Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Mar Drugs ; 22(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39057423

RESUMO

α-Conotoxins, as selective nAChR antagonists, can be valuable tools for targeted drug delivery and fluorescent labeling, while conotoxin-drug or conotoxin-fluorescent conjugates through the disulfide bond are rarely reported. Herein, we demonstrate the [2,4] disulfide bond of α-conotoxin as a feasible new chemical modification site. In this study, analogs of the α-conotoxin LsIA cysteine[2,4] were synthesized by stapling with five linkers, and their inhibitory activities against human α7 and rat α3ß2 nAChRs were maintained. To further apply this method in targeted delivery, the alkynylbenzyl bromide linker was synthesized and conjugated with Coumarin 120 (AMC) and Camptothecin (CPT) by copper-catalyzed click chemistry, and then stapled between cysteine[2,4] of the LsIA to construct a fluorescent probe and two peptide-drug conjugates. The maximum emission wavelength of the LsIA fluorescent probe was 402.2 nm, which was essentially unchanged compared with AMC. The cytotoxic activity of the LsIA peptide-drug conjugates on human A549 was maintained in vitro. The results demonstrate that the stapling of cysteine[2,4] with alkynylbenzyl bromide is a simple and feasible strategy for the exploitation and utilization of the α-conotoxin LsIA.


Assuntos
Conotoxinas , Cisteína , Humanos , Conotoxinas/química , Conotoxinas/farmacologia , Cisteína/química , Animais , Dissulfetos/química , Células A549 , Sistemas de Liberação de Medicamentos , Ratos , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Corantes Fluorescentes/química , Receptores Nicotínicos/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Química Click
2.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930912

RESUMO

The escalating resistance of agricultural pests to chemical insecticides necessitates the development of novel, efficient, and safe biological insecticides. Conus quercinus, a vermivorous cone snail, yields a crude venom rich in peptides for marine worm predation. This study screened six α-conotoxins with insecticidal potential from a previously constructed transcriptome database of C. quercinus, characterized by two disulfide bonds. These conotoxins were derived via solid-phase peptide synthesis (SPPS) and folded using two-step iodine oxidation for further insecticidal activity validation, such as CCK-8 assay and insect bioassay. The final results confirmed the insecticidal activities of the six α-conotoxins, with Qc1.15 and Qc1.18 exhibiting high insecticidal activity. In addition, structural analysis via homology modeling and functional insights from molecular docking offer a preliminary look into their potential insecticidal mechanisms. In summary, this study provides essential references and foundations for developing novel insecticides.


Assuntos
Conotoxinas , Caramujo Conus , Inseticidas , Simulação de Acoplamento Molecular , Conotoxinas/química , Conotoxinas/farmacologia , Conotoxinas/síntese química , Inseticidas/química , Inseticidas/síntese química , Inseticidas/farmacologia , Animais , Caramujo Conus/química , Sequência de Aminoácidos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos
3.
Mar Drugs ; 22(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921563

RESUMO

Breast cancer is one of the leading causes of cancer mortality worldwide, and triple-negative breast cancer (TNBC) is the most problematic subtype. There is an urgent need to develop novel drug candidates for TNBC. Marine toxins are a valuable source for drug discovery. We previously identified αO-conotoxin GeXIVA[1,2] from Conus generalis, which is a selective antagonist of α9 nicotinic acetylcholine receptors (nAChRs). Recent studies indicated that α9 nAChR expression is positively correlated with breast cancer development; thus, α9 nAChR could serve as a therapeutic target for breast cancer. In this study, we aimed to investigate the in vivo antitumor effects of GeXIVA[1,2] on TNBC and to elucidate its underlying anticancer mechanism. Our data showed that GeXIVA[1,2] effectively suppressed 4T1 tumor growth in vivo at a very low dose of 0.1 nmol per mouse. Our results uncovered that the antitumor mechanism of GeXIVA[1,2] simultaneously induced apoptosis and blocked proliferation. Further investigations revealed that GeXIVA[1,2]-induced Caspase-3-dependent apoptosis was achieved through regulating Bax/Bcl-2 balance, and GeXIVA[1,2]-inhibited proliferation was mediated by the downregulation of the AKT-mTOR, STAT3 and NF-κB signaling pathways. Our study provides valuable arguments to demonstrate the potential of GeXIVA[1,2] as a novel marine-derived anticancer drug candidate for the treatment of TNBC.


Assuntos
Apoptose , Proliferação de Células , Conotoxinas , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias de Mama Triplo Negativas , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Apoptose/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , NF-kappa B/metabolismo , Feminino , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Conotoxinas/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Humanos , Antineoplásicos/farmacologia
4.
Mar Drugs ; 22(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786593

RESUMO

α7 nicotinic acetylcholine receptors (nAChRs) are mainly distributed in the central nervous system (CNS), including the hippocampus, striatum, and cortex of the brain. The α7 nAChR has high Ca2+ permeability and can be quickly activated and desensitized, and is closely related to Alzheimer's disease (AD), epilepsy, schizophrenia, lung cancer, Parkinson's disease (PD), inflammation, and other diseases. α-conotoxins from marine cone snail venom are typically short, disulfide-rich neuropeptides targeting nAChRs and can distinguish various subtypes, providing vital pharmacological tools for the functional research of nAChRs. [Q1G, ΔR14]LvΙB is a rat α7 nAChRs selective antagonist, modified from α-conotoxin LvΙB. In this study, we utilized three types of fluorescein after N-Hydroxy succinimide (NHS) activation treatment: 6-TAMRA-SE, Cy3 NHS, and BODIPY-FL NHS, labeling the N-Terminal of [Q1G, ΔR14]LvΙB under weak alkaline conditions, obtaining three fluorescent analogs: LvIB-R, LvIB-C, and LvIB-B, respectively. The potency of [Q1G, ΔR14]LvΙB fluorescent analogs was evaluated at rat α7 nAChRs expressed in Xenopus laevis oocytes. Using a two-electrode voltage clamp (TEVC), the half-maximal inhibitory concentration (IC50) values of LvIB-R, LvIB-C, and LvIB-B were 643.3 nM, 298.0 nM, and 186.9 nM, respectively. The stability of cerebrospinal fluid analysis showed that after incubation for 12 h, the retention rates of the three fluorescent analogs were 52.2%, 22.1%, and 0%, respectively. [Q1G, ΔR14]LvΙB fluorescent analogs were applied to explore the distribution of α7 nAChRs in the hippocampus and striatum of rat brain tissue and it was found that Cy3- and BODIPY FL-labeled [Q1G, ΔR14]LvΙB exhibited better imaging characteristics than 6-TAMARA-. It was also found that α7 nAChRs are widely distributed in the cerebral cortex and cerebellar lobules. Taking into account potency, imaging, and stability, [Q1G, ΔR14]LvΙB -BODIPY FL is an ideal pharmacological tool to investigate the tissue distribution and function of α7 nAChRs. Our findings not only provide a foundation for the development of conotoxins as visual pharmacological probes, but also demonstrate the distribution of α7 nAChRs in the rat brain.


Assuntos
Encéfalo , Conotoxinas , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Conotoxinas/farmacologia , Conotoxinas/química , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Antagonistas Nicotínicos/farmacologia , Corantes Fluorescentes , Ratos Sprague-Dawley , Masculino , Feminino
5.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650308

RESUMO

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Assuntos
Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miastenia Gravis/imunologia , Modelos Animais de Doenças , Feminino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/imunologia , Canais de Sódio Disparados por Voltagem/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Autoanticorpos , Masculino , Conotoxinas/farmacologia , Imunização Passiva
6.
J Biol Chem ; 300(4): 107203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508311

RESUMO

We are entering an exciting time in structural biology where artificial intelligence can be used to predict protein structures with greater accuracy than ever before. Extending this level of accuracy to the predictions of disulfide-rich peptide structures is likely to be more challenging, at least in the short term, given the tight packing of cysteine residues and the numerous ways that the disulfide bonds can potentially be linked. It has been previously shown in many cases that several disulfide bond connectivities can be accommodated by a single set of NMR-derived structural data without significant violations. Disulfide-rich peptides are prevalent throughout nature, and arguably the most well-known are those present in venoms from organisms such as cone snails. Here, we have determined the first three-dimensional structure and disulfide connectivity of a U-superfamily cone snail venom peptide, TxVIIB. TxVIIB has a VI/VII cysteine framework that is generally associated with an inhibitor cystine knot (ICK) fold; however, AlphaFold predicted that the peptide adopts a mini-granulin fold with a granulin disulfide connectivity. Our experimental studies using NMR spectroscopy and orthogonal protection of cysteine residues indicate that TxVIIB indeed adopts a mini-granulin fold but with the ICK disulfide connectivity. Our findings provide structural insight into the underlying features that govern formation of the mini-granulin fold rather than the ICK fold and will provide fundamental information for prediction algorithms, as the subtle complexity of disulfide isomers may be not adequately addressed by the current prediction algorithms.


Assuntos
Conotoxinas , Animais , Sequência de Aminoácidos , Conotoxinas/química , Caramujo Conus , Cisteína/química , Dissulfetos/química , Granulinas/química , Granulinas/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína
7.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474693

RESUMO

Antimicrobial peptides (AMPs), acknowledged as host defense peptides, constitute a category of predominant cationic peptides prevalent in diverse life forms. This study explored the antibacterial activity of α-conotoxin RgIA, and to enhance its stability and efficacy, D-amino acid substitution was employed, resulting in the synthesis of nine RgIA mutant analogs. Results revealed that several modified RgIA mutants displayed inhibitory efficacy against various pathogenic bacteria and fungi, including Candida tropicalis and Escherichia coli. Mechanistic investigations elucidated that these polypeptides achieved antibacterial effects through the disruption of bacterial cell membranes. The study further assessed the designed peptides' hemolytic activity, cytotoxicity, and safety. Mutants with antibacterial activity exhibited lower hemolytic activity and cytotoxicity, with Pep 8 demonstrating favorable safety in mice. RgIA mutants incorporating D-amino acids exhibited notable stability and adaptability, sustaining antibacterial properties across diverse environmental conditions. This research underscores the potential of the peptide to advance innovative oral antibiotics, offering a novel approach to address bacterial infections.


Assuntos
Anti-Infecciosos , Conotoxinas , Camundongos , Animais , Lisina/farmacologia , Leucina/farmacologia , Substituição de Aminoácidos , Conotoxinas/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
8.
Toxins (Basel) ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393171

RESUMO

Cone snails are carnivorous marine animals that prey on fish (piscivorous), worms (vermivorous), or other mollusks (molluscivorous). They produce a complex venom mostly made of disulfide-rich conotoxins and conopeptides in a compartmentalized venom gland. The pharmacology of cone snail venom has been increasingly investigated over more than half a century. The rising interest in cone snails was initiated by the surprising high human lethality rate caused by the defensive stings of some species. Although a vast amount of information has been uncovered on their venom composition, pharmacological targets, and mode of action of conotoxins, the venom-ecology relationships are still poorly understood for many lineages. This is especially important given the relatively recent discovery that some species can use different venoms to achieve rapid prey capture and efficient deterrence of aggressors. Indeed, via an unknown mechanism, only a selected subset of conotoxins is injected depending on the intended purpose. Some of these remarkable venom variations have been characterized, often using a combination of mass spectrometry and transcriptomic methods. In this review, we present the current knowledge on such specific predatory and defensive venoms gathered from sixteen different cone snail species that belong to eight subgenera: Pionoconus, Chelyconus, Gastridium, Cylinder, Conus, Stephanoconus, Rhizoconus, and Vituliconus. Further studies are needed to help close the gap in our understanding of the evolved ecological roles of many cone snail venom peptides.


Assuntos
Conotoxinas , Caramujo Conus , Humanos , Animais , Conotoxinas/toxicidade , Conotoxinas/química , Caramujo Conus/química , Venenos de Moluscos/química , Peptídeos , Peçonhas , Caramujos
9.
Mar Drugs ; 22(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276651

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting painful neuropathy that occurs commonly during cancer management, which often leads to the discontinuation of medication. Previous studies suggest that the α9α10 nicotinic acetylcholine receptor (nAChR)-specific antagonist αO-conotoxin GeXIVA[1,2] is effective in CIPN models; however, the related mechanisms remain unclear. Here, we analyzed the preventive effect of GeXIVA[1,2] on neuropathic pain in the long-term oxaliplatin injection-induced CIPN model. At the end of treatment, lumbar (L4-L6) spinal cord was extracted, and RNA sequencing and bioinformatic analysis were performed to investigate the potential genes and pathways related to CIPN and GeXIVA[1,2]. GeXIVA[1,2] inhibited the development of mechanical allodynia induced by chronic oxaliplatin treatment. Repeated injections of GeXIVA[1,2] for 3 weeks had no effect on the mice's normal pain threshold or locomotor activity and anxiety-like behavior, as evaluated in the open field test (OFT) and elevated plus maze (EPM). Our RNA sequencing results identified 209 differentially expressed genes (DEGs) in the CIPN model, and simultaneously injecting GeXIVA[1,2] with oxaliplatin altered 53 of the identified DEGs. These reverted genes were significantly enriched in immune-related pathways represented by the cytokine-cytokine receptor interaction pathway. Our findings suggest that GeXIVA[1,2] could be a potential therapeutic compound for chronic oxaliplatin-induced CIPN management.


Assuntos
Antineoplásicos , Conotoxinas , Neuralgia , Camundongos , Animais , Oxaliplatina/efeitos adversos , Conotoxinas/farmacologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Modelos Animais de Doenças , Antagonistas Nicotínicos/farmacologia , Expressão Gênica , Antineoplásicos/efeitos adversos
10.
Protein Expr Purif ; 215: 106405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979629

RESUMO

α-Conotoxin ImI is a selective antagonist of alpha7 nicotinic acetylcholine receptor (α7 nAChR) that is involved in cancer development. Human alpha fetoprotein domain 3 (AFP3) is a prototype of anticancer agents. In an effort to design drugs for anticancer treatments, we fused the ImI peptide to AFP3 as a fusion protein for testing. The fusion protein (ImI-AFP3) was highly expressed in the insect Bac-to-Bac system. The purified fusion protein was found to have improved anticancer activity and synergized with the drug gefitinib to inhibit the growth and migration of A549 and NCI-H1299 lung cancer cells. Our data have demonstrated that the recombinant protein ImI-AFP3 is a promising candidate for drug development to suppress lung cancer cell growth, especially to suppress hepatoid adenocarcinoma of the lung (HAL) cell growth.


Assuntos
Conotoxinas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Conotoxinas/química , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Pulmão
11.
J Pept Sci ; 30(4): e3554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009400

RESUMO

The cysteine-free acyclic peptides present in marine cone snail venom have been much less investigated than their disulfide bonded counterparts. Precursor protein sequences derived from transcriptomic data, together with mass spectrometric fragmentation patterns for peptides present in venom duct tissue extracts, permit the identification of mature peptides. Twelve distinct gene superfamiles have been identified with precursor lengths between 64 and 158 residues. In the case of Conus monile, three distinct mature peptides have been identified, arising from two distinct protein precursors. Mature acyclic peptides are often post-translationally modified, with C-terminus amidation, a feature characteristic of neuropeptides. In the present study, 20 acyclic peptides from Conus monile and Conus betulinus were identified. The common modifications of C-terminus amidation, gamma carboxylation of glutamic acid (E to ϒ), N-terminus conversion of Gln (Q) to a pyroglutamyl residue (Z), and hydroxylation of Pro (P) to Hyp (O) are observed in one or more peptides identified in this study. Proteolytic trimming of sequences by cleavage at the C-terminus of Asn (N) residues is established. The presence of an asparagine endopeptidase is strengthened by the identification of legumain-like sequences in the transcriptome assemblies from diverse Conus species. Such sequences may be expected to have a cleavage specificity at Asn-Xxx peptide bonds.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Venenos de Moluscos/química , Venenos de Moluscos/genética , Venenos de Moluscos/metabolismo , Conotoxinas/química , Peptídeos/química , Caramujo Conus/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
12.
ACS Chem Neurosci ; 14(24): 4311-4322, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051211

RESUMO

Understanding the determinants of α-conotoxin (α-CTX) selectivity for different nicotinic acetylcholine receptor (nAChR) subtypes is a prerequisite for the design of tool compounds to study nAChRs. However, selectivity optimization of these small, disulfide-rich peptides is difficult not only because of an absence of α-CTX/nAChR co-structures but also because it is challenging to predict how a mutation to an α-CTX will alter its potency and selectivity. As a prototypical system to investigate selectivity, we employed the α-CTX LvIA that is 25-fold selective for the α3ß2 nAChR over the related α3ß4 nAChR subtype, which is a target for nicotine addiction. Using two-electrode voltage clamp electrophysiology, we identified LvIA[D11R] that is 2-fold selective for the α3ß4 nAChR, reversing the subtype preference. This effect is specifically due to the change in charge and not shape of LvIA[D11R], as substitution of D11 with citrulline retains selectivity for the α3ß2 nAChR. Furthermore, LvIA[D11K] shows a stronger reversal, with 4-fold selectivity for the α3ß4 nAChR. Motivated by these findings, using site-directed mutagenesis, we found that ß2[K79A] (I79 on ß4), but not ß2[K78A] (N78 on ß4), largely restores the potency of basic mutants at position 11. Finally, to understand the structural basis of this effect, we used AlphaFold2 to generate models of LvIA in complex with both nAChR subtypes. Both models confirm the plausibility of an electrostatic mechanism to explain the data and also reproduce a broad range of potency and selectivity structure-activity relationships for LvIA mutants, as measured using free energy perturbation simulations. Our work highlights how electrostatic interactions can drive α-CTX selectivity and may serve as a strategy for optimizing the selectivity of LvIA and other α-CTXs.


Assuntos
Conotoxinas , Receptores Nicotínicos , Conotoxinas/genética , Conotoxinas/farmacologia , Eletricidade Estática , Receptores Nicotínicos/genética , Mutação/genética , Peptídeos , Antagonistas Nicotínicos/farmacologia
13.
J Mol Evol ; 91(6): 837-853, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962577

RESUMO

Venomous marine gastropods of the family Conidae are among the most diversified predators in marine realm-in large due to their complex venoms. Besides being a valuable source of bioactive neuropeptides conotoxins, cone-snails venoms are an excellent model for molecular evolution studies, addressing origin of key innovations. However, these studies are handicapped by scarce current knowledge on the tissues involved in venom production, as it is generally assumed the sole prerogative of the venom gland (VG). The role of other secretory glands that are present in all Conus species (salivary gland, SG) or only in some species (accessory salivary gland, ASG) remains poorly understood. Here, for the first time, we carry out a detailed analysis of the VG, SG, and ASG transcriptomes in the vermivorous Conus virgo. We detect multiple transcripts clusters in both the SG and ASG, whose annotations imply venom-related functions. Despite the subsets of transcripts highly-expressed in the VG, SG, and ASG being very distinct, SG expresses an L-, and ASG-Cerm08-, and MEFRR- superfamily conotoxins, all previously considered specific for VG. We corroborate our results with the analysis of published SG and VG transcriptomes from unrelated fish-hunting C. geographus, and C. striatus, possibly fish-hunting C. rolani, and worm-hunting Conus quercinus. In spite of low expression levels of conotoxins, some other specific clusters of putative venom-related peptides are present and may be highly expressed in the SG of these species. Further functional studies are necessary to determine the role that these peptides play in envenomation. In the meantime, our results show importance of routine multi-tissue sampling both for accurate interpretation of tissue-specific venom composition in cone-snails, and for better understanding origin and evolution of venom peptides genes.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/genética , Caramujo Conus/metabolismo , Peçonhas , Conotoxinas/genética , Conotoxinas/metabolismo , Perfilação da Expressão Gênica , Peptídeos/metabolismo
14.
Toxins (Basel) ; 15(11)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999504

RESUMO

Conotoxins are toxic, disulfide-bond-rich peptides from cone snail venom that target a wide range of receptors and ion channels with multiple pathophysiological effects. Conotoxins have extraordinary potential for medical therapeutics that include cancer, microbial infections, epilepsy, autoimmune diseases, neurological conditions, and cardiovascular disorders. Despite the potential for these compounds in novel therapeutic treatment development, the process of identifying and characterizing the toxicities of conotoxins is difficult, costly, and time-consuming. This challenge requires a series of diverse, complex, and labor-intensive biological, toxicological, and analytical techniques for effective characterization. While recent attempts, using machine learning based solely on primary amino acid sequences to predict biological toxins (e.g., conotoxins and animal venoms), have improved toxin identification, these methods are limited due to peptide conformational flexibility and the high frequency of cysteines present in toxin sequences. This results in an enumerable set of disulfide-bridged foldamers with different conformations of the same primary amino acid sequence that affect function and toxicity levels. Consequently, a given peptide may be toxic when its cysteine residues form a particular disulfide-bond pattern, while alternative bonding patterns (isoforms) or its reduced form (free cysteines with no disulfide bridges) may have little or no toxicological effects. Similarly, the same disulfide-bond pattern may be possible for other peptide sequences and result in different conformations that all exhibit varying toxicities to the same receptor or to different receptors. We present here new features, when combined with primary sequence features to train machine learning algorithms to predict conotoxins, that significantly increase prediction accuracy.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Conotoxinas/química , Caramujo Conus/química , Sequência de Aminoácidos , Peptídeos/química , Cisteína/metabolismo , Dissulfetos
15.
Protein Pept Lett ; 30(11): 913-929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38008946

RESUMO

This review describes the specific features of families of Conus venom peptides (conotoxins or conopeptides) that represent twelve pharmacological classes. Members of these conopeptide families are targeted to voltage-gated ion channels, such as calcium, sodium, and potassium channels. The conopeptides covered in this work include omega-conotoxins and contryphans with calcium channels as targets; mu-conotoxins, muO-conotoxins, muP-conotoxins, delta-conotoxins and iota-conotoxin with sodium channels as targets; and kappa-conotoxins, kappaM-conotoxins, kappaO-conotoxin, conkunitzins, and conorfamide with potassium channels as targets. The review covers the peptides that have been characterized over the last two decades with respect to their physiological targets and/or potential pharmacological applications, or those that have been discovered earlier but with noteworthy features elucidated in more recent studies. Some of these peptides have the potential to be developed as therapies for nerve, muscle, and heart conditions associated with dysfunctions in voltage-gated ion channels. The gating process of an ion channel subtype in neurons triggers various biological activities, including regulation of gene expression, contraction, neurotransmitter secretion, and transmission of electrical impulses. Studies on conopeptides and their interactions with calcium, sodium, and potassium channels provide evidence for Conus peptides as neuroscience research probes and therapeutic leads.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/metabolismo , Cálcio/metabolismo , Canais de Potássio/metabolismo , Sódio/metabolismo , Conotoxinas/farmacologia , Conotoxinas/química , Peptídeos/química
16.
Biochemistry ; 62(21): 3061-3075, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37862039

RESUMO

Two novel redox conopeptides with proline residues outside and within the active site disulfide loop were derived from the venom duct transcriptome of the marine cone snails Conus frigidus and Conus amadis. Mature peptides with possible post-translational modification of 4-trans-hydroxylation of proline, namely, Fr874, Fr890[P1O], Fr890[P2O], Fr906, Am1038, and Am1054, have been chemically synthesized and characterized using mass spectrometry. The estimated reduction potential of cysteine disulfides of synthetic peptides varied from -298 to -328 mV, similar to the active site cysteine disulfide motifs of the redox family of proteins. Fr906/Am1054 exhibited pronounced catalytic activity and assisted in improving the yields of natively folded globular form α-conotoxin ImI. Three-dimensional (3D) structures of the redox conopeptides were optimized using computational methods and verified by 2D-ROESY NMR spectroscopy: C. frigidus peptides adopt an N-terminal helical fold and C. amadis peptides adopt distinct structures based on the Phe4-Pro/Hyp5 peptide bond configuration. The shift in the cis-trans configuration of the Phe4-Pro/Hyp5 peptide bond of Am1038/Am1054 was observed between reduced free thiol and oxidized disulfide forms of the optimized peptides. The report confirms the position-specific effect of hydroxyproline on the oxidative folding of conotoxins and sequence diversity of redox conopeptides in the venom duct of cone snails.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Transcriptoma , Peçonhas , Cisteína/metabolismo , Conotoxinas/química , Caramujo Conus/genética , Peptídeos/química , Prolina/metabolismo , Dissulfetos/metabolismo , Cistina/metabolismo , Oxirredução , Estresse Oxidativo
17.
BMC Genomics ; 24(1): 598, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814244

RESUMO

BACKGROUND: Conus, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within Conus' venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown. RESULTS: We analyzed the transcriptomes of 34 Conus species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in Conus species underwent positive selection (Ka/Ks > 1, p < 0.01). Additionally, we reassembled and annotated the genome of C. betulinus, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in C. betulinus, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among Conus species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes. CONCLUSIONS: This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of Conus. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Conotoxinas/genética , Caramujo Conus/genética , Peptídeos/genética , Genoma , Genômica
18.
Bioconjug Chem ; 34(12): 2194-2204, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748043

RESUMO

α6ß4* nicotinic acetylcholine receptor (nAChR) (* represents the possible presence of additional subunits) is mainly distributed in the central and peripheral nervous system and is associated with neurological diseases, such as neuropathic pain; however, the ability to explore its function and distribution is limited due to the lack of pharmacological tools. As one of the analogs of α-conotoxin (α-CTx) LvIC from Conus lividus, [D1G, Δ14Q]LvIC (Lv) selectively and potently blocks α6/α3ß4 nAChR (α6/α3 represents a chimera). Here, we synthesized three fluorescent analogs of Lv by connecting fluorescent molecules 6-carboxytetramethylrhodamine succinimidyl ester (6-TAMRA-SE, R), Cy3 NHS ester (Cy3, C) and BODIPY-FL NHS ester (BDP, B) to the N-terminus of the peptide and obtained Lv-R, Lv-C, and Lv-B, respectively. The potency and selectivity of three fluorescent peptides were evaluated using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes, and the potency and selectivity of Lv-B were almost maintained with the half-maximal inhibition (IC50) of 64 nM. Then, we explored the stability of Lv-B in artificial cerebrospinal fluid and stained rat brain slices with Lv-B. The results indicated that the stability of Lv-B was slightly improved compared to that of native Lv. Additionally, we detected the distribution of the α6ß4* nAChR subtype in the cerebral cortex using green fluorescently labeled peptide and fluorescence microscopy. Our findings not only provide a visualized pharmacological tool for exploring the distribution of the α6ß4* nAChR subtype in various situ tissues and organs but also extend the application of α-CTx [D1G, Δ14Q]LvIC to demonstrate the involvement of α6ß4 nAChR function in pathophysiology and pharmacology.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Ratos , Animais , Receptores Nicotínicos/química , Conotoxinas/química , Conotoxinas/farmacologia , Caramujo Conus/química , Peptídeos/química , Ésteres
19.
Toxicon ; 233: 107253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586612

RESUMO

The cone snail Conus betulinus is a vermivorous species that is widely distributed in the South China Sea. Its crude venom contains various peptides used to prey on marine worms. In previous studies, a systematic analysis of the peptide toxin sequences from C. betulinus was carried out using a multiomics technique. In this study, 10 cysteine-free peptides that may possess insecticidal activity were selected from a previously constructed conopeptide library of C. betulinus using the CPY-Fe conopeptide as a template. These conopeptides were prepared by solid-phase peptide synthesis (SPPS), then characterized by the reverse-phase high performance liquid chromatography (HPLC) and mass spectrometry. Insect cytotoxicity and injection experiments revealed that these cysteine-free peptides exerted favorable insecticidal effects, and two of them (Bt010 and Bt016) exhibited high insecticidal efficacy with LD50 of 9.07 nM and 10.93 nM, respectively. In addition, the 3D structures of these peptides were predicted by homology modeling, and a phylogenetic tree was constructed based on the nucleotide data of conopeptides to analyze the relationships among structures, functions, and evolution. A preliminary mechanism for the insecticidal activity of the cysteine-free conopeptides was predicted by molecular docking. To the best of our knowledge, this is the first study to report the insecticidal activity of cysteine-free conopeptides derived from Conus betulinus, signaling that they could potentially be developed into bioinsecticides with desirable properties such as easy preparation, low cost, and high potency.


Assuntos
Conotoxinas , Caramujo Conus , Inseticidas , Animais , Caramujo Conus/química , Conotoxinas/toxicidade , Conotoxinas/química , Cisteína/química , Filogenia , Simulação de Acoplamento Molecular , Peptídeos/química
20.
PLoS Biol ; 21(8): e3002217, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535677

RESUMO

Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.


Assuntos
Conotoxinas , Camundongos , Animais , Conotoxinas/farmacologia , Conotoxinas/química , Canais de Cálcio , Peptídeos/química , Células Receptoras Sensoriais/metabolismo , Caramujos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA