Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37534394

RESUMO

The regulation of the intracellular level of ATP is a fundamental aspect of bioenergetics. Actin cytoskeletal dynamics have been reported to be an energetic drain in developing neurons and platelets. We addressed the role of actin dynamics in primary embryonic chicken neurons using luciferase assays, and by measurement of the ATP/ADP ratio using the ratiometric reporter PercevalHR and the ATP level using the ratiometric reporter mRuby-iATPSnFR. None of the methods revealed an effect of suppressing actin dynamics on the decline in the neuronal ATP level or the ATP/ADP ratio following shutdown of ATP production. Similarly, we find that treatments that elevate or suppress actin dynamics do not alter the ATP/ADP ratio in growth cones, the subcellular domain with the highest actin dynamics in developing neurons. Collectively, the data indicate that actin cytoskeletal dynamics are not a significant energy drain in developing neurons and that the ATP/ADP ratio is maintained when energy utilization varies. Discrepancies between prior work and the current data are discussed with emphasis on methodology and interpretation of the data.


Assuntos
Actinas , Cones de Crescimento , Embrião de Galinha , Animais , Actinas/metabolismo , Cones de Crescimento/metabolismo , Citoesqueleto/metabolismo , Metabolismo Energético , Trifosfato de Adenosina/metabolismo
2.
Mol Biol Cell ; 34(8): ar83, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223966

RESUMO

Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to the morphogenetic processes of the plasma membrane, rather than to regulate actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment.


Assuntos
Actinas , Cones de Crescimento , Animais , Actinas/metabolismo , Axônios/metabolismo , Drosophila/metabolismo , Cones de Crescimento/metabolismo , Proteínas Proto-Oncogênicas c-abl
3.
J Biol Chem ; 299(5): 104687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044214

RESUMO

Axon pathfinding is an essential step in neuronal network formation. Shootin1a is a clutch-linker molecule that is mechanically involved in axon outgrowth and guidance. It was previously shown that concentration gradients of axon guidance molecule netrin-1 in the extracellular environment elicit asymmetrically localized Pak1 kinase-mediated phosphorylation of shootin1a within axonal growth cones, which is higher on the netrin-1 source side. This asymmetric phosphorylation promotes shootin1a-mediated local actin-adhesion coupling within growth cones, thereby generating directional forces for turning the growth cone toward the netrin-1 source. However, how the spatial differences in netrin-1 concentration are transduced into the asymmetrically localized signaling within growth cones remains unclear. Moreover, the protein phosphatases that dephosphorylate shootin1a remain unidentified. Here, we report that protein phosphatase-1 (PP1) dephosphorylates shootin1a in growth cones. We found that PP1 overexpression abolished the netrin-1-induced asymmetric localization of phosphorylated shootin1a as well as axon turning. In addition, we show PP1 inhibition reversed the asymmetrically localized shootin1a phosphorylation within growth cones under netrin-1 gradient, thereby changing the netrin-1-induced growth cone turning from attraction to repulsion. These data indicate that PP1-mediated shootin1a dephosphorylation plays a key role in organizing asymmetrically localized phosphorylated shootin1a within growth cones, which regulates netrin-1-induced axon guidance.


Assuntos
Orientação de Axônios , Proteínas do Tecido Nervoso , Netrina-1 , Proteína Fosfatase 1 , Animais , Camundongos , Axônios/metabolismo , Células Cultivadas , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Netrina-1/metabolismo , Proteína Fosfatase 1/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Cells ; 10(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208876

RESUMO

During the development of the retina and the nervous system, high levels of energy are required by the axons of retinal ganglion cells (RGCs) to grow towards their brain targets. This energy demand leads to an increase of glycolysis and L-lactate concentrations in the retina. L-lactate is known to be the endogenous ligand of the GPR81 receptor. However, the role of L-lactate and its receptor in the development of the nervous system has not been studied in depth. In the present study, we used immunohistochemistry to show that GPR81 is localized in different retinal layers during development, but is predominantly expressed in the RGC of the adult rodent. Treatment of retinal explants with L-lactate or the exogenous GPR81 agonist 3,5-DHBA altered RGC growth cone (GC) morphology (increasing in size and number of filopodia) and promoted RGC axon growth. These GPR81-mediated modifications of GC morphology and axon growth were mediated by protein kinases A and C, but were absent in explants from gpr81-/- transgenic mice. Living gpr81-/- mice showed a decrease in ipsilateral projections of RGCs to the dorsal lateral geniculate nucleus (dLGN). In conclusion, present results suggest that L-lactate and its receptor GPR81 play an important role in the development of the visual nervous system.


Assuntos
Lactatos/metabolismo , Sistema Nervoso/embriologia , Receptores Acoplados a Proteínas G/metabolismo , Visão Ocular/fisiologia , Animais , Axônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cones de Crescimento/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Proteína Quinase C/metabolismo , Retina/metabolismo , Tálamo/metabolismo
5.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33771901

RESUMO

Elaboration of neuronal processes is an early step in neuronal development. Guidance cues must work closely with intracellular trafficking pathways to direct expanding axons and dendrites to their target neurons during the formation of neuronal networks. However, how such coordination is achieved remains incompletely understood. Here, we characterize an interaction between fasciculation and elongation protein zeta 1 (FEZ1), an adapter involved in synaptic protein transport, and collapsin response mediator protein (CRMP)1, a protein that functions in growth cone guidance, at neuronal growth cones. We show that similar to CRMP1 loss-of-function mutants, FEZ1 deficiency in rat hippocampal neurons causes growth cone collapse and impairs axonal development. Strikingly, FEZ1-deficient neurons also exhibited a reduction in dendritic complexity stronger than that observed in CRMP1-deficient neurons, suggesting that the former could partake in additional developmental signaling pathways. Supporting this, FEZ1 colocalizes with VAMP2 in developing hippocampal neurons and forms a separate complex with deleted in colorectal cancer (DCC) and Syntaxin-1 (Stx1), components of the Netrin-1 signaling pathway that are also involved in regulating axon and dendrite development. Significantly, developing axons and dendrites of FEZ1-deficient neurons fail to respond to Netrin-1 or Netrin-1 and Sema3A treatment, respectively. Taken together, these findings highlight the importance of FEZ1 as a common effector to integrate guidance signaling pathways with intracellular trafficking to mediate axo-dendrite development during neuronal network formation.


Assuntos
Axônios , Receptores de Superfície Celular , Proteínas Adaptadoras de Transdução de Sinal , Animais , Axônios/metabolismo , Receptor DCC , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Ratos , Receptores de Superfície Celular/metabolismo
6.
Biosci Rep ; 40(10)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32985655

RESUMO

The understanding of molecules and their role in neurite initiation and/or extension is not only helpful to prevent different neurodegenerative diseases but also can be important in neuronal damage repair. In this work, we explored the role of transient receptor potential vanilloid 2 (TRPV2), a non-selective cation channel in the context of neurite functions. We confirm that functional TRPV2 is endogenously present in F11 cell line, a model system mimicking peripheral neuron. In F11 cells, TRPV2 localizes in specific subcellular regions enriched with filamentous actin, such as in growth cone, filopodia, lamellipodia and in neurites. TRPV2 regulates actin cytoskeleton and also interacts with soluble actin. Ectopic expression of TRPV2-GFP in F11 cell induces more primary and secondary neurites, confirming its role in neurite initiation, extension and branching events. TRPV2-mediated neuritogenesis is dependent on wildtype TRPV2 as cells expressing TRPV2 mutants reveal no neuritogenesis. These findings are relevant to understand the sprouting of new neurites, neuroregeneration and neuronal plasticity at the cellular, subcellular and molecular levels. Such understanding may have further implications in neurodegeneration and peripheral neuropathy.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Neuritos/metabolismo , Neurogênese , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Sinalização do Cálcio , Linhagem Celular Tumoral , Forma Celular , Cricetulus , Cones de Crescimento/metabolismo , Células HEK293 , Células HaCaT , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Canais de Cátion TRPV/genética , Fatores de Tempo
7.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32597939

RESUMO

Cell migration is driven by pushing and pulling activities of the actin cytoskeleton, but migration directionality is largely controlled by microtubules. This function of microtubules is especially critical for neuron navigation. However, the underlying mechanisms are poorly understood. Here we show that branched actin filament networks, the main pushing machinery in cells, grow directly from microtubule tips toward the leading edge in growth cones of hippocampal neurons. Adenomatous polyposis coli (APC), a protein with both tumor suppressor and cytoskeletal functions, concentrates at the microtubule-branched network interface, whereas APC knockdown nearly eliminates branched actin in growth cones and prevents growth cone recovery after repellent-induced collapse. Conversely, encounters of dynamic APC-positive microtubule tips with the cell edge induce local actin-rich protrusions. Together, we reveal a novel mechanism of cell navigation involving APC-dependent assembly of branched actin networks on microtubule tips.


Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Movimento Celular/fisiologia , Células Cultivadas , Cones de Crescimento/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Biochem Biophys Res Commun ; 523(3): 678-684, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31948754

RESUMO

The promotion of axonal regeneration is required for functional recovery from stroke and various neuronal injuries. However, axonal regeneration is inhibited by diverse axonal growth inhibitors, such as Nogo-A. Nogo-66, a C-terminal domain of Nogo-A, binds to the Nogo-A receptor 1 (NgR1) and induces the collapse of growth cones and inhibits neurite outgrowth. NgR1 is also a receptor for additional axonal growth inhibitors, suggesting it is an important target for the prevention of axonal growth inhibition. By using the indirect immunofluorescence method, we show for the first time that a cell-permeable cAMP analog (dibutyryl-cAMP) induced a rapid decrease in the cell surface expression of NgR1 in Neuroscreen-1 (NS-1) cells. The biotinylation method revealed that cAMP indeed induced internalization of NgR1 within minutes. Other intracellular cAMP-elevating agents, such as forskolin, which directly activates adenylyl cyclase, and rolipram, which inhibits cyclic nucleotide phosphodiesterase, also induced this process. This internalization was found to be reversible and influenced by intracellular levels of cAMP. Using selective activators and inhibitors of protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac), we found that NgR1 internalization is independent of PKA, but dependent on Epac. The decrease in cell surface expression of NgR1 desensitized NS-1 cells to Nogo-66-induced growth cone collapse. Therefore, it is likely that besides axonal growth inhibitors affecting neurons, neurons themselves also self-regulate their sensitivity to axonal growth inhibitors, as influenced by intracellular cAMP/Epac. This normal cellular regulatory mechanism may be pharmacologically exploited to overcome axonal growth inhibitors, and enhance functional recovery after stroke and neuronal injuries.


Assuntos
AMP Cíclico/metabolismo , Cones de Crescimento/metabolismo , Neurônios/metabolismo , Proteínas Nogo/metabolismo , Receptor Nogo 1/metabolismo , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neurônios/citologia , Células PC12 , Transporte Proteico , Ratos
9.
J Clin Invest ; 130(4): 2024-2040, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945017

RESUMO

After trauma, regeneration of adult CNS axons is abortive, causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment that stimulates axonal growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin 1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axonal growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed, and invasion of filopodia by MTs, orchestrating cytoskeletal dynamics toward axonal growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localization of MTs to growth cone filopodia was facilitated by direct MT binding and interaction with formins. In vivo, Pfn1 ablation limited regeneration of growth-competent axons after sciatic nerve and spinal cord injury. Adeno-associated viral (AAV) delivery of constitutively active Pfn1 to rodents promoted axonal regeneration, neuromuscular junction maturation, and functional recovery of injured sciatic nerves, and increased the ability of regenerating axons to penetrate the inhibitory spinal cord glial scar. Thus, we identify Pfn1 as an important regulator of axonal regeneration and suggest that AAV-mediated delivery of constitutively active Pfn1, together with the identification of modulators of Pfn1 activity, should be considered to treat the injured nervous system.


Assuntos
Citoesqueleto , Terapia Genética , Cones de Crescimento/metabolismo , Regeneração Nervosa , Nervo Isquiático/fisiologia , Traumatismos da Medula Espinal , Animais , Citoesqueleto/genética , Citoesqueleto/metabolismo , Dependovirus , Camundongos , Camundongos Knockout , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Profilinas/biossíntese , Profilinas/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Transdução Genética
10.
J Neurochem ; 152(3): 315-332, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31344270

RESUMO

During development, neurons extend axons toward their appropriate synaptic targets to establish functional neuronal connections. The growth cone, a highly motile structure at the tip of the axon, is capable of recognizing extracellular guidance cues and translating them into directed axon outgrowth through modulation of the actin cytoskeleton. Netrin-1 mediates its attractive function through the receptor deleted in colorectal cancer (DCC) to promote axon outgrowth and guidance. The calcium-activated protease calpain is involved in the cleavage of cytoskeletal proteins, which plays an important role during adhesion turnover and cell migration. However, its function during neuronal development is less understood. Here we demonstrate that netrin-1 activated calpain in embryonic rat cortical neurons in an extracellular-regulated kinase 1/2-dependent manner. In addition, we found that netrin-1 stimulation led to an increase in calpain-1 localization in the axon, whereas its endogenous inhibitor calpastatin was decreased in the growth cones of cortical neurons by indirect immunofluorescence. Interestingly, calpain-1 was able to cleave DCC in vitro. Furthermore, netrin-1 induced the cleavage of the cytoskeletal proteins spectrin and focal adhesion kinase concomitantly with the intracellular domain of DCC in a calpain-dependent manner in embryonic rat cortical neurons. Cortical neurons over-expressing calpastatin or calpain-depleted neurons displayed increased basal axon length and were unresponsive to netrin-1 stimulation. Altogether, we propose a novel model whereby netrin-1/DCC-mediated axon outgrowth is modulated by calpain-mediated proteolysis of DCC and cytoskeletal targets in embryonic cortical neurons. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Calpaína/metabolismo , Receptor DCC/metabolismo , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , Neurônios , Animais , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Cones de Crescimento/metabolismo , Netrina-1/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
11.
Elife ; 82019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31718774

RESUMO

Cortical collapse factors affect microtubule (MT) dynamics at the plasma membrane. They play important roles in neurons, as suggested by inhibition of axon growth and regeneration through the ARF activator Efa6 in C. elegans, and by neurodevelopmental disorders linked to the mammalian kinesin Kif21A. How cortical collapse factors influence axon growth is little understood. Here we studied them, focussing on the function of Drosophila Efa6 in experimentally and genetically amenable fly neurons. First, we show that Drosophila Efa6 can inhibit MTs directly without interacting molecules via an N-terminal 18 amino acid motif (MT elimination domain/MTED) that binds tubulin and inhibits microtubule growth in vitro and cells. If N-terminal MTED-containing fragments are in the cytoplasm they abolish entire microtubule networks of mouse fibroblasts and whole axons of fly neurons. Full-length Efa6 is membrane-attached, hence primarily blocks MTs in the periphery of fibroblasts, and explorative MTs that have left axonal bundles in neurons. Accordingly, loss of Efa6 causes an increase of explorative MTs: in growth cones they enhance axon growth, in axon shafts they cause excessive branching, as well as atrophy through perturbations of MT bundles. Efa6 over-expression causes the opposite phenotypes. Taken together, our work conceptually links molecular and sub-cellular functions of cortical collapse factors to axon growth regulation and reveals new roles in axon branching and in the prevention of axonal atrophy. Furthermore, the MTED delivers a promising tool that can be used to inhibit MTs in a compartmentalised fashion when fusing it to specifically localising protein domains.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Polimerização , Motivos de Aminoácidos , Animais , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/química , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Proteínas de Membrana/química , Camundongos , Células NIH 3T3 , Peptídeos/metabolismo , Domínios Proteicos , Pseudópodes/metabolismo
12.
J Biol Chem ; 294(28): 10954-10968, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152060

RESUMO

Neurite outgrowth requires coordinated cytoskeletal rearrangements in the growth cone and directional membrane delivery from the neuronal soma. As an essential Rho guanine nucleotide exchange factor (GEF), TRIO is necessary for cytoskeletal dynamics during neurite outgrowth, but its participation in the membrane delivery is unclear. Using co-localization studies, live-cell imaging, and fluorescence recovery after photobleaching analysis, along with neurite outgrowth assay and various biochemical approaches, we here report that in mouse cerebellar granule neurons, TRIO protein pools at the Golgi and regulates membrane trafficking by controlling the directional maintenance of both RAB8 (member RAS oncogene family 8)- and RAB10-positive membrane vesicles. We found that the spectrin repeats in Golgi-resident TRIO confer RAB8 and RAB10 activation by interacting with and activating the RAB GEF RABIN8. Constitutively active RAB8 or RAB10 could partially restore the neurite outgrowth of TRIO-deficient cerebellar granule neurons, suggesting that TRIO-regulated membrane trafficking has an important functional role in neurite outgrowth. Our results also suggest cross-talk between Rho GEF and Rab GEF in controlling both cytoskeletal dynamics and membrane trafficking during neuronal development. They further highlight how protein pools localized to specific organelles regulate crucial cellular activities and functions. In conclusion, our findings indicate that TRIO regulates membrane trafficking during neurite outgrowth in coordination with its GEF-dependent function in controlling cytoskeletal dynamics via Rho GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neuritos/metabolismo , Crescimento Neuronal/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Movimento Celular , Cerebelo/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Neuritos/fisiologia , Neurônios/metabolismo , Fosfoproteínas/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
13.
Neuron ; 102(3): 553-563.e8, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30853298

RESUMO

Neurons are extraordinarily large and highly polarized cells that require rapid and efficient communication between cell bodies and axons over long distances. In peripheral neurons, transcripts are transported along axons to growth cones, where they are rapidly translated in response to extrinsic signals. While studying Tp53inp2, a transcript highly expressed and enriched in sympathetic neuron axons, we unexpectedly discovered that Tp53inp2 is not translated. Instead, the transcript supports axon growth in a coding-independent manner. Increasing evidence indicates that mRNAs may function independently of their coding capacity; for example, acting as a scaffold for functionally related proteins. The Tp53inp2 transcript interacts with the nerve growth factor (NGF) receptor TrkA, regulating TrkA endocytosis and signaling. Deletion of Tp53inp2 inhibits axon growth in vivo, and the defects are rescued by a non-translatable form of the transcript. Tp53inp2 is an atypical mRNA that regulates axon growth by enhancing NGF-TrkA signaling in a translation-independent manner.


Assuntos
Fator de Crescimento Neural/metabolismo , Crescimento Neuronal/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Receptor trkA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Axônios/metabolismo , Endocitose , Cones de Crescimento/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Neurônios , Células PC12 , RNA não Traduzido/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Gânglio Cervical Superior/citologia
14.
Mol Neurobiol ; 56(9): 5987-5997, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30706367

RESUMO

Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that mainly surround GABA-ergic parvalbumin-positive interneurons in the adult brain. Previous studies revealed a parallel between PNN formation and the closure of the critical period. Moreover, ocular dominance plasticity is enhanced in response to PNN manipulations in adult animals. However, the mechanisms through which perineuronal nets modulate plasticity are still poorly understood. Recent work indicated that perineuronal nets may convey molecular signals by binding and storing proteins with important roles in cellular communication. Here we report that semaphorin3A (Sema3A), a chemorepulsive axon guidance cue known to bind to important perineuronal net components, is necessary to dampen ocular dominance plasticity in adult rats. First, we showed that the accumulation of Sema3A in PNNs in the visual cortex correlates with critical period closure, following the same time course of perineuronal nets maturation. Second, the accumulation of Sema3A in perineuronal nets was significantly reduced by rearing animals in the dark in the absence of any visual experience. Finally, we developed and characterized a tool to interfere with Sema3A signaling by means of AAV-mediated expression of receptor bodies, soluble proteins formed by the extracellular domain of the endogenous Sema3A receptor (neuropilin1) fused to a human IgG Fc fragment. By using this tool to antagonize Sema3A signaling in the adult rat visual cortex, we found that the specific inhibition of Sema3A promoted ocular dominance plasticity. Thus, Sema3A accumulates in perineuronal nets in an experience-dependent manner and its presence in the mature visual cortex inhibits plasticity.


Assuntos
Envelhecimento/fisiologia , Dominância Ocular/fisiologia , Semaforina-3A/antagonistas & inibidores , Córtex Visual/fisiologia , Animais , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Neuropilinas/metabolismo , Agregados Proteicos , Ratos , Semaforina-3A/metabolismo , Solubilidade , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Cell Rep ; 26(4): 1021-1032.e6, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30673598

RESUMO

Muscle LIM protein (MLP) has long been regarded as a muscle-specific protein. Here, we report that MLP expression is induced in adult rat retinal ganglion cells (RGCs) upon axotomy, and its expression is correlated with their ability to regenerate injured axons. Specific knockdown of MLP in RGCs compromises axon regeneration, while overexpression in vivo facilitates optic nerve regeneration and regrowth of sensory neurons without affecting neuronal survival. MLP accumulates in the cell body, the nucleus, and in axonal growth cones, which are significantly enlarged by its overexpression. Only the MLP fraction in growth cones is relevant for promoting axon extension. Additional data suggest that MLP acts as an actin cross-linker, thereby facilitating filopodia formation and increasing growth cone motility. Thus, MLP-mediated effects on actin could become a therapeutic strategy for promoting nerve repair.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica , Cones de Crescimento/metabolismo , Proteínas com Domínio LIM/biossíntese , Proteínas Musculares/biossíntese , Regeneração Nervosa , Nervo Óptico/fisiologia , Células Ganglionares da Retina/metabolismo , Proteínas de Transporte Vesicular/biossíntese , Animais , Axotomia , Células COS , Sistema Nervoso Central/patologia , Chlorocebus aethiops , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Ratos , Células Ganglionares da Retina/patologia , Proteínas de Transporte Vesicular/genética
16.
J Cell Biol ; 218(1): 350-379, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523041

RESUMO

Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.


Assuntos
Cones de Crescimento/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imagem Molecular/normas , Neurônios/ultraestrutura , Software , Imagem com Lapso de Tempo/normas , Proteínas rho de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Forma Celular/genética , Regulação da Expressão Gênica , Heterogeneidade Genética , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Imagem Molecular/métodos , Neurônios/metabolismo , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Imagem com Lapso de Tempo/métodos , Proteína cdc42 de Ligação ao GTP/deficiência , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/deficiência , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/deficiência , Proteína rhoA de Ligação ao GTP
17.
Biophys J ; 115(9): 1783-1795, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30309611

RESUMO

Forces generated by the growth cone are vital for the proper development of the axon and thus brain function. Although recent experiments show that forces are generated along the axon, it is unknown whether the axon plays a direct role in controlling growth cone advance. Here, we use analytic and finite element modeling of microtubule dynamics and the activity of the molecular motors myosin and dynein to investigate mechanical force balance along the length of the axon and its effects on axonal outgrowth. Our modeling indicates that the paradoxical effects of stabilizing microtubules and the consequences of microtubule disassembly on axonal outgrowth can be explained by changes in the passive and active mechanical properties of axons. Our findings suggest that a full understanding of growth cone motility requires a consideration of the mechanical contributions of the axon. Our study not only has potential applications during neurodevelopment but might also help identify strategies to manipulate and promote axonal regrowth to treat neurodegeneration.


Assuntos
Axônios/metabolismo , Cones de Crescimento/metabolismo , Fenômenos Mecânicos , Modelos Neurológicos , Actinas/metabolismo , Fenômenos Biomecânicos , Citoesqueleto/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo , Viscosidade , Proteínas tau/metabolismo
18.
PLoS One ; 13(5): e0197247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768467

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel that plays an important role in cellular calcium signaling contributing to synaptic development and plasticity, and is a key drug target for the treatment of neurodegenerative conditions such as Alzheimer's disease. Here we show that α7 nAChR mediated calcium signals in differentiating PC12 cells activate the proteolytic enzyme calpain leading to spectrin breakdown, microtubule retraction, and attenuation in neurite growth. Imaging in growth cones confirms that α7 activation decreases EB3 comet motility in a calcium dependent manner as demonstrated by the ability of α7 nAChR, ryanodine, or IP3 receptor antagonists to block the effect of α7 nAChR on growth. α7 nAChR mediated EB3 comet motility, spectrin breakdown, and neurite growth was also inhibited by the addition of the selective calpain blocker calpeptin and attenuated by the expression of an α7 subunit unable to bind Gαq and activate calcium store release. The findings indicate that α7 nAChRs regulate cytoskeletal dynamics through local calcium signals for calpain protease activity.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Cones de Crescimento/metabolismo , Neuritos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Calpaína/antagonistas & inibidores , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Cones de Crescimento/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurotransmissores/farmacologia , Células PC12 , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Espectrina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
19.
Adv Healthc Mater ; 7(11): e1701485, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29635761

RESUMO

Hybrid nanomaterials have shown great potential in regenerative medicine due to the unique opportunities to customize materials properties for effectively controlling cellular growth. The peptide nanofiber-mediated auto-oxidative polymerization of dopamine, resulting in stable aqueous dispersions of polydopamine-coated peptide hybrid nanofibers, is demonstrated. The catechol residues of the polydopamine coating on the hybrid nanofibers are accessible and provide a platform for introducing functionalities in a pH-responsive polymer analogous reaction, which is demonstrated using a boronic acid modified fluorophore. The resulting hybrid nanofibers exhibit attractive properties in their cellular interactions: they enhance neuronal cell adhesion, nerve fiber growth, and growth cone area, thus providing great potential in regenerative medicine. Furthermore, the facile modification by pH-responsive supramolecular polymer analog reactions allows tailoring the functional properties of the hybrid nanofibers in a reversible fashion.


Assuntos
Materiais Revestidos Biocompatíveis , Cones de Crescimento/metabolismo , Indóis , Nanofibras/química , Fibras Nervosas/metabolismo , Polímeros , Animais , Adesão Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Indóis/química , Indóis/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Polimerização , Polímeros/química , Polímeros/farmacologia
20.
J Cell Biol ; 217(5): 1719-1738, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29535193

RESUMO

During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end-tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.


Assuntos
Adenosina Trifosfatases/metabolismo , Orientação de Axônios , Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/química , Animais , Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Cones de Crescimento/metabolismo , Humanos , Larva/metabolismo , Locomoção , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Motores/metabolismo , Proteínas Nucleares/química , Polimerização , Isoformas de Proteínas/metabolismo , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA