracellular signaling system and the membrane potential, which shapes intrinsic electrophysiological properties. To better understand the ionic mechanisms that mediate intrinsic firing properties of olfactory uniglomerular projection neurons (uPNs), we used whole cell patch-clamp recordings in an intact adult brain preparation of the male cockroach Periplaneta americana to analyze IK(Ca) In the insect brain, uPNs form the principal pathway from the antennal lobe to the protocerebrum, where centers for multimodal sensory processing and learning are located. In uPNs the activation of IK(Ca) was clearly voltage and Ca(2+) dependent. Thus under physiological conditions IK(Ca) is strongly dependent on Ca(2+) influx kinetics and on the membrane potential. The biophysical characterization suggests that IK(Ca) is generated by big-conductance (BK) channels. A small-conductance (SK) channel-generated current could not be detected. IK(Ca) was sensitive to charybdotoxin (CTX) and iberiotoxin (IbTX) but not to apamin. The functional role of IK(Ca) was analyzed in occlusion experiments under current clamp, in which portions of IK(Ca) were blocked by CTX or IbTX. Blockade of IK(Ca) showed that IK(Ca) contributes significantly to intrinsic electrophysiological properties such as the action potential waveform and membrane excitability.


Assuntos
Condutos Olfatórios/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Apamina/farmacologia , Cálcio/metabolismo , Charibdotoxina/farmacologia , Baratas , Masculino , Condutos Olfatórios/citologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Células Receptoras Sensoriais/metabolismo
7.
Mol Cell Neurosci ; 68: 103-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25937343

RESUMO

During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5(-/-) olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5-Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Fatores de Transcrição Forkhead/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Condutos Olfatórios/citologia , Gravidez , Peixe-Zebra
8.
Dev Neurobiol ; 75(6): 594-607, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25649346

RESUMO

In the mouse olfactory system, various odorants are detected by approximately 1000 different odorant receptors (ORs) expressed in the olfactory sensory neurons (OSNs). It is well established that each OSN expresses only one functional OR gene in a monoallelic manner. Furthermore, OSN axons expressing the same OR converge to a set of glomeruli in the olfactory bulb (OB). During embryonic development, a coarse map is formed by the combination of two genetically programmed processes. One is OR-independent axonal projection along the dorsal-ventral (D-V) axis, and the other is OR-dependent projection along the anterior-posterior (A-P) axis. D-V projection is regulated by the anatomical location of OSNs within the olfactory epithelium (OE), whereas A-P projection is instructed by expressed OR molecules using cyclic adenosine monophosphate (cAMP) signals. After birth, the map is further refined in an activity-dependent manner by its conversion from a continuous to a discrete map through segregation of glomerular structures. Here, we summarize recent progress from our laboratory in understanding neural map formation in the mouse olfactory system.


Assuntos
Mapeamento Encefálico , Condutos Olfatórios/citologia , Condutos Olfatórios/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/fisiologia , Animais , Axônios , Camundongos , Mutação/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais
9.
J Comp Neurol ; 523(3): 479-94, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25312022

RESUMO

During development of the primary olfactory system, axon targeting is inaccurate and axons inappropriately project within the target layer or overproject into the deeper layers of the olfactory bulb. As a consequence there is considerable apoptosis of primary olfactory neurons during embryonic and postnatal development and axons of the degraded neurons need to be removed. Olfactory ensheathing cells (OECs) are the glia of the primary olfactory nerve and are known to phagocytose axon debris in the adult and postnatal animal. However, it is unclear when phagocytosis by OECs first commences. We investigated the onset of phagocytosis by OECs in the developing mouse olfactory system by utilizing two transgenic reporter lines: OMP-ZsGreen mice which express bright green fluorescent protein in primary olfactory neurons, and S100ß-DsRed mice which express red fluorescent protein in OECs. In crosses of these mice, the fate of the degraded axon debris is easily visualized. We found evidence of axon degradation at embryonic day (E)13.5. Phagocytosis of the primary olfactory axon debris by OECs was first detected at E14.5. Phagocytosis of axon debris continued into the postnatal animal during the period when there was extensive mistargeting of olfactory axons. Macrophages were often present in close proximity to OECs but they contributed only a minor role to clearing the axon debris, even after widespread degeneration of olfactory neurons by unilateral bulbectomy and methimazole treatment. These results demonstrate that from early in embryonic development OECs are the primary phagocytic cells of the primary olfactory nerve.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neuroglia/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/lesões , Mucosa Olfatória/citologia , Fagócitos/fisiologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Combinação de Medicamentos , Estradiol/efeitos adversos , Estradiol/análogos & derivados , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Luminescentes/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Neuroglia/ultraestrutura , Noretindrona/efeitos adversos , Bulbo Olfatório/crescimento & desenvolvimento , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/diagnóstico por imagem , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/lesões , Condutos Olfatórios/ultraestrutura , Fagócitos/ultraestrutura , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Testosterona/efeitos adversos , Testosterona/análogos & derivados , Ultrassonografia
10.
Cell Mol Life Sci ; 71(16): 3049-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24638094

RESUMO

In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the "one neuron-one receptor" rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the "one glomerulus-one receptor" rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal-ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.


Assuntos
Condutos Olfatórios/embriologia , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/embriologia , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Animais , Axônios/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Modelos Moleculares , Condutos Olfatórios/citologia , Neurônios Receptores Olfatórios/citologia , Receptores Acoplados a Proteínas G/metabolismo
11.
Behav Brain Res ; 265: 38-48, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24485916

RESUMO

Previously it has been demonstrated that processes of postnatal neurogenesis in the olfactory system neurogenic region-the subventricular zone (SVZ), rostral migratory stream (RMS), and olfactory bulb (OB) can be significantly altered by different factors of an environment. However, the mechanisms involved in regulation of neurogenesis by exogenous factors in the olfactory system remain unclear. The purpose of the present study was to contribute to the understanding of these mechanisms by immunohistochemical assessment of Fos protein induction in areas of adult neurogenesis. To evaluate the coordinate activation of Fos production in neurons of the olfactory system neurogenic region, a brief exposure to artificial odor (eau de Cologne) or naturalistic odor (cat odor) has been used in alert rats. Our results revealed that the effects of these odors are easily distinguishable at both the behavioral and the morphological level. Cat odor induced greater changes in anxiety level, and produced typical pattern of Fos activation in the accessory olfactory bulb (AOB), a brain region associated with defensive behavior. An important finding is, that next to distinct Fos expression in the OB and the AOB, Fos positive cells have been found also within the SVZ/RMS of the odor stimulated rats. Interestingly, Fos expression in the RMS was detected only after exposure to artificial odor stimulus. These results provide new evidence that some SVZ/RMS cells have complete prerequisites necessary for the Fos signal transduction cascade.


Assuntos
Comportamento Exploratório/fisiologia , Locomoção/fisiologia , Neurogênese/fisiologia , Odorantes , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Análise de Variância , Animais , Gatos , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Masculino , NADP/metabolismo , Ratos , Ratos Wistar
12.
J Anat ; 224(2): 192-206, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24164558

RESUMO

Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated 'olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether regional and interspecific differences in immunostaining patterns of olfactory pathway markers have functional significance requires further investigation.


Assuntos
Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Animais , Biomarcadores/análise , Imuno-Histoquímica , Bulbo Olfatório/química , Neurônios Receptores Olfatórios/citologia , Proteínas S100/análise , Peixe-Zebra
13.
Brain Struct Funct ; 219(1): 85-104, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23224251

RESUMO

The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.


Assuntos
Movimento Celular/fisiologia , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/fisiologia , Nervo Olfatório , Condutos Olfatórios , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Bisbenzimidazol , Cação (Peixe) , Proteínas do Domínio Duplacortina , Proteínas ELAV/metabolismo , Embrião de Mamíferos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/crescimento & desenvolvimento , Nervo Olfatório/citologia , Nervo Olfatório/embriologia , Nervo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Fator de Transcrição PAX6 , Antígeno Nuclear de Célula em Proliferação/metabolismo
14.
PLoS One ; 8(10): e75716, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130737

RESUMO

The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons.


Assuntos
Adiponectina/farmacologia , Condutos Olfatórios/citologia , Condutos Olfatórios/efeitos dos fármacos , Animais , Benzaldeídos/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos Endogâmicos C57BL , Mucosa Nasal/metabolismo , Nariz/citologia , Nariz/efeitos dos fármacos , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Mucosa Olfatória/efeitos dos fármacos , Mucosa Olfatória/metabolismo , Condutos Olfatórios/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
15.
J Neurosci ; 33(38): 15195-206, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24048849

RESUMO

Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.


Assuntos
Dependovirus/genética , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos/fisiologia , Neurônios/metabolismo , Condutos Olfatórios/citologia , Potenciais de Ação/genética , Animais , Channelrhodopsins , Colecistocinina/genética , Colecistocinina/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/genética , Integrases , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Neurônios/classificação , Condutos Olfatórios/metabolismo , Condutos Olfatórios/fisiologia , Optogenética , Técnicas de Patch-Clamp , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transdução Genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-23974854

RESUMO

Male Manduca sexta moths are attracted to a mixture of two components of the female's sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male's antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Encéfalo/citologia , Neurônios/efeitos dos fármacos , Odorantes , Condutos Olfatórios/citologia , Atrativos Sexuais/farmacologia , Animais , Mapeamento Encefálico , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Estimulação Elétrica , Corantes Fluorescentes/metabolismo , Lateralidade Funcional , Masculino , Manduca , Estatísticas não Paramétricas
17.
J Neurosci ; 33(28): 11361-71, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843509

RESUMO

Proper assembly of neural circuits requires newly born neurons to migrate from their place of origin to their final location. Little is known about the mechanisms of axophilic neuronal migration, whereby neurons travel along axon pathways to navigate to their destinations. Gonadotropin-releasing hormone (GnRH)-expressing neurons migrate along olfactory axons from the nose into the forebrain during development, and were used as a model of axophilic migration. After migrating, GnRH neurons are located in the hypothalamus and are essential for puberty and maintenance of reproductive function. To gain a better understanding of the mechanisms underlying axophilic migration, we investigated in mice the regulation of movement from calcium signals to cytoskeletal dynamics. Live imaging revealed robust calcium activity during axophilic migration, and calcium release through IP3 receptors was found to stimulate migration. This occurred through a signaling pathway involving the calcium sensor calcium/calmodulin protein kinase kinase, AMP-activated kinase, and RhoA/ROCK. By imaging GnRH neurons expressing actin-GFP or Lifeact-RFP, calcium release was found to stimulate leading process actin flow away from the cell body. In contrast, actin contractions at the cell rear were unaffected by this calcium signaling pathway. These findings are the first to test the regulation of cytoskeletal dynamics in axophilic migration, and reveal mechanisms of movement that have broad implications for the migration of other CNS populations.


Assuntos
Actinas/metabolismo , Axônios/fisiologia , Cálcio/metabolismo , Movimento Celular/fisiologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Camundongos , Condutos Olfatórios/citologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-23734103

RESUMO

The dorsal habenular nuclei of the zebrafish epithalamus have become a valuable model for studying the development of left-right (L-R) asymmetry and its function in the vertebrate brain. The bilaterally paired dorsal habenulae exhibit striking differences in size, neuroanatomical organization, and molecular properties. They also display differences in their efferent connections with the interpeduncular nucleus (IPN) and in their afferent input, with a subset of mitral cells distributed on both sides of the olfactory bulb innervating only the right habenula. Previous studies have implicated the dorsal habenulae in modulating fear/anxiety responses in juvenile and adult zebrafish. It has been suggested that the asymmetric olfactory-habenula pathway (OB-Ha), revealed by selective labeling from an lhx2a:YFP transgene, mediates fear behaviors elicited by alarm pheromone. Here we show that expression of the fam84b gene demarcates a unique region of the right habenula that is the site of innervation by lhx2a:YFP-labeled olfactory axons. Upon ablation of the parapineal, which normally promotes left habenular identity; the fam84b domain is present in both dorsal habenulae and lhx2a:YFP-labeled olfactory bulb neurons form synapses on the left and the right side. To explore the relevance of the asymmetric olfactory projection and how it might influence habenular function, we tested activation of this pathway using odorants known to evoke behaviors. We find that alarm substance or other aversive odors, and attractive cues, activate fos expression in subsets of cells in the olfactory bulb but not in the lhx2a:YFP expressing population. Moreover, neither alarm pheromone nor chondroitin sulfate elicited fos activation in the dorsal habenulae. The results indicate that L-R asymmetry of the epithalamus sets the directionality of olfactory innervation, however, the lhx2a:YFP OB-Ha pathway does not appear to mediate fear responses to aversive odorants.


Assuntos
Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Habenula/metabolismo , Bulbo Olfatório/metabolismo , Condutos Olfatórios/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica , Habenula/citologia , Odorantes , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Peixe-Zebra
19.
PLoS One ; 8(4): e62089, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23614017

RESUMO

Neuropeptide S (NPS) is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR). High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v.) injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir) neurons that also bear NPSR. NPS (0.1-1 nmol) i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5)]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON), piriform cortex (Pir), ventral tenia tecta (VTT), the anterior cortical amygdaloid nucleus (ACo) and lateral entorhinal cortex (LEnt). The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.


Assuntos
Neurônios/metabolismo , Neuropeptídeos/farmacologia , Condutos Olfatórios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/efeitos dos fármacos , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo
20.
Hum Mol Genet ; 22(12): 2495-509, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23474819

RESUMO

The autosomal recessive disorder ataxia-telangiectasia (A-T) is characterized by genome instability, cancer predisposition and neurodegeneration. Although the role of ataxia-telangiectasia mutated (ATM) protein, the protein defective in this syndrome, is well described in the response to DNA damage, its role in protecting the nervous system is less clear. We describe the establishment and characterization of patient-specific stem cells that have the potential to address this shortcoming. Olfactory neurosphere (ONS)-derived cells were generated from A-T patients, which expressed stem cell markers and exhibited A-T molecular and cellular characteristics that included hypersensitivity to radiation, defective radiation-induced signaling and cell cycle checkpoint defects. Introduction of full-length ATM cDNA into these cells corrected defects in the A-T cellular phenotype. Gene expression profiling and pathway analysis revealed defects in multiple cell signaling pathways associated with ATM function, with cell cycle, cell death and DNA damage response pathways being the most significantly dysregulated. A-T ONS cells were also capable of differentiating into neural progenitors, but they were defective in neurite formation, number of neurites and length of these neurites. Thus, ONS cells are a patient-derived neural stem cell model that recapitulate the phenotype of A-T, do not require genetic reprogramming, have the capacity to differentiate into neurons and have potential to delineate the neurological defect in these patients.


Assuntos
Ataxia Telangiectasia/fisiopatologia , Neurônios/citologia , Condutos Olfatórios/citologia , Células-Tronco/citologia , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Lactente , Masculino , Modelos Biológicos , Mucosa , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Células-Tronco/metabolismo , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA