Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Nat Commun ; 12(1): 6208, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707084

RESUMO

Inhibitory GABA-ergic neurotransmission is fundamental for the adult vertebrate central nervous system and requires low chloride concentration in neurons, maintained by KCC2, a neuroprotective ion transporter that extrudes intracellular neuronal chloride. To identify Kcc2 gene expression­enhancing compounds, we screened 1057 cell growth-regulating compounds in cultured primary cortical neurons. We identified kenpaullone (KP), which enhanced Kcc2/KCC2 expression and function in cultured rodent and human neurons by inhibiting GSK3ß. KP effectively reduced pathologic pain-like behavior in mouse models of nerve injury and bone cancer. In a nerve-injury pain model, KP restored Kcc2 expression and GABA-evoked chloride reversal potential in the spinal cord dorsal horn. Delta-catenin, a phosphorylation-target of GSK3ß in neurons, activated the Kcc2 promoter via KAISO transcription factor. Transient spinal over-expression of delta-catenin mimicked KP analgesia. Our findings of a newly repurposed compound and a novel, genetically-encoded mechanism that each enhance Kcc2 gene expression enable us to re-normalize disrupted inhibitory neurotransmission through genetic re-programming.


Assuntos
Analgésicos/uso terapêutico , Benzazepinas/uso terapêutico , Reposicionamento de Medicamentos , Indóis/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Benzazepinas/farmacologia , Dor do Câncer/tratamento farmacológico , Cateninas/genética , Cateninas/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Indóis/farmacologia , Camundongos , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/patologia , Simportadores/genética , Simportadores/metabolismo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo , delta Catenina
2.
Eur J Pharmacol ; 909: 174412, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375671

RESUMO

Due to the efficacy and tolerability of the available drugs, the current treatment for cancer-induced bone pain (CIBP) is not considered ideal, and new drugs are required for better treatment results. This study investigated whether intrathecal injection of sulforaphane (SFN) can modulates the noxious behavior associated with CIBP and enhances the analgesic effects of morphine and the possible mechanisms related to these effects were investigated. Walker256 breast cancer cells were injected into the bone marrow cavity of rats to establish the CIBP model. When CIBP rats began to exhibit painful behavior (CIBP 6 days), SFN was injected intrathecally for 7 days. The results showed that SFN alleviated the painful behavioral hypersensitivity caused by cancer, accompanied by nuclear factor, erythroid 2 like 2 (Nrf2), Haem oxygenase 1 (HO-1) activation, nuclear factor kappa B (NF-κB) inhibition and inflammation-related factors (tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-ß), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) reduction. In addition, SFN treatment inhibited the proliferation of Walker 256 cells in a dose-dependent manner, promoted mu-opioid receptor (MOR) expression in SH-SY5Y cells and enhanced the antihyperalgesic effects of morphine on CIBP rats by restoring the downregulation of MOR expression in the spinal cord. Interestingly, the antihyperalgesic effects of SFN were partially blocked by opioid receptor antagonists. This study showed that SFN combined with morphine might be a new way to treat CIBP.


Assuntos
Neoplasias Ósseas/complicações , Dor do Câncer/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Isotiocianatos/farmacologia , Morfina/farmacologia , Sulfóxidos/farmacologia , Animais , Neoplasias Ósseas/secundário , Dor do Câncer/etiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Hiperalgesia/etiologia , Isotiocianatos/uso terapêutico , Morfina/uso terapêutico , Ratos , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Sulfóxidos/uso terapêutico
3.
Neurosci Lett ; 755: 135941, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33961945

RESUMO

It has become increasingly clear that the innate immune system plays an essential role in the generation of many types of neuropathic pain including that which accompanies cancer treatment. In this article we review current findings of the role of the innate immune system in contributing to cancer treatment pain at the distal endings of peripheral nerve, in the nerve trunk, in the dorsal root ganglion and in the spinal dorsal horn.


Assuntos
Antineoplásicos/efeitos adversos , Imunidade Inata/imunologia , Neuralgia/induzido quimicamente , Neuralgia/imunologia , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Neuralgia/patologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/imunologia
4.
Food Chem Toxicol ; 153: 112260, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34051299

RESUMO

Complex regional pain syndrome type 1 (CRPS-1) is a painful syndrome without effective treatment. In order to explore possible new treatments, we used an animal model of CRPS-1 to examine the effects of ß-Citronellol (ßCT), a monoterpene found in a variety of plants that has been shown to have analgesic effects. We aimed to assess its effects alone, and complexed with ß-cyclodextrin (ßCD), which has been previously used to enhance the effects of a number of medicines. The ßCT-ßCD was characterized physiochemically using high performance liquid chromatography (HPLC) and differential scanning calorimetry (DSC) and shown to have 80% efficiency. In the animal model, Swiss mice were treated with ßCT, ßCT-ßCD, vehicle, pregabalin or sham and evaluated for hyperalgesia and motor coordination. Inflammatory mediators were measured by Western blot or ELISA and the descending pain pathway by immunofluorescence. ßCT was shown to have an anti-hyperalgesic effect (without affecting motor coordination) that reduced inflammatory mediators and activated the descending pain pathway, and these effects were increased with complexation in ßCD. Our results showed ßCT-ßCD to be a promising treatment for CRPS-1.


Assuntos
Monoterpenos Acíclicos/uso terapêutico , Analgésicos/uso terapêutico , Portadores de Fármacos/química , Hiperalgesia/tratamento farmacológico , Distrofia Simpática Reflexa/tratamento farmacológico , beta-Ciclodextrinas/química , Animais , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Ingredientes de Alimentos , Masculino , Camundongos , Subunidade p50 de NF-kappa B/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
5.
Pain Res Manag ; 2021: 7582494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880135

RESUMO

Objective: This experiment was designed to determine whether erythropoietin-producing human hepatocellular carcinoma (Eph) receptors were involved in the development of visceral pain. Methods: Adult male Sprague-Dawley rats were randomly divided into three groups receiving different treatments (n = 16 per group): intracolonic vehicle (control group), intracolonic 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) (TNBS group), and intracolonic TNBS and intrathecal EphB1 receptor blocking reagent (TNBS + EphB2-Fc group). Visceral hyperalgesia was evaluated with quantification of visceral pain threshold induced by colorectal distention. The spinal expressions of EphB1 and ephrinB2 and levels of their phosphorylated forms (p-EphB1 and p-ephrinB2) were assessed by Western blotting and immunohistochemistry. Results: The TNBS-treated rats developed significant visceral hyperalgesia. The spinal expressions of EphB1, p-EphB1, ephrinB2, and p-ephrinB2 were significantly increased in the TNBS group compared with the control group, but visceral hyperalgesia and elevation of spinal EphB1 and p-EphB1 expressions were evidently alleviated by intrathecal administration of EphB2-Fc in the TNBS + EphB2-Fc group. The number of EphB1- and p-EphB1-immunopositive cells, the average optical (AO) value of EphB1, and its phosphorylated form in the spinal dorsal horn were significantly increased in the TNBS group than in the control group, but they were obviously reduced by intrathecal administration of EphB2-Fc. There were no significant differences in the number of ephrinB2- and p-ephrinB2-immunopositive cells and the AO value of ephrinB2 and its phosphorylated form between the TNBS and TNBS + EphB2-Fc groups. Conclusion: EphB1 receptors in the spinal dorsal horn play a pivotal role in the development of visceral pain and may be considered as a potential target for the treatment of visceral pain.


Assuntos
Carcinoma Hepatocelular/complicações , Neoplasias Hepáticas/complicações , Receptores da Eritropoetina/antagonistas & inibidores , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Dor Visceral/terapia , Animais , Humanos , Masculino , Limiar da Dor , Ratos , Ratos Sprague-Dawley
6.
Mol Pain ; 17: 1744806921997654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626989

RESUMO

Neuropathic pain is a severe problem that is difficult to treat clinically. Reducing abnormal remodeling of dendritic spines/synapses and increasing the anti-inflammatory effects in the spinal cord dorsal horn are potential methods to treat this disease. Previous studies have reported that electroacupuncture (EA) could increase the pain threshold after peripheral nerve injury. However, the underlying mechanism is unclear. P2X7 receptors (P2X7R) mediate the activation of microglia and participate in the occurrence and development of neuropathic pain. We hypothesized that the effects of EA on relieving pain may be related to the downregulation of the P2X7R. Spinal nerve ligation (SNL) rats were used as a model in this experiment, and 2'(3')-O-(4-benzoyl)benzoyl ATP (BzATP) was used as a P2X7R agonist. We found that EA treatment decreased dendritic spine density, inhibited synaptic reconstruction and reduced inflammatory response, which is consistent with the decrease in P2X7R expression as well as the improved neurobehavioral performance. In contrast to the beneficial effects of EA, BzATP enhanced abnormal remodeling of dendritic spines/synapses and inflammation. Furthermore, the EA-mediated positive effects were reversed by BzATP, which is consistent with the increased P2X7R expression. These findings indicated that EA improves neuropathic pain by reducing abnormal dendritic spine/synaptic reconstruction and inflammation via suppressing P2X7R expression.


Assuntos
Eletroacupuntura , Neuralgia/metabolismo , Neuralgia/terapia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Ligadura , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Limiar da Dor/efeitos dos fármacos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/patologia , Nervos Espinhais/fisiopatologia
7.
Neurochem Res ; 46(5): 1112-1118, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33555527

RESUMO

Immune response plays a vital role in the pathogenesis of neuropathic pain. Immune response-targeted therapy becomes an effective strategy for treating neuropathic pain. Licochalcone A (Lic-A) possesses anti-inflammatory and neuroprotective effects. However, the potential of Lic-A to attenuate neuropathic pain has not been well explored. To investigate the protective effect and evaluate the underlying mechanism of Lic-A against neuropathic pain in a rat model. Chronic constriction injury (CCI) surgery was employed in rats to establish neuropathic pain model. Rats were intraperitoneally administrated with Lic-A (1.25, 2.50 and 5.00 mg/kg) twice daily. Mechanical withdrawal threshold and thermal withdrawal latency were used to evaluate neuropathic pain. After administration, the lumbar spinal cord enlargement of rats was collected for ELISA, Western blot and immunofluorescence analysis. Mechanical withdrawal threshold and thermal withdrawal latency results showed that Lic-A significantly attenuated CCI-evoked neuropathic pain in dose-dependent manner. Lic-A administration also effectively blocked microglia activation. Moreover, Lic-A suppressed p38 phosphorylation and the release of inflammatory factors such as tumor necrosis factor-α, interleukin-1 and interleukin-6. Our findings provide evidence that Lic-A may have the potential to attenuate CCI-evoked neuropathic pain in rats by inhibiting microglia activation and inflammatory response.


Assuntos
Chalconas/uso terapêutico , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Doença Crônica/tratamento farmacológico , Constrição Patológica , Inflamação/complicações , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Neuralgia/complicações , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Curr Neurovasc Res ; 17(5): 667-675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33155922

RESUMO

OBJECTIVE: Post-operative chronic post-thoracotomy pain (CPTP) has been linked to restrictions in mobility and daily activities. However, its potential causes and optimal therapy have not been well characterized. Here, the purpose of this study was to investigate the role of Toll-like receptor 4 (TLR4) in CPTP rats and its underlying mechanism. METHODS: Initially, rat models of CPTP were established. Then, the mechanical withdrawal threshold (MWT) was measured after intrathecal injection of TLR4 antagonist (LPS-RS), TLR4 agonist (LPS-PG), or caspase-1 inhibitor (Ac-YVAD-CMK) in CPTP rats. Levels of TNF-α, IL-6 and IL-1ß in the spinal dorsal horn (SDH) were measured by ELISA. TLR4 and caspase-1 were located by immunofluorescence double staining. TLR4 and caspase-1 levels were assessed by qRT-PCR and Western blot. RESULTS: TLR4 and caspase-1 were up-regulated in SDH of CPTP rats. Compared with Sham and non-CPTP groups, MWT was effectively decreased while TNF-α, IL-6 and IL-1ß in SDH were increased in CPTP group. Moreover, intrathecal injection of TLR4 antagonist or caspase-1 inhibitor significantly elevated MWT expression and reduced levels of TNF-α, IL-6 and IL-1ß in SDH. Additionally, high expression of TLR4 promoted mechanical hyperalgesia and inflammatory response, while intrathecal injection of a mixture of caspase-1 inhibitor and TLR4 agonist reversed the alleviation of caspase-1 inhibitor on the mechanical hyperalgesia and inflammatory response. TLR4 and caspase-1 were co-located in neurons. CONCLUSION: TLR4 aggravated CPTP in rats by mediating activation of caspase-1 in SDH.


Assuntos
Caspase 1/metabolismo , Dor Pós-Operatória/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Toracotomia/efeitos adversos , Receptor 4 Toll-Like/metabolismo , Animais , Inibidores de Caspase/farmacologia , Hiperalgesia/metabolismo , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Dor Pós-Operatória/sangue , Dor Pós-Operatória/etiologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Regulação para Cima/efeitos dos fármacos
9.
Pflugers Arch ; 472(12): 1769-1782, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098464

RESUMO

One maladaptive consequence of inflammatory stimulation of the afferent somatosensory system is the manifestation of inflammatory pain. We established and characterized a neuroglial primary culture of the rat superficial dorsal horn (SDH) of the spinal cord to test responses of this structure to neurochemical, somatosensory, or inflammatory stimulation. Primary cultures of the rat SDH consist of neurons (43%), oligodendrocytes (35%), astrocytes (13%), and microglial cells (9%). Neurons of the SDH responded to cooling (7%), heating (18%), glutamate (80%), substance P (43%), prostaglandin E2 (8%), and KCl (100%) with transient increases in the intracellular calcium [Ca2+]i. Short-term stimulation of SDH primary cultures with LPS (10 µg/ml, 2 h) caused increased expression of pro-inflammatory cytokines, inflammatory transcription factors, and inducible enzymes responsible for inflammatory prostaglandin E2 synthesis. At the protein level, increased concentrations of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) were measured in the supernatants of LPS-stimulated SDH cultures and enhanced TNFα and IL-6 immunoreactivity was observed specifically in microglial cells. LPS-exposed microglial cells further showed increased nuclear immunoreactivity for the inflammatory transcription factors NFκB, NF-IL6, and pCREB, indicative of their activation. The short-term exposure to LPS further caused a reduction in the strength of substance P as opposed to glutamate-evoked Ca2+-signals in SDH neurons. However, long-term stimulation with a low dose of LPS (0.01 µg/ml, 24 h) resulted in a significant enhancement of glutamate-induced Ca2+ transients in SDH neurons, while substance P-evoked Ca2+ signals were not influenced. Our data suggest a critical role for microglial cells in the initiation of inflammatory processes within the SDH of the spinal cord, which are accompanied by a modulation of neuronal responses.


Assuntos
Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal/citologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Dinoprostona/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Interleucinas/genética , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Cultura Primária de Células/métodos , Ratos , Ratos Wistar , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Substância P/farmacologia , Fator de Necrose Tumoral alfa/genética
10.
Biomed Pharmacother ; 131: 110692, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32942156

RESUMO

BACKGROUND AND OBJECTIVES: Bone cancer pain (BCP) remains a difficult clinical problem. This study examined whether pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, is effective for attenuating BCP, and investigated the interaction between activation of PPARγ and phosphatase and tensin homolog deleted from chromosome 10 (PTEN) / mammalian target of rapamycin (mTOR) signal in the spinal dorsal horn (SDH) of BCP rats. METHODS: We tested the effects of intrathecal (i.t.) injection of adenovirus-mediated PTEN (Ad-PTEN), PTEN antisense oligonucleotide (Ad-antisense PTEN), mTOR inhibitor rapamycin, pioglitazone and PPARγ antagonist GW9662 on bone cancer-induced mechanical allodynia by measuring the paw withdrawal threshold (PWT). Western blot or immunofluorescence examined the expression of spinal PPARγ, PTEN, mTOR, p-mTOR and p-S6K1. RESULTS: Bone cancer did not alter total mTOR expression but caused significant downregulation of PTEN and upregulation of p-mTOR and p-S6K1 in spinal neurons. Rapamycin markedly reduced BCP. Upregulation of spinal PTEN by i.t. Ad-PTEN significantly relieved BCP and downregulated p-mTOR and p-S6K1; while i.t. Ad-antisense PTEN led to the opposite effects of Ad-PTEN. Spinal PPARγ expression increased in BCP rats, co-localizing mainly with neurons and a few astrocytes, but not in microglia. Pioglitazone (500 µg/day i.t. for one week, from 7 days after surgery) attenuated BCP, further increased expression of PPARγ, and inhibited downregulation of PTEN and upregulation of p-mTOR and p-S6K1 in the SDH. Pioglitazone's analgesic effect was enhanced by Ad-PTEN and attenuated by Ad-antisense PTEN. Blockade of PPARγ with GW9662 (300 µg i.t. 15 min prior to pioglitazone) reversed the effects of pioglitazone on BCP and regulations of PPARγ/PTEN/mTOR signal. CONCLUSIONS: Intrathecal pioglitazone administration alleviates BCP by regulating the PPARγ/PTEN/mTOR signal in the SDH. Our data provided new insight in the therapeutic strategy in BCP management.


Assuntos
Neoplasias Ósseas/metabolismo , Dor do Câncer/metabolismo , PPAR gama/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Pioglitazona/administração & dosagem , Corno Dorsal da Medula Espinal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Analgésicos/administração & dosagem , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Dor do Câncer/tratamento farmacológico , Dor do Câncer/patologia , Feminino , Injeções Espinhais , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia
11.
Biomed Res Int ; 2020: 8143754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733956

RESUMO

The proteasome inhibitor bortezomib (BTZ) is a potent first-line anticancer drug for multiple myeloma; nonetheless, it induced peripheral neuropathy. It has been suggested that many cytokines may play a role in mediating neuropathic pain, but the underlying molecular mechanism is not fully understood. Recent studies have shown that neuropathic pain is closely related to the purinergic ligand-gated ion channel 7 receptor (P2X7R), one of the P2X receptors, which is richly expressed in glial cells. P2X7-p38 pathway is correlated with microglia- and satellite glial cell- (SGC-) mediated neuropathic pain. However, the association of P2X7R and p38MAPK in mediating BTZ-induced neuropathic pain remains unclear. In this study, the relationship between P2X7R activation and p38 phosphorylation in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) in the development and maintenance of BTZ-induced neuropathic pain was elucidated. The results showed that BTZ increased mechanical thresholds in rats, accompanied with upregulation of P2X7R expression and p38MAPK phosphorylation, indicating that P2X7R and p38MAPK are key molecules in the development and maintenance of BTZ-induced neuropathic pain. Inhibiting p38MAPK phosphorylation with SB203580 resulted in downregulation of P2X7R expression levels. Inhibition of P2X7R with Brilliant Blue G (BBG) reversed neuropathic pain might decrease through the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 via inhibiting p38MAPK phosphorylation. The P2X7R/p38MAPK signaling pathway in SGCs of DRG and microglia of SDH might be a potential pharmacological target behind this mechanism as an opportunity to relieve BTZ-induced neuropathic pain.


Assuntos
Bortezomib/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/complicações , Masculino , Neuralgia/complicações , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
Neuropharmacology ; 176: 108219, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579955

RESUMO

Glycine receptor α1ins subunit is located at inhibitory synapses in the superficial dorsal horn of adult spinal cord and is engaged in the glycinergic inhibition of nociceptive neuronal excitability and transmission. The α1ins phosphorylation at Ser380 by extracellular signal-regulated kinase (ERK) has been shown to decrease glycinergic synaptic currents and contribute to spinal disinhibition. Here we found that peripheral inflammation induced by Complete Freund's Adjuvant increased Ser380 phosphorylation in spinal cord dorsal horn of mice, which was repressed by specific activation of adenosine A1 receptor (A1R). Protein phosphatase-1 (PP1), a ubiquitously-distributed serine/threonine phosphatase, was required for A1R to reduce Ser380 phosphorylation. Our data showed that Gßγ dimer, when released after activation of Gi protein-coupled A1R, interacted with PP1 and directed this phosphatase to α1ins, allowing for the full dephosphorylation of Ser380 residue. Sequestration of Gßγ dimer by viral expression of the C-terminal tail of ß-adrenergic receptor kinase (ßARKct) dissociated PP1 from α1ins complex, leading to robust Ser380 phosphorylation. Meanwhile, Gßγ inhibition compromised the ability of A1R to alleviate inflammatory pain. The inhibitory effect of A1R on Ser380 phosphorylation was also attributed to the inactivation of ERK in CFA mice. Our data thus identified glycine receptor α1ins subunit as an important target for adenosinergic suppression of inflammatory pain.


Assuntos
Analgesia/métodos , Receptor A1 de Adenosina/metabolismo , Receptores de Glicina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Adjuvante de Freund/toxicidade , Células HEK293 , Humanos , Masculino , Camundongos , Dor/induzido quimicamente , Dor/metabolismo , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Corno Dorsal da Medula Espinal/química , Corno Dorsal da Medula Espinal/efeitos dos fármacos
13.
Aging (Albany NY) ; 12(11): 11004-11024, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518215

RESUMO

Mlxipl regulates glucose metabolism, lipogenesis and tumorigenesis and has a wide-ranging impact on human health and disease. However, the role of Mlxipl in neuropathic pain remains unknown. In this study, we found that Mlxipl was increased in the ipsilateral L4-L6 spinal dorsal horn after Spared Nerve Injury surgery. Knockdown of Mlxipl in the ipsilateral L4-L6 spinal dorsal horn by intraspinal microinjection aggravated Spared Nerve Injury-induced mechanical allodynia and inflammation in the spinal dorsal horn, on the contrary, overexpression of Mlxipl inhibited mechanical allodynia and inflammation. Subsequently, the rat Mlxipl promoter was analyzed using bioinformatics methods to predict the upstream transcription factor cJun. Luciferase assays and ChIP-qPCR confirmed that cJun bound to the promoter of Mlxipl and enhanced its expression. Finally, we demonstrated that Mlxipl inhibited the inflammatory responses of lipopolysaccharide-induced microglia and that Mlxipl was regulated by the transcription factor cJun. These findings suggested that cJun-induced Mlxipl upregulation in the spinal dorsal horn after peripheral nerve injury provided a protective mechanism for the development and progression of neuropathic pain by inhibiting microglial-derived neuroinflammation. Targeting Mlxipl in the spinal dorsal horn might represent an effective strategy for the treatment of neuropathic pain.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Microglia/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/genética , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Regulação para Cima
14.
Int J Cancer ; 147(9): 2503-2514, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428246

RESUMO

Chemotherapy-induced neuropathic pain is a common dose-limiting side effect of cancer treatment but the underlying mechanisms are largely unknown. Here, we used a whole-genome expression microarray and gene ontology analysis to identify the upregulation of a sequence-specific DNA-binding protein, HOXA6, in the spinal dorsal horn on Day 10 after injection of rats with oxaliplatin. Genetic disruption of HOXA6 with siRNAs alleviated mechanical allodynia after oxaliplatin administration. Reduced representation bisulfite sequencing assays indicated that oxaliplatin decreased the methylation levels of the SOX10 promoter but not of HOXA6. TET1 was also upregulated by oxaliplatin. Genetic disruption of TET1 with siRNA blocked the promoter demethylation of SOX10 and the upregulation of HOXA6 and SOX10. Importantly, inhibition of SOX10 by intrathecal application of SOX10 siRNA ameliorated the mechanical allodynia induced by oxaliplatin and downregulated the expression of HOXA6. Consistently, overexpression of SOX10 through intraspinal injection of AAV-SOX10-EGFP produced mechanical allodynia and upregulated the expression of spinal dorsal horn HOXA6. Moreover, chromatin immunoprecipitation assays demonstrated that oxaliplatin increased the binding of SOX10 to the promoter region of HOXA6. Taken together, our data suggest that HOXA6 upregulation through the TET1-mediated promoter demethylation of SOX10 may contribute to oxaliplatin-induced neuropathic pain.


Assuntos
Dioxigenases/metabolismo , Proteínas de Homeodomínio/genética , Neuralgia/genética , Oxaliplatina/efeitos adversos , Fatores de Transcrição SOXE/genética , Animais , Desmetilação do DNA/efeitos dos fármacos , Dioxigenases/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/patologia , Injeções Espinhais , Masculino , Neuralgia/induzido quimicamente , Neuralgia/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , Regulação para Cima/efeitos dos fármacos
15.
J Neuroinflammation ; 17(1): 125, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321538

RESUMO

BACKGROUND: Robust activation of glial cells has been reported to occur particularly during the pathogenesis of bone cancer pain (BCP). Researchers from our group and others have shown that histone deacetylases (HDACs) play a significant role in modulating glia-mediated immune responses; however, it still remains unclear whether HDACs are involved in the activation of glial cells during the development of BCP. METHODS: BCP model was established by intra-tibia tumor cell inoculation (TCI). The expression levels and distribution sites of histone deacetylases (HDACs) in the spinal dorsal horn and dorsal root ganglia were evaluated by Western blot and immunofluorescent staining, respectively. Suberoylanilide hydroxamic acid (SAHA), a clinically used HDAC inhibitor, was then intraperitoneally and intrathecally injected to rescue the increased expression levels of HDAC1 and HDAC2. The analgesic effects of SAHA administration on BCP were then evaluated by measuring the paw withdrawal thresholds (PWTs). The effects of SAHA on activation of glial cells and expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) in the spinal dorsal horn and dorsal root ganglia of TCI rats were further evaluated by immunofluorescent staining and Western blot analysis. Subsequently, the effects of SAHA administration on tumor growth and cancer cell-induced bone destruction were analyzed by hematoxylin and eosin (HE) staining and micro-CT scanning. RESULTS: TCI caused rapid and long-lasting increased expression of HDAC1/HDAC2 in glial cells of the spinal dorsal horn and dorsal root ganglia. Inhibiting HDACs by SAHA not only reversed TCI-induced upregulation of HDACs but also inhibited the activation of glial cells in the spinal dorsal horn and dorsal root ganglia, and relieved TCI-induced mechanical allodynia. Further, we found that SAHA administration could not prevent cancer infiltration or bone destruction in the tibia, which indicated that the analgesic effects of SAHA were not due to its anti-tumor effects. Moreover, we found that SAHA administration could inhibit GSK3ß activity in the spinal dorsal horn and dorsal root ganglia, which might contributed to the relief of BCP. CONCLUSION: Our findings suggest that HDAC1 and HDAC2 are involved in the glia-mediated neuroinflammation in the spinal dorsal horn and dorsal root ganglia underlying the pathogenesis of BCP, which indicated that inhibiting HDACs by SAHA might be a potential strategy for pain relief of BCP.


Assuntos
Dor do Câncer/metabolismo , Gânglios Espinais/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neuroglia/efeitos dos fármacos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Vorinostat/farmacologia , Analgésicos/farmacologia , Animais , Neoplasias Ósseas/complicações , Feminino , Gânglios Espinais/metabolismo , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo
16.
Pain ; 161(1): 177-184, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490328

RESUMO

Chemotherapy-induced neuropathic pain (CINP) in both sexes compromises many current chemotherapeutics and lacks an FDA-approved therapy. We recently identified the sphingosine-1-phosphate receptor subtype 1 (S1PR1) and A3 adenosine receptor subtype (A3AR) as novel targets for therapeutic intervention. Our work in male rodents using paclitaxel, oxaliplatin, and bortezomib showed robust inhibition of CINP with either S1PR1 antagonists or A3AR agonists. The S1PR1 functional antagonist FTY720 (Gilenya) is FDA-approved for treating multiple sclerosis, and selective A3AR agonists are in advanced clinical trials for cancer and inflammatory disorders, underscoring the need for their expedited trials in patients with CINP as chemotherapy adjuncts. Our findings reveal that S1PR1 antagonists and A3AR agonists mitigate paclitaxel and oxaliplatin CINP in female and male rodents, but failed to block or reverse bortezomib-induced neuropathic pain (BINP) in females. Although numerous mechanisms likely underlie these differences, we focused on receptor levels. We found that BINP in male rats, but not in female rats, was associated with increased expression of A3AR in the spinal cord dorsal horn, whereas S1PR1 levels were similar in both sexes. Thus, alternative mechanisms beyond receptor expression may account for sex differences in response to S1PR1 antagonists. Morphine and duloxetine, both clinical analgesics, reversed BINP in female mice, demonstrating that the lack of response is specific to S1PR1 and A3AR agents. Our findings suggest that A3AR- and S1PR1-based therapies are not viable approaches in preventing and treating BINP in females and should inform future clinical trials of these drugs as adjuncts to chemotherapy.


Assuntos
Antineoplásicos/efeitos adversos , Bortezomib/efeitos adversos , Neuralgia/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Antagonistas do Receptor A3 de Adenosina/administração & dosagem , Antagonistas do Receptor A3 de Adenosina/uso terapêutico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Animais , Cloridrato de Duloxetina/administração & dosagem , Cloridrato de Duloxetina/uso terapêutico , Feminino , Cloridrato de Fingolimode/administração & dosagem , Cloridrato de Fingolimode/uso terapêutico , Masculino , Morfina/administração & dosagem , Morfina/uso terapêutico , Neuralgia/induzido quimicamente , Oxaliplatina/efeitos adversos , Paclitaxel/efeitos adversos , Ratos , Fatores Sexuais , Moduladores do Receptor de Esfingosina 1 Fosfato/administração & dosagem , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Corno Dorsal da Medula Espinal/efeitos dos fármacos
17.
Brain Res ; 1727: 146568, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785233

RESUMO

BACKGROUND: Preoperative pain and impaired endogenous analgesia are risk factors of chronic postsurgical persistent pain (CPSP). A Chronic neuropathic pain model induced by spinal nerve ligation (SNL6W) shows impaired endogenous analgesia and delayed recovery from incisional pain. Repeated amitriptyline treatment can restore the endogenous analgesia, but its effects on delayed recovery are not clear. METHODS: A plantar incision was made on the side contralateral to the nerve ligation in SNL6W rats. Withdrawal thresholds were measured by von Frey filament test until 28 d after surgery. Amitriptyline (10 mg·kg-1·d-1) or vehicle was administered for 13 d perioperatively. To examine the roles of noradrenergic and cholinergic signals in the spinal dorsal horn, pharmacological antagonism, measurement of each neurotransmitter concentration, and immunohistochemistry were conducted. RESULTS: Recovery of the withdrawal threshold of SNL6W animals to pre-incision values required 28 d after surgery, while naive animals recovered within 14 d. Intrathecal injection of alpha2 adrenoceptor antagonist (idazoxan) or muscarinic cholinergic receptor antagonist (atropine) decreased the withdrawal threshold on POD14 and 21 in naive animals, but not in SNL6W rats. Repeated amitriptyline treatment attenuated the delayed recovery in SNL6W rats, and the effect was antagonized by muscarinic cholinergic receptor antagonist. Beside the concentration of acetylcholine and its synthetic enzyme were not altered by the treatment. CONCLUSIONS: Noradrenergic and cholinergic analgesia, which is necessary for normal recovery, is lost in the SNL6W rats. A strategy to enhance endogenous analgesia using antidepressants, rather than simple analgesia, may help to prevent CPSP in chronic pain patients.


Assuntos
Analgesia , Neuralgia/fisiopatologia , Ferida Cirúrgica/complicações , Acetilcolina/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Neuralgia/prevenção & controle , Norepinefrina/fisiologia , Limiar da Dor , Dor Pós-Operatória/prevenção & controle , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos
18.
Neuropharmacology ; 163: 107726, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31351975

RESUMO

Tissue injury produces a delicate balance between latent pain sensitization (LS) and compensatory endogenous opioid receptor analgesia that continues for months, even after re-establishment of normal pain thresholds. To evaluate the contribution of mu (MOR), delta (DOR), and/or kappa (KOR) opioid receptors to the silencing of chronic postoperative pain, we performed plantar incision at the hindpaw, waited 21 days for the resolution of hyperalgesia, and then intrathecally injected subtype-selective ligands. We found that the MOR-selective inhibitor CTOP (1-1000 ng) dose-dependently reinstated mechanical hyperalgesia. Two DOR-selective inhibitors naltrindole (1-10 µg) and TIPP[Ψ] (1-20 µg) reinstated mechanical hyperalgesia, but only at the highest dose that also produced itching, licking, and tail biting. Both the prototypical KOR-selective inhibitors nor-BNI (0.1-10 µg) and the newer KOR inhibitor with more canonical pharmocodynamic effects, LY2456302 (0.1-10 µg), reinstated mechanical hyperalgesia. Furthermore, LY2456302 (10 µg) increased the expression of phosphorylated signal-regulated kinase (pERK), a marker of central sensitization, in dorsal horn neurons but not glia. Sex studies revealed that LY2456302 (0.3 µg) reinstated hyperalgesia and pERK expression to a greater degree in female as compared to male mice. Our results suggest that spinal MOR and KOR, but not DOR, maintain LS within a state of remission to reduce the intensity and duration of postoperative pain, and that endogenous KOR but not MOR analgesia is greater in female mice.


Assuntos
Dor Pós-Operatória/metabolismo , Receptores Opioides kappa/antagonistas & inibidores , Fatores Sexuais , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Animais , Benzamidas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Dor Pós-Operatória/tratamento farmacológico , Pirrolidinas/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Corno Dorsal da Medula Espinal/metabolismo
19.
Sci Rep ; 9(1): 14664, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601982

RESUMO

Ghrelin has been shown to alleviate neuropathic pain by inhibiting the release of proinflammatory cytokines. The purpose of this study was to investigate the role of GSK-3ß/ß-catenin signaling in mediating the effect of ghrelin on neuropathic pain and to understand the associated mechanisms. Chronic constriction injury (CCI) of the sciatic nerve was used to establish a rat model of neuropathic pain. Hyperalgesia and allodynia were evaluated by observing the mechanical withdrawal threshold and the thermal withdrawal latency. Wnt3a and ß-catenin protein expression and GSK-3ß phosphorylation were detected by western blotting analysis. The levels of tumor necrosis factor-α and IL-1ß were determined using an enzyme-linked immunosorbent assay. In addition, we used immunohistochemical analysis to determine the levels of GSK-3ß phosphorylation in the dorsal horn of the spinal cord. Intrathecal delivery of ghrelin effectively ameliorated CCI-induced mechanical allodynia and thermal hyperalgesia at 7 and 14 days and reduced the levels of tumor necrosis factor-α. Ghrelin inhibited CCI-induced GSK-3ß activation and ß-catenin overexpression in the spinal dorsal horn. Moreover, intrathecal injection of ghrelin suppressed the activation of GSK-3ß in the spinal dorsal horn of CCI rats, as assessed by immunohistochemical analysis. Our data indicated that ghrelin could markedly alleviate neuropathic pain by inhibiting the expression of ß-catenin, via the suppression of GSK-3ß activation, in the spinal cord of CCI rats.


Assuntos
Grelina/administração & dosagem , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Nervo Isquiático/lesões , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Hiperalgesia/etiologia , Hiperalgesia/patologia , Injeções Espinhais , Masculino , Neuralgia/etiologia , Neuralgia/patologia , Nociceptividade/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/patologia , beta Catenina/metabolismo
20.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618823

RESUMO

Persistent post-surgical pain (PPSP) is a chronic pain condition, often with neuropathic features, that occurs in approximately 20% of children who undergo surgery. The biological basis of PPSP has not been elucidated. Anesthetic drugs can have lasting effects on the developing nervous system, although the clinical impact of this phenomenon is unknown. Here, we used a mouse model to test the hypothesis that early developmental exposure to isoflurane causes cellular and molecular alteration in the pain perception circuitry that causes a predisposition to chronic, neuropathic pain via a pathologic upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway. Mice were exposed to isoflurane at postnatal day 7 and select cohorts were treated with rapamycin, an mTOR pathway inhibitor. Behavioral tests conducted 2 months later showed increased evidence of neuropathic pain, which did not occur in rapamycin-treated animals. Immunohistochemistry showed neuronal activity was chronically increased in the insular cortex, anterior cingulate cortex, and spinal dorsal horn, and activity was attenuated by rapamycin. Immunohistochemistry and western blotting (WB) showed a co-incident chronic, abnormal upregulation in mTOR activity. We conclude that early isoflurane exposure alters the development of pain circuits and has the potential to contribute to PPSP and/or other pain syndromes.


Assuntos
Dor Crônica/etiologia , Dor Crônica/metabolismo , Isoflurano/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Biomarcadores , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dor Crônica/diagnóstico , Dor Crônica/tratamento farmacológico , Imuno-Histoquímica , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA