Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753198

RESUMO

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Assuntos
Biodegradação Ambiental , Corantes , Cebolas , Indústria Têxtil , Triticum , Corantes/metabolismo , Corantes/química , Corantes/toxicidade , Triticum/microbiologia , Cebolas/efeitos dos fármacos , Compostos Azo/metabolismo , Compostos Azo/toxicidade , Têxteis , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Testes de Mutagenicidade
2.
Nanotoxicology ; 18(3): 272-298, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38821108

RESUMO

Synthetic dyes play a crucial role in our daily lives, especially in clothing, leather accessories, and furniture manufacturing. Unfortunately, these potentially carcinogenic substances are significantly impacting our water systems due to their widespread use. Dyes from various sources pose a serious environmental threat owing to their persistence and toxicity. Regulations underscore the urgency in addressing this problem. In response to this challenge, metal oxide nanoparticles such as titanium dioxide (TiO2), zinc oxide (ZnO), and iron oxide (Fe3O4) have emerged as intriguing options for dye degradation due to their unique characteristics and production methods. This paper aims to explore the types of nanoparticles suitable for dye degradation, various synthesis methods, and the properties of nanoparticles. The study elaborates on the photocatalytic and adsorption-desorption activities of metal oxide nanoparticles, elucidating their role in dye degradation and their application potential. Factors influencing degradation, including nanoparticle properties and environmental conditions, are discussed. Furthermore, the paper provides relevant case studies, practical applications in water treatment, and effluent treatment specifically in the textile sector. Challenges such as agglomeration, toxicity concerns, and cost-effectiveness are acknowledged. Future advancements in nanomaterial synthesis, their integration with other materials, and their impact on environmental regulations are potential areas for development. In conclusion, metal oxide nanoparticles possess immense potential in reducing dye pollution, and further research and development are essential to define their role in long-term environmental management.


Assuntos
Corantes , Nanopartículas Metálicas , Poluentes Químicos da Água , Corantes/química , Corantes/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/química , Purificação da Água/métodos , Óxido de Zinco/química , Óxidos/química , Titânio/química , Titânio/toxicidade
3.
Environ Sci Pollut Res Int ; 31(23): 33190-33211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676865

RESUMO

The textile industry, with its extensive use of dyes and chemicals, stands out as a significant source of water pollution. Exposure to certain textile dyes, such as azo dyes and their breakdown products like aromatic amines, has been associated with health concerns like skin sensitization, allergic reactions, and even cancer in humans. Annually, the worldwide production of synthetic dyes approximates 7 × 107 tons, of which the textile industry accounts for over 10,000 tons. Inefficient dyeing procedures result in the discharge of 15-50% of azo dyes, which do not adequately bind to fibers, into wastewater. This review delves into the genotoxic impact of azo dyes, prevalent in the textile industry, on aquatic ecosystems and human health. Examining different families of textile dye which contain azo group in their structure such as Sudan I and Sudan III Sudan IV, Basic Red 51, Basic Violet 14, Disperse Yellow 7, Congo Red, Acid Red 26, and Acid Blue 113 reveals their carcinogenic potential, which may affect both industrial workers and aquatic life. Genotoxic and carcinogenic characteristics, chromosomal abnormalities, induced physiological and neurobehavioral changes, and disruptions to spermatogenesis are evident, underscoring the harmful effects of these dyes. The review calls for comprehensive investigations into the toxic profile of azo dyes, providing essential insights to safeguard the aquatic ecosystem and human well-being. The importance of effective effluent treatment systems is underscored to mitigate adverse impacts on agricultural lands, water resources, and the environment, particularly in regions heavily reliant on wastewater irrigation for food production.


Assuntos
Compostos Azo , Corantes , Corantes/toxicidade , Compostos Azo/toxicidade , Humanos , Indústria Têxtil , Poluentes Químicos da Água/toxicidade , Têxteis
4.
Curr Eye Res ; 49(6): 615-623, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38362897

RESUMO

PURPOSE: An ideal dye for intraocular use should effectively stain the target tissue while being easy to apply and remove. Additionally, it should not have any adverse effects resulting from prolonged contact with the retinal tissue. Recently, concerns have been raised about the safety of some vital dyes during surgical procedures as they may cross the internal limiting membrane and deposit on the retina. In this study, we aimed to investigate whether commercially available vital dyes, VIEW-ILM® and TWIN® (AL.CHI.MI.A. S.r.l., Ponte San Nicolò, Padova, Italy), have the potential to cross the internal limiting membrane during vitreoretinal surgery and deposit on the retina. Furthermore, we evaluated their safety in vitro and in vivo. METHODS: A human-like pars plana vitrectomy was performed on porcine eyes ex vivo, with VIEW-ILM® or TWIN® used to stain the internal limiting membrane either with or without subsequent internal limiting membrane peeling. The two dyes were then extracted from retinal punches with or without internal limiting membrane, and quantified using high performance liquid chromatography. Safety was evaluated through in vitro cytotoxicity tests and in vivo skin sensitization and irritation tests according to ISO standards. RESULTS: High performance liquid chromatography analyses demonstrated that VIEW-ILM® and TWIN® effectively stained the internal limiting membrane without crossing the membrane. No residual dyes were found in the retinal layers after internal limiting membrane removal. Furthermore, both in vitro and in vivo safety tests confirmed the absence of cytotoxicity, skin sensitization, and irritation. CONCLUSION: The results of this study support the safety and efficacy of VIEW-ILM® and TWIN® for internal limiting membrane staining. The experimental protocol described in this study could be utilized to gain a comprehensive understanding of the characteristics of vital dyes.


Assuntos
Membrana Basal , Corantes , Coloração e Rotulagem , Vitrectomia , Animais , Corantes/toxicidade , Suínos , Coloração e Rotulagem/métodos , Membrana Basal/cirurgia , Membrana Epirretiniana/cirurgia , Retina , Humanos
5.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257390

RESUMO

The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.


Assuntos
Compostos Azo , Lacase , Polyporaceae , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/toxicidade , Poli A
6.
Food Chem Toxicol ; 182: 114116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923193

RESUMO

Spices are contaminated with aflatoxins (AFs) and Sudan dyes which are classified as class Group 1 and Group 3 human carcinogens by the International Agency for Research on Cancer (IARC) respectively and their prolonged exposure may raise a human health concern. A total of 474 samples of red chili and turmeric were collected from Lahore city and were subjected to quantitative and qualitative AFs and Sudan dyes analysis by thin layer chromatography (TLC) respectively. The number of red chili and turmeric samples with ≥10 µg/kg of total AFs (European Union standard limit) were 70% and 33% respectively and considered unfit for human consumption. The presence of Sudan dyes in red chili and turmeric samples was 67% and 27% respectively. The mean estimated daily intake (EDI) among females and males was 0.0019 µg/kg bw/day, 0.0012 µg/kg bw/day for red chili, and 0.0008 µg/kg bw/day, 0.0006 µg/kg bw/day for turmeric respectively. The mean value of margin of exposure (MOE) among females and males for ingestion of AFs-contaminated red chili and turmeric was 210.25, 332.13, 501.02, and 699.31 respectively. Therefore, the current study demands a continuous monitoring plan and the implementation of novel techniques to enhance the product's quality and protect public health.


Assuntos
Aflatoxinas , Corantes , Humanos , Corantes/toxicidade , Aflatoxinas/toxicidade , Aflatoxinas/análise , Curcuma , Paquistão , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão/métodos
7.
Food Chem Toxicol ; 182: 114108, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890762

RESUMO

Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and have been found in indoor house dust and in children's polyester apparel. Azobenzene disperse dyes are implicated as potentially allergenic; however, little experimental data is available on allergenicity of these dyes. Here, we examine the binding of azobenzene disperse dyes to nucleophilic peptide residues as a proxy for their potential reactivity as electrophilic allergenic sensitizers. The Direct Peptide Reactivity Assay (DPRA) was utilized via both a spectrophotometric method and a high-performance liquid chromatography (HPLC) method. We tested dyes purified from commercial dyestuffs as well as several known transformation products. All dyes were found to react with nucleophilic peptides in a dose-dependent manner with pseudo-first order kinetics (rate constants as high as 0.04 h-1). Rates of binding reactivity were also found to correlate to electrophilic properties of dyes as measured by Hammett constants and electrophilicity indices. Reactivities of polyester shirt extracts were also tested for DPRA activity and the shirt extracts with high measured abundances of azobenzene disperse dyes were observed to induce greater peptide reactivity. Results suggest that azobenzene disperse dyes may function as immune sensitizers, and that clothing containing these dyes may pose risks for skin sensitization.


Assuntos
Corantes , Peptídeos , Criança , Humanos , Corantes/toxicidade , Peptídeos/química , Pele/metabolismo , Alérgenos/toxicidade , Alérgenos/química , Poliésteres
8.
Environ Int ; 176: 107952, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224677

RESUMO

BACKGROUND: Azo dyes are used in textiles and leather clothing. Human exposure can occur from wearing textiles containing azo dyes. Since the body's enzymes and microbiome can cleave azo dyes, potentially resulting in mutagenic or carcinogenic metabolites, there is also an indirect health concern on the parent compounds. While several hazardous azo dyes are banned, many more are still in use that have not been evaluated systematically for potential health concerns. This systematic evidence map (SEM) aims to compile and categorize the available toxicological evidence on the potential human health risks of a set of 30 market-relevant azo dyes. METHODS: Peer-reviewed and gray literature was searched and over 20,000 studies were identified. These were filtered using Sciome Workbench for Interactive computer-Facilitated Text-mining (SWIFT) Review software with evidence stream tags (human, animal, in vitro) yielding 12,800 unique records. SWIFT Active (a machine-learning software) further facilitated title/abstract screening. DistillerSR software was used for additional title/abstract, full-text screening, and data extraction. RESULTS: 187 studies were identified that met populations, exposures, comparators, and outcomes (PECO) criteria. From this pool, 54 human, 78 animal, and 61 genotoxicity studies were extracted into a literature inventory. Toxicological evidence was abundant for three azo dyes (also used as food additives) and sparse for five of the remaining 27 compounds. Complementary search in ECHA's REACH database for summaries of unpublished study reports revealed evidence for all 30 dyes. The question arose of how this information can be fed into an SEM process. Proper identification of prioritized dyes from various databases (including U.S. EPA's CompTox Chemicals Dashboard) turned out to be a challenge. Evidence compiled by this SEM project can be evaluated for subsequent use in problem formulation efforts to inform potential regulatory needs and prepare for a more efficient and targeted evaluation in the future for human health assessments.


Assuntos
Compostos Azo , Carcinógenos , Exposição Ambiental , Humanos , Compostos Azo/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Corantes/toxicidade , Corantes/química , Mutagênicos/toxicidade , Mutagênicos/análise , Têxteis
9.
Environ Res ; 231(Pt 2): 116142, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217122

RESUMO

The present study identifies and analyses the degraded products of three azo dyes (Reactive Orange 16, Reactive Red 120, and Direct Red 80) and proffers their in silico toxicity predictions. In our previously published work, the synthetic dye effluents were degraded using an ozonolysis-based Advanced Oxidation Process. In the present study, the degraded products of the three dyes were analysed using GC-MS at endpoint strategy and further subjected to in silico toxicity analysis using Toxicity Estimation Software Tool (TEST), Prediction Of TOXicity of chemicals (ProTox-II), and Estimation Programs Interface Suite (EPI Suite). Several physiological toxicity endpoints, such as hepatotoxicity, carcinogenicity, mutagenicity, cellular and molecular interactions, were considered to assess the Quantitative Structure-Activity Relationships (QSAR) and adverse outcome pathways. The environmental fate of the by-products in terms of their biodegradability and possible bioaccumulation was also assessed. Results of ProTox-II suggested that the azo dye degradation products are carcinogenic, immunotoxic, and cytotoxic and displayed toxicity towards Androgen Receptor and Mitochondrial Membrane Potential. TEST results predicted LC50 and IGC50 values for three organisms Tetrahymena pyriformis, Daphnia magna, and Pimephales promelas. EPISUITE software via the BCFBAF module surmises that the degradation products' bioaccumulation (BAF) and bioconcentration factors (BCF) are high. The cumulative inference of the results suggests that most degradation by-products are toxic and need further remediation strategies. The study aims to complement existing tests to predict toxicity and prioritise the elimination/reduction of harmful degradation products of primary treatment procedures. The novelty of this study is that it streamlines in silico approaches to predict the nature of toxicity of degradation by-products of toxic industrial affluents like azo dyes. These approaches can assist the first phase of toxicology assessments for any pollutant for regulatory decision-making bodies to chalk out appropriate action plans for their remediation.


Assuntos
Rotas de Resultados Adversos , Relação Quantitativa Estrutura-Atividade , Protoporfirinogênio Oxidase/metabolismo , Mutagênicos/toxicidade , Compostos Azo/toxicidade , Corantes/toxicidade
10.
J Hazard Mater ; 455: 131503, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150098

RESUMO

Growing textile industry is a major global concern, owing to the presence of recalcitrant hazardous pollutants, like synthetic dyes in discharged effluents. To explore new bioresources for mycoremediation, a high laccase-producing novel white-rot fungus (WRF), Trametes flavida WTFP2, was employed. T. flavida is an underexplored member of Polyporales. Using bioinformatic tools, 8 different cis-acting RNA elements were identified in the 5.8 S ITS gene sequence, where CRISPR (CRISPR-DR15), sRNA (RUF1), and snoRNA (ceN111) are uniquely present. Molecular docking was adopted to predict the catalytic interaction of chosen toxic diazo colorant, Congo red (CR), with four dye-degrading enzymes (laccase, lignin peroxidase, azoreductase, and aryl alcohol oxidase). With 376.41 × 103 U/L laccase production, novel WRF exhibited dye-decolorization potential. WTFP2 effectively removed 99.48 ± 0.04% CR (100 mg/L) and demonstrated remarkable recyclability and persistence in consecutive remediation trials. Mycelial dye adsorption was not only substantial driver of colorant elimination; decolorization using active T. flavida was regulated by enzymatic catalysis, as outlined by in-vitro growth, induction of extracellular enzymes, and FESEM. Fifteen metabolites were identified using HRLCMS-QTOF, and novel CR degradation pathway was proposed. Furthermore, microbial and phyto-toxicity tests of metabolites suggested complete detoxification of toxic dye, making the process clean, green, and economically sustainable.


Assuntos
Vermelho Congo , Trametes , Vermelho Congo/metabolismo , Lacase/genética , Lacase/metabolismo , Simulação de Acoplamento Molecular , Biomineralização , Biodegradação Ambiental , Corantes/toxicidade , Corantes/metabolismo
11.
Environ Res ; 215(Pt 1): 114120, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029837

RESUMO

Cytotoxicity in freshwater fishes induced by industrial effluents and dyes is a global issue. Trypan blue dye has many applications in different sectors, including laboratories and industries. This study determines to detect the cytotoxic effects of trypan blue dye in vivo. The objective of this study was to estimate the sub-lethal effects of azodye in fish. Cirrhinus mrigala, a freshwater fish, was exposed to three different grading concentrations of dye 5 mg/L, 10 mg/L, and 20 mg/L in a glass aquarium. Significant (p < 0.05) decrease in the weight of fish was observed as 0.728 ± 0.14 g and 2.232 ± 0.24 g, respectively, in the trial groups exposed to 10 and 20 mg/L of dye in a week. After exposure to trypan blue dye, fishes were dissected to remove liver and kidney tissues. Histopathological assessments determined hepatotoxicity and nephrotoxicity induced by trypan blue through the paraffin wax method. This dye induces mild alterations in the liver such as congestion, hemolysis, dilated sinusoids, ruptured hepatocytes, vacuolization, edema of hepatocytes, necrosis, degeneration, aggregation, and inflammation. This dye not only alters liver tissue, also induces an acute level of tissue alterations in the kidneys, such as degeneration of epithelial cells of renal tubules, shrinkage of the glomerulus, congestion, reduced lumen, degeneration of glomerulus, absence of space of bowmen, glomerulonephritis, necrosis in hematopoietic interstitial tissues and glomerulus, reduced lumen, vacuolar degeneration of renal tubules, increased per tubular space. The current study concludes that trypan blue dye released even in small amounts is found to be associated with a high incidence of cytotoxicity. Such tissue alterations in this species could be used as biomarkers for azo dyes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cyprinidae , Animais , Compostos Azo/toxicidade , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Corantes/toxicidade , Necrose , Parafina , Azul Tripano/toxicidade
12.
Food Chem Toxicol ; 166: 113196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691466

RESUMO

Analytical techniques as strong, precise, and expensive are necessary for monitoring food and water safety for contaminants, microorganisms, and allergies that might be harmful if used. Sudan dyes are commonly utilized as an ingredient in food dye substances and a variety of industrial items. These colors are classified as three carcinogens and are linked to liver and bladder cancers. They are not authorized for human consumption by the International Agency for Research on Cancer (IARC) and are not permitted to be used by the Food Standards Agency or the European Union. This article describes electrochemical dye analysis beside the numerous electrochemical sensors utilized to identify these dyes as a food colorant and water. As a result, the qualities, chemistry, and toxicity of dyes as food colorants and industrial goods in Sudan have been investigated in this study. Sudan dyes have been thoroughly studied, and many electrochemical sensors have been developed to define and monitor these dyes in food colorants. As a result, current electrochemical sensors have been found to be neither mass-production nor cost-effective. Mostly, the synthesis of high-performance materials needs high knowledge, and the production of electrode surfaces is remained difficult due to labor-intensive and time-consuming activities.


Assuntos
Corantes de Alimentos , Carcinógenos , Corantes/toxicidade , Técnicas Eletroquímicas , Humanos , Água/química , Poluição da Água
13.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056804

RESUMO

Fungal laccase obtained from a Cerrena unicolor strain was used as an effective biocatalyst for the transformation of 8-anilino-1-naphthalenesulfonic acid into a green-coloured antibacterial compound, which can be considered as both an antimicrobial agent and a textile dye, simultaneously. The process of biosynthesis was performed in buffered solutions containing methanol as a co-solvent, allowing better solubilisation of substrate. The transformation process was optimised in terms of the buffer pH value, laccase activity, and concentrations of the substrate and co-solvent. The crude product obtained exhibited low cytotoxicity, antibacterial properties against Staphylococcus aureus and Staphylococcus epidermidis, and antioxidant properties. Moreover, the synthesised green-coloured compound proved non-allergenic and demonstrated a high efficiency of dyeing wool fibres.


Assuntos
Naftalenossulfonato de Anilina/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Corantes/química , Corantes/farmacologia , Lacase/metabolismo , Adulto , Idoso , Aliivibrio fischeri/efeitos dos fármacos , Naftalenossulfonato de Anilina/química , Antibacterianos/biossíntese , Antibacterianos/toxicidade , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Biocatálise , Linhagem Celular , Colo/efeitos dos fármacos , Corantes/metabolismo , Corantes/toxicidade , Células Epiteliais/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fungos/enzimologia , Voluntários Saudáveis , Humanos , Hipersensibilidade , Lacase/química , Masculino , Pessoa de Meia-Idade , Oxirredução , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
14.
Drug Chem Toxicol ; 45(3): 1131-1139, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32838564

RESUMO

The effluents from textile dyeing industry are causing water pollution and may transform into more toxic and carcinogenic chemical species by environmental conditions. Therefore systemic toxicity of textile dyes is major health concern. Hence, this study sought to examine the toxic effect of disperse textile dyes on important systemic enzymes in the larvae of wild type Drosophila melanogaster (Oregon R+). Drosophila larvae were fed with corn-sugar-yeast diets containing two disperse dyes, Disperse blue-124 and Disperse black-9 (1, 10 and 100 mg/mL) for 2 days (48 h) and subsequent the enzymatic estimations were carried out using larval homogenate. In silico molecular docking studies were also performed to analyze the binding interaction of these dyes with acetyl choline esterase enzyme. Disperse black 9 shows more strong binding by occupying a groove and forming one hydrogen bond with Tyr465 of acetyl choline esterase enzyme while Disperse blue-124 shows surface binding without forming any hydrogen bond. Drosophila larvae fed on these dyes exhibited a dose-dependent increase in acetyl choline esterase enzymatic activity (1.8 fold increase with Disperse black-9, 100 mg/mL) while 4.4-folds Disperse blue-124, 100 mg/mL). Both Disperse Blue and Disperse Black dyes altered the activities of antioxidant enzymes Catalase (CAT, increased more than 2.5 fold), Superoxide dismutase (SOD, increased more than two folds) and showed a dose-dependent increase in Xanthine oxidase and lipid peroxidation (LPO) levels (more than 3 folds). Therefore both the disperse dyes were found to dysregulate the activities of antioxidant enzymes which may be the underlying mechanism for their toxic effects.


Assuntos
Drosophila melanogaster , Poluentes Químicos da Água , Animais , Antioxidantes , Colina , Colinesterases , Corantes/toxicidade , Esterases , Simulação de Acoplamento Molecular , Oregon , Têxteis , Poluentes Químicos da Água/toxicidade
15.
Semin Ophthalmol ; 37(1): 117-122, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34010087

RESUMO

PURPOSE: Vitrectomy with brilliant blue G (BBG) assisted internal limiting membrane (ILM) peeling is the standard operational technique in macular hole surgeries. However, BBG dye, though considered safe and nontoxic, can also occasionally lead to macular toxicity. This study aims to describe the clinical features and characteristics of four eyes who developed macular toxicity after following surgery for macular hole repair. METHODS: Retrospective review of four consecutive cases of macular toxicity after conventional BBG assisted ILM peeling. All the cases reviewed, their operative surgical notes were retrieved and analyzed. The ILM was stained twice during surgery with prolonged intraoperative surgical time. RESULTS: All four cases had a prolonged surgical time and the ILM was stained twice during surgery in all cases. The area of macular toxicity was corresponding to the area of ILM peeling which had been exposed to repeated staining by BBG dye. By the end of one month, all four cases had foveal thinning along with choriocapillary atrophy. The mean BCVA was 20/80 before surgery and the final mean visual acuity was <20/800. CONCLUSION: This report highlights the occurrence of macular and choriocapillary atrophy due to prolonged focal endoillumination and the increased risk of toxicity with repeated dye staining.


Assuntos
Membrana Epirretiniana , Perfurações Retinianas , Corantes/toxicidade , Membrana Epirretiniana/diagnóstico , Membrana Epirretiniana/cirurgia , Humanos , Perfurações Retinianas/diagnóstico , Perfurações Retinianas/cirurgia , Estudos Retrospectivos , Corantes de Rosanilina/toxicidade , Vitrectomia
16.
Drug Chem Toxicol ; 45(6): 2626-2636, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34555984

RESUMO

Orange red is a food and cosmetic coloring agent made by the amalgamation of two azo dyes carmoisine and sunset yellow. The current study demonstrates the effect of different concentrations of orange red on antioxidant status, inflammatory biomarkers (TNFα, IFNγ, IL1ß, IL6, COX-2, iNOS, and NFκB/p65), biochemical enzymes, and liver histology. In totality, 25 male Wistar rats were procured and arbitrarily alienated into 5 different groups each with 5 animals. Group I was taken as the control. Groups II-V were designated as treatment groups. Groups II and III were administered with (5 and 25 mg/kg b.wt.) and groups IV and V with (150 and 300 mg/kg b.wt.) of orange red via oral gavage for 30 days. It was observed that both low and high concentrations of orange red (25, 150, and 300 mg/kg) remarkably augmented the levels of serum inflammatory cytokines (TNFα, IFNγ, IL1ß, and IL6) and the protein and gene expression of COX-2, iNOS, and NFκB/p65. A significant decrease in glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxidase dismutase, and catalase activity was observed with increasing concentration of orange red. Furthermore, an increase in the level of several vital biochemical parameters and damage severity to hepatic tissue was also found dose dependent.


Assuntos
Antioxidantes , Fator de Necrose Tumoral alfa , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Compostos Azo/toxicidade , Biomarcadores/metabolismo , Catalase/metabolismo , Corantes/toxicidade , Ciclo-Oxigenase 2/genética , Citocinas/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Interleucina-6 , NF-kappa B , Estresse Oxidativo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
17.
Chemosphere ; 287(Pt 1): 131845, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523441

RESUMO

"Green" pyrotechnics seek to remove known environmental pollutants and health hazards from their formulations. This chemical engineering approach often focuses on maintaining performance effects upon replacement of objectionable ingredients, yet neglects the chemical products formed by the exothermic reaction. In this work, milligram quantities of a lab-scale pyrotechnic red smoke composition were functioned within a thermal probe for product identification by pyrolysis-gas chromatography-mass spectrometry. Thermally decomposed ingredients and new side product derivatives were identified at lower relative abundances to the intact organic dye (as the engineered sublimation product). Side products included chlorination of the organic dye donated by the chlorate oxidizer. Machine learning quantitative structure-activity relationship models computed impacts to health and environmental hazards. High to very high toxicities were predicted for inhalation, mutagenicity, developmental, and endocrine disruption for common military pyrotechnic dyes and their analogous chlorinated side products. These results underscore the need to revise objectives of "green" pyrotechnic engineering.


Assuntos
Corantes , Fumaça , Antraquinonas/toxicidade , Corantes/toxicidade , Mutagênicos , Nicotiana
18.
Appl Biochem Biotechnol ; 194(10): 4745-4764, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34799825

RESUMO

Extensive use of these harmful dyes has resulted in the surplus presence of these emerging pollutants in the environment, thus demanding an instant and sensitive detection method. Various synthetic dyes are illegitimately mixed into food and other consuming items for displaying bright colours that attracts consumers. The synthetic dyes cause a number of environmental health hazards and promote toxicity, mutagenicity and carcinogenicity in humans. Despite these serious health glitches, synthetic dyes are widely used due to their much lower cost. As a result, a faster, more selective and extremely sensitive technology for detecting and quantifying hazardous dyes in trace amount is urgently needed. This topic is currently in its initial phases of development and needs continuous refinements, such as explaining various sensing methods and potential future uses linked with dye detection technologies. The present review encompasses a comprehensive literature survey on detection of dyes and latest progress in developing sensors for dye detection and summarizes different detection mechanisms, including biosensor-, optical- and electrochemical-based sensors. Detection methodologies are examined with a focus on biosensor-based recent advancements in dye detection and the growing demand for more appropriate systems in terms of accuracy and efficiency.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Biodegradação Ambiental , Corantes/toxicidade , Humanos
19.
Environ Res ; 205: 112189, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627801

RESUMO

Effluents of textile industries caused serious environmental problem throughout the world. In this study, a total of 23 bacterial strains from five bacterial species were isolated from the dye effluent. Of these strains, a unique and novel Enterobacter aerogenes ES014 was utilized for dye decolourization and toxicity analysis. The selected strain could effectively decolourize three selected azo dyes. It showed the capability for decolourizing acid orange (82.3 ± 3.6%), methyl orange (78.2 ± 3.3%), and congo red (81.5 ± 3.2%). The selected bacterial strain significantly decolourized 100 mg/L acid orange at 35 °C, pH 7.5 with 6% sodium chloride concentration. Most of the tested nitrogen and carbon sources effectively enhanced decolourization process. It showed the ability to decolourize acid orange in the culture medium containing 1.5% glucose (100 ± 2.8%) and 0.8% beef extract (100 ± 3.1%). A laboratory-scale batch bioreactor was used to decolourize azo dye at optimized culture conditions. The decolourizing ability improved with 100 mL/h hydraulic retention time. The treated wastewater quality was improved due to sharp depletion of Total Dissolved Solids (TDS), pH, Chemical Oxygen Demand (COD), alkalinity and sulphate concentration. The selected bacteria has the potential to produce dye degrading laccase. Laccase was detected during fermentation process in batch bioreactor as a key enzyme for decolourization produced by E. aerogenes ES014. Phytotoxicity and acute toxicity analysis were performed using Arachis hypogaea (pea nut) seed and first instar larvae of Artemia parthenogenetica (brine shrimp). The seed germination rate of treated wastewater was improved (94.3 ± 1.8%) and enhanced survival rate (91.7 ± 2.9%) in the first instar Artemia larvae treated with wastewater after 24 h. Overall, E. aerogenes ES014, might be a promising bacterial strain for the treatment of textile effluents with high azo dye concentrations.


Assuntos
Enterobacter aerogenes , Águas Residuárias , Compostos Azo/toxicidade , Bactérias , Biodegradação Ambiental , Reatores Biológicos , Corantes/toxicidade , Águas Residuárias/microbiologia
20.
Exp Eye Res ; 213: 108837, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774490

RESUMO

This study aimed to evaluate viability of retinal cells after the use of multiple intraoperative devices, namely a vitreal dye (triamcinolone acetonide,TA), a ERM/ILM dye (solution of trypan blue 0.15% and brilliant blue 0.025%), and two intraocular tamponades, namely perfluoro-n-octane, (PFO) and silicone oil (SO 1000 cSt), with minimal and maximal removal of their residues, during a simulated pars plana vitrectomy (PPV) in porcine eyes ex-vivo. The in vitro cytotoxicity of each of these compounds was verified on ARPE-19 cells by direct tests according to the ISO 10993-5 (2009). Pars plana vitrectomy was performed on 25 enucleated porcine eyes divided in five groups according to the following conditions: Group A) No surgery control: eye bulbs were kept at room temperature for 40 min; Group B) Sham surgery: PPV with the sole use of BSS for 40 min; Group C) Cytotoxic control: PPV with BSS infusion (20 min) followed by intravitreal injection of 1H-PFO (contact time: 20 min); Group D) Surgery with residues: PPV with BSS infusion and sequential intravitreal injection of TA, ERM/ILM dye, PFO and SO, with minimal removal of each compound after a specified contact-time (overall duration: 40 min); Group E) Surgery with minimal residues: PPV performed as in group D, but with maximal removal of each compound (overall duration: 40 min). All the experimental procedures were performed at room temperature. Immediately after surgery, the retina was extracted from each eye bulb and samples of 3-mm diameter were prepared. Retinal viability was determined for each sample by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay. A cell viability <70% was considered the cytotoxicity threshold. Kruskal-Wallis test was used to evaluate the differences in retinal viability between groups. No cytotoxicity was detected in retinal samples in groups A, B and E. Samples from eye bulbs that had undergone surgery with minimal removal of residues (group D) and cytotoxic controls (group C) showed high retinal cytotoxicity. The tested conditions indicated that the combined use of TA, ERM/ILM dye, PFO and SO during PPV does not affect retinal cells viability if all the devices are properly removed, whereas the cytotoxicity detected in group D may suggest that the presence and accumulation of the residues of the compounds used intraoperatively could negatively impact retinal viability due to a cumulative and/or synergistic cytotoxic effect between them, supporting the crucial role of an optimal removal of the intraoperative medical devices to ensure a safe vitrectomy to the patient.


Assuntos
Benzenossulfonatos/toxicidade , Fluorocarbonos/toxicidade , Retina/efeitos dos fármacos , Óleos de Silicone/toxicidade , Triancinolona Acetonida/toxicidade , Azul Tripano/toxicidade , Vitrectomia , Animais , Linhagem Celular , Sobrevivência Celular , Corantes/toxicidade , Tamponamento Interno , Glucocorticoides/toxicidade , Humanos , Modelos Animais , Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA