Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36645471

RESUMO

The initial representation of the instantaneous temporal information about food odor concentration in the primary olfactory center, the antennal lobe, was examined by simultaneously recording the activity of antagonistic ON and OFF neurons with 4-channel tetrodes. During presentation of pulse-like concentration changes, ON neurons encode the rapid concentration increase at pulse onset and the pulse duration, and OFF neurons the rapid concentration decrease at pulse offset and the duration of the pulse interval. A group of ON neurons establish a concentration-invariant representation of odor pulses. The responses of ON and OFF neurons to oscillating changes in odor concentration are determined by the rate of change in dependence on the duration of the oscillation period. By adjusting sensitivity for fluctuating concentrations, these neurons improve the representation of the rate of the changing concentration. In other ON and OFF neurons, the response to changing concentrations is invariant to large variations in the rate of change due to variations in the oscillation period, facilitating odor identification in the antennal-lobe. The independent processing of odor identity and the temporal dynamics of odor concentration may speed up processing time and improve behavioral performance associated with plume tracking, especially when the air is not moving.


Assuntos
Baratas , Eletrodos , Odorantes , Condutos Olfatórios , Animais , Baratas/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Neurônios , Antenas de Artrópodes
2.
Cell Tissue Res ; 383(1): 59-73, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33486607

RESUMO

Highly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.


Assuntos
Encéfalo/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Animais , Baratas
3.
Cell Tissue Res ; 383(1): 535-548, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404842

RESUMO

In numerous mammalian species, the nose harbors several compartments populated by chemosensory cells. Among them, the Grueneberg ganglion (GG) located in the anterior nasal region comprises sensory neurons activated by given substances. In rodents, in which the GG has been best studied, these chemical cues mainly include heterocyclic compounds released by predators or by conspecifics. Since some of these substances evoke fear- or stress-associated responses, the GG is considered as a detector for alerting semiochemicals. In fact, certain behavioral and physiological reactions to alarm pheromones and predator-secreted kairomones are attenuated in the absence of a functional GG. Intriguingly, GG neurons are also stimulated by cool temperatures. Moreover, ambient temperatures modulate olfactory responsiveness in the GG, indicating that cross-talks exist between the transduction pathways mediating chemo- and thermosensory signaling in this organ. In this context, exploring the relevant molecular cascades has demonstrated that some chemosensory transduction elements are also crucial for thermosensory signaling in the GG. Finally, for further processing of sensory information, axons of GG neurons project to the olfactory bulb of the brain where they innervate distinct glomerular structures belonging to the enigmatic necklace glomeruli. In this review, the stimuli activating GG neurons as well as the underlying transduction pathways are summarized. Because these stimuli do not exclusively activate GG neurons but also other sensory cells, the biological relevance of the GG is discussed, with a special focus on the role of the GG in detecting alarm signals.


Assuntos
Cistos Glanglionares/fisiopatologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Feromônios/metabolismo , Animais , Camundongos , Transdução de Sinais
4.
Brain Res ; 1732: 146676, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981677

RESUMO

In the mouse olfactory bulb (OB), odor input from the olfactory epithelium innervates topographically to form odorant maps, which are mirror-image arrangements of glomerular clusters with domain organization. However, the functional role of the mirror-image representation in the OB remains unknown. Predator odors induce stress responses, and the dorsal domain of the dorsolateral wall of the olfactory bulb (dlOB) is known to be involved in this process. However, it remains unclear whether the activities in the medial wall of the OB (mOB), the other mirror half, are also involved in stress responses. Therefore, in this study, we investigated whether the mOB and dlOB are required for the induction of stress responses using lesioning or electrical stimulation. Although there were no significant differences in the number of activated neurons in the bed nucleus of the stria terminalis, posterior piriform cortex or amygdalo-piriform transition area, fewer activated neurons were observed in the anterior piriform cortex (APC) following lesion of both the mOB and dlOB combined. No changes were observed in the density of activated cells in any examined brain region following stimulation of either the mOB or dlOB alone. However, activated neurons in the APC were significantly more numerous following simultaneous stimulation of the mOB and dlOB. Collectively, our results suggest that simultaneous activation in both the mOB and dlOB is needed to induce APC neural activities that produce stress-like behavior. These findings provide insight into olfactory information processing, and may also help in the development of therapies for odor-induced stress behaviors.


Assuntos
Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Animais , Masculino , Camundongos , Odorantes , Mucosa Olfatória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
5.
Neuroscience ; 400: 48-61, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30599273

RESUMO

The parallel processing of chemical signals by the main olfactory system and the vomeronasal system has been known to control animal behavior. The physiological significance of peripheral parallel pathways consisting of olfactory sensory neurons and vomeronasal sensory neurons is not well understood. Here, we show complementary characteristics of the information transfer of the olfactory sensory neurons and vomeronasal sensory neurons. A difference in excitability between the sensory neurons was revealed by patch-clamp experiments. The olfactory and vomeronasal sensory neurons showed phasic and tonic firing, respectively. Intrinsic channel kinetics determining firing patterns was demonstrated by a Hodgkin-Huxley-style computation. Our estimation of the information carried by action potentials during one cycle of sinusoidal stimulation with variable durations revealed distinct characteristics of information transfer between the sensory neurons. Phasic firing of the olfactory sensory neurons was suitable to carry information about rapid changes in a shorter cycle (<200 ms). In contrast, tonic firing of the vomeronasal sensory neurons was able to convey information about smaller stimuli changing slowly with longer cycles (>500 ms). Thus, the parallel pathways of the two types of sensory neurons can convey information about a wide range of dynamic stimuli. A combination of complementary characteristics of olfactory information transfer may enhance the synergy of the interaction between the main olfactory system and the vomeronasal system.


Assuntos
Potenciais de Ação , Neurônios Receptores Olfatórios/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Estimulação Elétrica , Teoria da Informação , Masculino , Camundongos Endogâmicos BALB C , Modelos Neurológicos , Condutos Olfatórios/fisiologia
6.
BMB Rep ; 52(4): 259-264, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30293545

RESUMO

Social requirements are needed for living in an aging society and individual longevity. Among them, improved health and medical cares, appropriate for an aging society are strongly demanded. Human cord blood-derived plasma (hUCP) has recently emerged for its unique anti-aging effects. In this study, we investigated brain rejuvenation, particularly olfactory function, that could be achieved by a systemic administration of young blood and its underlying mechanisms. Older than 24-month-old mice were used as an aged group and administered with intravenous injection of hUCP repetitively, eight times. Anti-aging effect of hUCP on olfactory function was evaluated by buried food finding test. To investigate the mode of action of hUCP, brain, serum and spleen of mice were collected for further ex vivo analyses. Systemic injection of hUCP improved aging-associated olfactory deficits, reducing time for finding food. In the brain, although an infiltration of activated microglia and its expression of cathepsin S remarkably decreased, significant changes of proinflammatory factors were not detected. Conversely, peripheral immune balance distinctly switched from predominance of Type 1 helper T (Th1) cells to alternative regulatory T cells (Tregs). These findings indicate that systemic administration of hUCP attenuates age-related neuroinflammation and subsequent olfactory dysfunction by modulating peripheral immune balance toward Treg cells, suggesting another therapeutic function and mechanism of hUCP administration. [BMB Reports 2019; 52(4): 259-264].


Assuntos
Sangue Fetal/fisiologia , Condutos Olfatórios/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais , Condutos Olfatórios/fisiologia , Plasma/metabolismo , Baço/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(21): 5588-5593, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735707

RESUMO

Nervous systems must distinguish sensory signals derived from an animal's own movements (reafference) from environmentally derived sources (exafference). To accomplish this, motor networks producing reafference transmit motor information, via a corollary discharge circuit (CDC), to affected sensory networks, modulating sensory function during behavior. While CDCs have been described in most sensory modalities, none have been observed projecting to an olfactory pathway. In moths, two mesothoracic to deutocerebral histaminergic neurons (MDHns) project from flight sensorimotor centers in the mesothoracic neuromere to the antennal lobe (AL), where they provide the sole source of histamine (HA), but whether they represent a CDC is unknown. We demonstrate that MDHn spiking activity is positively correlated with wing-motor output and increased before bouts of motor activity, suggesting that MDHns communicate global locomotor state, rather than providing a precisely timed motor copy. Within the AL, HA application sharpened entrainment of projection neuron responses to odor stimuli embedded within simulated wing-beat-induced flows, whereas MDHn axotomy or AL HA receptor (HA-r) blockade reduced entrainment. This finding is consistent with higher-order CDCs, as the MDHns enhanced rather than filtered entrainment of AL projection neurons. Finally, HA-r blockade increased odor detection and discrimination thresholds in behavior assays. These results establish MDHns as a CDC that modulates AL temporal resolution, enhancing odor-guided behavior. MDHns thus appear to represent a higher-order CDC to an insect olfactory pathway; this CDC's unique nature highlights the importance of motor-to-sensory signaling as a context-specific mechanism that fine-tunes sensory function.


Assuntos
Voo Animal , Histamina/farmacologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Asas de Animais/fisiologia , Animais , Manduca , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiologia , Condutos Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos
8.
J Neuroendocrinol ; 29(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28862781

RESUMO

In the main olfactory system, odours are registered at the main olfactory epithelium and are then processed at the main olfactory bulb (MOB) and, subsequently, by the anterior olfactory nucleus (AON), the piriform cortex (PC) and the cortical amygdala. Previously, we reported populations of vasopressin neurones in different areas of the rat olfactory system, including the MOB, accessory olfactory bulb (AOB) and the AON and showed that these are involved in the coding of social odour information. Utilising immunohistochemistry and a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP-vasopressin), we now show a population of vasopressin neurones in the PC. The vasopressin neurones are predominantly located in the layer II of the PC and the majority co-express the excitatory transmitter glutamate. Furthermore, there is no sex difference in the number of neurones expressing vasopressin. Electrical stimulation of the lateral olfactory tract leads to a significant increase in the number of Fos-positive nuclei in the PC, MOB, AOB, dorsal AON and supraoptic nucleus (SON). However, there was only a significant increase in Fos expression in vasopressin cells of the PC and SON. Thus, functionally distinct populations of vasopressin cells are implicated in olfactory processing at multiple stages of the olfactory pathway.


Assuntos
Neurônios/metabolismo , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Córtex Piriforme/citologia , Proteínas Proto-Oncogênicas c-fos/imunologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Vasopressinas/metabolismo , Animais , Contagem de Células , Estimulação Elétrica , Feminino , Ácido Glutâmico/metabolismo , Masculino , Percepção Olfatória/fisiologia , Córtex Piriforme/fisiologia , Ratos , Ratos Transgênicos , Caracteres Sexuais , Núcleo Supraóptico/fisiologia
9.
Front Neural Circuits ; 11: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529476

RESUMO

In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30-40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information.


Assuntos
Encéfalo/citologia , Baratas/fisiologia , Rede Nervosa/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Análise por Conglomerados , Imageamento Tridimensional , Masculino , Microscopia Confocal , Odorantes , Neurônios Receptores Olfatórios/classificação
10.
Clin Ter ; 167(4): e78-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598027

RESUMO

Dogs'smell ability is about 10000-100000 more developed than humans' one. Dogs smell is usually exploited in forensic medicine, to find missing people and specific substances showing peculiar sensorial features. In clinic, there is the possibility to take advantage of dogs smell, which are conveniently trained, for the screening of cancers and other diseases. The common feature is the presence of molecules in organic samples that may be considered as biomarkers of a specific pathology. In cancer, scientific evidences exist about screening of melanoma, lung, breast, rectum, ovarian, prostate and bladder cancer. Instead, other pathologies manifest the presence of organic volatile compounds in biologic materials, such as spit, faeces and urine that may be studied by dogs smell in order to identify the presence of a specific disease. This review shows the state of the art of actual dogs' olfactory ability based on scientific principles and the advantages and the disadvantages of this method. The authors also reveal some potential pathologies joined by the presence of organic volatile compounds, which may be investigated by dogs smell.


Assuntos
Técnicas e Procedimentos Diagnósticos , Neoplasias/diagnóstico , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Animais , Biomarcadores , Cães , Humanos , Masculino , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis
11.
PLoS One ; 11(8): e0160161, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478892

RESUMO

The mirid bug Apolygus lucorum (Meyer-Dür), a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70-80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug.


Assuntos
Heterópteros/anatomia & histologia , Animais , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/fisiologia , Axônios/metabolismo , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/fisiologia , Feminino , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Microscopia Confocal , Condutos Olfatórios/fisiologia , Células Receptoras Sensoriais/fisiologia
12.
PLoS One ; 11(6): e0156539, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27305041

RESUMO

Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb.


Assuntos
Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Atividade Motora/fisiologia , Bulbo Olfatório/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Comportamento Alimentar/fisiologia , Feminino , Masculino , Bulbo Olfatório/cirurgia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Coelhos , Núcleo Supraquiasmático/fisiologia
13.
FEBS J ; 283(9): 1748-66, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26934374

RESUMO

The olfactory-type signaling machinery has been known to be involved not only in odorant detection but also in other tissues with unsuspected sensory roles. As a barrier, the choroid plexus (CP) is an active participant in the monitoring of the cerebrospinal fluid (CSF), promptly responding to alterations in its composition. We hypothesized that olfactory signaling could be active in CP, contributing to the surveillance of the CSF composition. We determined the mRNA and protein expression of the major components of the olfactory transduction pathway in the rat CP, including odorant receptors, the olfactory G-protein (Gαolf), adenylate cyclase 3 and cyclic nucleotide-gated channel 2. The functionality of the transduction pathway and the intracellular mechanisms involved were analyzed by DC field potential recording electrophysiological analysis, in an ex vivo CP-brain setup, using polyamines as stimuli and blockers of the downstream signaling pathways. Concentration-dependent responses were obtained for the polyamines studied (cadaverine, putrescine, spermine and spermidine), all known to be present in the CSF. Transfection of a CP epithelial cell line with siRNA against Gαolf effectively knocked down protein expression and reduced the CP cells' response to spermine. Thus, the key components of the olfactory chemosensory apparatus are present and are functional in murine CP, and polyamines seem to trigger both the cAMP and the phospholipase C-inositol 1,4,5-trisphosphate pathways. Olfactory-like chemosensory signaling may be an essential component of the CP chemical surveillance apparatus to detect alterations in the CSF composition, and to elicit responses to modulate and maintain brain homeostasis.


Assuntos
Adenilil Ciclases/genética , Plexo Corióideo/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Células Epiteliais/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Adenilil Ciclases/líquido cefalorraquidiano , Animais , Cadaverina/líquido cefalorraquidiano , Cadaverina/farmacologia , Linhagem Celular , Plexo Corióideo/citologia , Plexo Corióideo/efeitos dos fármacos , AMP Cíclico/líquido cefalorraquidiano , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/líquido cefalorraquidiano , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Subunidades alfa de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa de Proteínas de Ligação ao GTP/líquido cefalorraquidiano , Regulação da Expressão Gênica , Inositol 1,4,5-Trifosfato/líquido cefalorraquidiano , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Poliaminas/líquido cefalorraquidiano , Poliaminas/farmacologia , Cultura Primária de Células , Putrescina/líquido cefalorraquidiano , Putrescina/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Espermidina/líquido cefalorraquidiano , Espermidina/farmacologia , Espermina/líquido cefalorraquidiano , Espermina/farmacologia , Fosfolipases Tipo C/líquido cefalorraquidiano , Fosfolipases Tipo C/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-26909026

RESUMO

Neural circuits projecting information from motor to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir) neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL) glomeruli. Furthermore, within the AL we show that the M. sexta histamine B receptor (MsHisClB) is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.


Assuntos
Manduca/anatomia & histologia , Condutos Olfatórios/fisiologia , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Animais , Proteínas de Drosophila/metabolismo , FMRFamida/metabolismo , Histamina/metabolismo , Hormônios de Inseto/metabolismo , Metamorfose Biológica , Microscopia Confocal , Neuropeptídeos/metabolismo , Bulbo Olfatório/citologia , Condutos Olfatórios/lesões , Receptores Histamínicos/metabolismo , Ácido gama-Aminobutírico/metabolismo
15.
J Neurophysiol ; 115(5): 2330-40, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823514

RESUMO

Ca(2+)-activated potassium currents [IK(Ca)] are an important link between the intracellular signaling system and the membrane potential, which shapes intrinsic electrophysiological properties. To better understand the ionic mechanisms that mediate intrinsic firing properties of olfactory uniglomerular projection neurons (uPNs), we used whole cell patch-clamp recordings in an intact adult brain preparation of the male cockroach Periplaneta americana to analyze IK(Ca) In the insect brain, uPNs form the principal pathway from the antennal lobe to the protocerebrum, where centers for multimodal sensory processing and learning are located. In uPNs the activation of IK(Ca) was clearly voltage and Ca(2+) dependent. Thus under physiological conditions IK(Ca) is strongly dependent on Ca(2+) influx kinetics and on the membrane potential. The biophysical characterization suggests that IK(Ca) is generated by big-conductance (BK) channels. A small-conductance (SK) channel-generated current could not be detected. IK(Ca) was sensitive to charybdotoxin (CTX) and iberiotoxin (IbTX) but not to apamin. The functional role of IK(Ca) was analyzed in occlusion experiments under current clamp, in which portions of IK(Ca) were blocked by CTX or IbTX. Blockade of IK(Ca) showed that IK(Ca) contributes significantly to intrinsic electrophysiological properties such as the action potential waveform and membrane excitability.


Assuntos
Condutos Olfatórios/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Apamina/farmacologia , Cálcio/metabolismo , Charibdotoxina/farmacologia , Baratas , Masculino , Condutos Olfatórios/citologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Células Receptoras Sensoriais/metabolismo
16.
Development ; 143(1): 123-32, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26732841

RESUMO

Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.


Assuntos
Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Bulbo Olfatório/citologia , Condutos Olfatórios/embriologia , Neurônios Receptores Olfatórios/citologia , Peixe-Zebra/embriologia , Animais , Sinais (Psicologia) , Receptor DCC , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Neuropilina-1/genética , Neuropilina-2/genética , Bulbo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Semaforinas/biossíntese , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
PLoS One ; 10(9): e0138541, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407299

RESUMO

Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex: they differ from each other and each is formed from a variable mosaic of neurons. The results suggest that the olfactory cortices are not merely a remnant architype of the primordial forebrain but varied and independent regions.


Assuntos
Biomarcadores/metabolismo , Neocórtex/metabolismo , Córtex Olfatório/metabolismo , Animais , Biomarcadores/análise , Mapeamento Encefálico , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Córtex Olfatório/embriologia , Córtex Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Gravidez , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Proteínas Repressoras/metabolismo , Distribuição Tecidual , Proteínas Supressoras de Tumor/metabolismo
18.
Braz. j. med. biol. res ; 48(7): 616-621, 07/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-751339

RESUMO

As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. Yeast CUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study, CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.


Assuntos
Animais , Humanos , Mamíferos/fisiologia , Feromônios/fisiologia , Comportamento Animal/fisiologia , Comportamento/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Mucosa Olfatória/fisiologia , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Feromônios Humano/fisiologia , Olfato/fisiologia
19.
Mol Cell Neurosci ; 68: 103-19, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25937343

RESUMO

During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5(-/-) olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5-Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Fatores de Transcrição Forkhead/genética , Hormônio Liberador de Gonadotropina/genética , Proteínas de Homeodomínio/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Condutos Olfatórios/citologia , Gravidez , Peixe-Zebra
20.
Am J Rhinol Allergy ; 29(2): 124-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785753

RESUMO

BACKGROUND: The blood-brain barrier (BBB) is a highly efficient system that separates the central nervous system (CNS) from general circulation and promotes selective transport of molecules that are essential for brain function. However, it also limits the distribution of systemically administered therapeutics to the brain; therefore, there is a restricted number of drugs available for the treatment of brain disorders. Several drug-targeting strategies have been developed to attempt to bypass the BBB, but none has proved sufficiently effective in reaching the brain. METHODS: The objective of this study is to generally review these strategies of drug administration to the CNS. RESULTS: Noninvasive methods of drug delivery, such as chemical and biologic transport systems, do not represent a feasible platform, whereas for most drugs, it is still not possible to achieve therapeutic levels within the brain tissue after intravenous or oral administration, and the use of higher potency or more concentrated doses may cause serious toxic side effects. Direct intrathecal drug delivery through a catheter into the CNS also presents several problems. Intranasal drug delivery is a potential alternative method due to the direct transport into the cerebrospinal fluid (CSF) compartment along the olfactory pathway, but the study's conclusions are controversial. An endoscopic intranasal surgical procedure using established skull base surgery reconstruction techniques based on the use of a nasal mucosa surgical flap as the only obstacle between the nose and the subarachnoid space has appeared as a potential solution to increase the absorption of intranasal drugs to the CNS. CONCLUSION: Despite extensive efforts to develop new techniques to cross the BBB, none has proved sufficiently effective in reaching the brain, whereas minimizing adverse effects and the endoscopic mucosal grafting technique offers new potential promise.


Assuntos
Encefalopatias/tratamento farmacológico , Sistema Nervoso Central/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Espaço Subaracnóideo/efeitos dos fármacos , Retalhos Cirúrgicos/estatística & dados numéricos , Administração Intranasal , Animais , Barreira Hematoencefálica/fisiologia , Sistema Nervoso Central/fisiologia , Endoscopia , Humanos , Mucosa Nasal/cirurgia , Condutos Olfatórios/fisiologia , Condutos Olfatórios/cirurgia , Procedimentos de Cirurgia Plástica , Base do Crânio/cirurgia , Espaço Subaracnóideo/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA