RESUMO
The formation of a lytic immunological synapse (IS) is crucial for cytotoxic lymphocytes to accurately target and effectively eliminate malignant cells. While significant attention has been focused on the lymphocyte side of the IS, particularly its role as a secretory domain for lytic granules, the cancer cell side of the IS has remained relatively underexplored. Recent findings have revealed that cancer cells can rapidly polarize their actin cytoskeleton toward the IS upon interaction with natural killer (NK) cells, thereby evading NK cell-mediated cytotoxicity. In this Brief Research Report, we present preliminary findings suggesting that actin cytoskeleton remodeling at the cancer cell side of the IS is associated with the targeted secretion of small extracellular vesicles towards the interacting NK cell. We observed that multivesicular bodies (MVBs) preferentially accumulate in the synaptic region in cancer cells exhibiting synaptic accumulation of F-actin, compared to those lacking actin cytoskeleton remodeling. Extracellular immunofluorescence staining revealed increased surface exposure of CD63 at the cancer cell side of the IS, suggestive of the fusion of MVBs with the plasma membrane. This hypothesis was supported by a pH-sensitive probe demonstrating dynamic trafficking of CD63 to the extracellular region of the IS. Collectively, our data support the notion that cancer cells can engage in targeted secretion of extracellular vesicles in response to NK cell attack, underscoring the need for further research into the potential role of this process in facilitating cancer cell immune evasion.
Assuntos
Sinapses Imunológicas , Células Matadoras Naturais , Humanos , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Citoesqueleto de Actina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/imunologia , Linhagem Celular Tumoral , Tetraspanina 30/metabolismo , Actinas/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Citotoxicidade ImunológicaRESUMO
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag) protein and mediates the intercellular RNA transfer through virus-like capsids. However, the regulators and secretion pathway through which Arc capsids maneuver cargos are unclear. Here, we identified that phosphatidylinositol-3-phosphate (PI3P) mediates Arc capsid assembly and secretion through the endosomal-multivesicular body (MVB) pathway. Indeed, reconstituted Arc protein preferably binds to PI3P. In HEK293T cells, Arc forms puncta that colocalize with FYVE, an endosomal PI3P marker, as well as Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces the Arc-mediated RNA transfer efficiency. RalA/B double knockdown in cultured rat cortical neurons increases the percentage of mature dendritic spines. Intake of extracellular vesicles purified from Arc-expressing wild-type, but not RalA/B double knockdown, cells in mouse cortical neurons reduces their surface GlutA1 levels. These results suggest that unlike the HIV Gag, whose membrane targeting requires interaction with plasma-membrane-specific phosphatidyl inositol (4,5) bisphosphate (PI(4,5)P2), the assembly of Arc capsids is mediated by PI3P at endocytic membranes. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.
Assuntos
Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Fosfatos de Fosfatidilinositol , Humanos , Animais , Fosfatos de Fosfatidilinositol/metabolismo , Células HEK293 , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Corpos Multivesiculares/metabolismo , Capsídeo/metabolismo , Camundongos , Ratos , Endossomos/metabolismoRESUMO
SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.
Assuntos
Fator de Crescimento Epidérmico , Receptores ErbB , Lisossomos , Transporte Proteico , Nexinas de Classificação , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Receptores ErbB/metabolismo , Lisossomos/metabolismo , Humanos , Transporte Proteico/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Células HeLa , Endossomos/metabolismo , Rede trans-Golgi/metabolismo , Corpos Multivesiculares/metabolismoRESUMO
Tumor metastasis is the leading cause of cancer-related death in patients with colorectal cancer (CRC). Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins, involved in the tumorigenesis and metastasis of various cancers. However, the molecular mechanisms of hnRNPs in CRC metastasis remain unclear. This study aims to uncover the pivotal roles and molecular mechanisms of hnRNPs in CRC metastasis. Clinical database analysis suggested that the expression of hnRNP-Associated with Lethal Yellow (RALY, an important member of hnRNPs) was strongly correlated with the aggressiveness and survival of CRC patients. Gain- and loss-of-function studies demonstrated that RALY promotes the production of exosomes by increasing the formation of multivesicular bodies (MVBs) and enhancing the fusion of MVBs with the plasma membrane. Notably, RALY directly interacts with phospholipase D2 (PLD2) to enable exosome biogenesis, and cooperates with RBM15b to control PLD2 mRNA stability in an m6A-dependent manner. RALY-mediated exosome secretion activates pro-tumor macrophages and further facilitates CRC metastasis, while rescue experiments in vivo further confirmed that RALY-mediated exosome biogenesis facilitates CRC metastasis. Collectively, our findings demonstrate that RALY promotes exosome biogenesis and facilitates colorectal cancer metastasis by upregulating PLD2 and enhancing exosome production in an m6A-dependent manner, suggesting potential therapeutic strategies for combating CRC metastasis.
Assuntos
Neoplasias Colorretais , Exossomos , Metástase Neoplásica , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Corpos Multivesiculares/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Assuntos
Microtúbulos , Corpos Multivesiculares , Septinas , Animais , Cães , Células Madin Darby de Rim Canino , Microtúbulos/química , Microtúbulos/metabolismo , Corpos Multivesiculares/química , Corpos Multivesiculares/metabolismo , Septinas/química , Septinas/metabolismo , Tetraspanina 30/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , EndocitoseRESUMO
Arf GTPase-activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors. ArfGAPs are critical for cargo sorting in the Golgi-to-ER traffic. However, the role of ArfGAPs in sorting into intralumenal vesicles (ILVs) in multivesicular bodies (MVBs) in post-Golgi traffic remains unclear. Exosomes are extracellular vesicles (EVs) of endosomal origin. CD63 is an EV marker. CD63 is enriched ILVs in MVBs of cells. However, the secretion of CD63 positive EVs has not been consistent with the data on CD63 localization in MVBs, and how CD63-containing EVs are formed is yet to be understood. To elucidate the mechanism of CD63 transport to ILVs, we focused on CD63 localization in MVBs and searched for the ArfGAPs involved in CD63 localization. We observed that ADAP1 and ARAP1 depletion inhibited CD63 localization to enlarged endosomes after Rab5Q79L overexpression. We tested epidermal growth factor (EGF) and CD9 localization in MVBs. We observed that ADAP1 and ARAP1 depletion inhibited CD9 localization in enlarged endosomes but not EGF. Our results indicate ADAP1 and ARAP1, regulate incorporation of CD63 and CD9, but not EGF, in overlapped and different MVBs. Our work will contribute to distinguish heterogenous ILVs and exosomes by ArfGAPs.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Ativadoras de GTPase , Corpos Multivesiculares , Tetraspanina 30 , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Endossomos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Corpos Multivesiculares/metabolismo , Transporte Proteico , Tetraspanina 30/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismoRESUMO
Ubiquitin-like modifier-activating enzyme 6 (UBA6) is a member of the E1 enzyme family, which initiates the ubiquitin-proteasome system (UPS). The UPS plays critical roles not only in protein degradation but also in various cellular functions, including neuronal signaling, myocardial remodeling, immune cell differentiation, and cancer development. However, the specific role of UBA6 in cellular functions is not fully elucidated in comparison with the roles of the UPS. It has been known that the E1 enzyme is associated with the motility of cancer cells. In this study, we verified the physiological roles of UBA6 in lung cancer cells through gene-silencing siRNA targeting UBA6 (siUBA6). The siUBA6 treatment attenuated the migration of H1975 cells, along with a decrease in lysosomal Ca2+ release. While autophagosomal proteins remained unchanged, lysosomal proteins, including TRPML1 and TPC2, were decreased in siUBA6-transfected cells. Moreover, siUBA6 induced the production of multivesicular bodies (MVBs), accompanied by an increase in MVB markers in siUBA6-transfected H1975 cells. Additionally, the expression of the exosomal marker CD63 and extracellular vesicles was increased by siUBA6 treatment. Our findings suggest that knock-down of UBA6 induces lysosomal TRPML1 depletion and inhibits endosomal trafficking to lysosome, and subsequently, leads to the accumulation of MVBs and enhanced exosomal secretion in lung cancer cells.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismoRESUMO
The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an essential enzyme of the base excision repair pathway of non-distorting DNA lesions. In response to genotoxic treatments, APE1 is highly secreted (sAPE1) in association with small-extracellular vesicles (EVs). Interestingly, its presence in the serum of patients with hepatocellular or non-small-cell-lung cancers may represent a prognostic biomarker. The mechanism driving APE1 to associate with EVs is unknown, but is of paramount importance in better understanding the biological roles of sAPE1. Because APE1 lacks an endoplasmic reticulum-targeting signal peptide, it can be secreted through an unconventional protein secretion endoplasmic reticulum-Golgi-independent pathway, which includes an endosome-based secretion of intraluminal vesicles, mediated by multivesicular bodies (MVBs). Using HeLa and A549 cell lines, we investigated the role of endosomal sorting complex required for transport protein pathways (either-dependent or -independent) in the constitutive or trichostatin A-induced secretion of sAPE1, by means of manumycin A and GW 4869 treatments. Through an in-depth biochemical analysis of late-endosomes (LEs) and early-endosomes (EEs), we observed that the distribution of APE1 on density gradient corresponded to that of LE-CD63, LE-Rab7, EE-EEA1 and EE-Rab 5. Interestingly, the secretion of sAPE1, induced by cisplatin genotoxic stress, involved an autophagy-based unconventional secretion requiring MVBs. The present study enlightens the central role played by MVBs in the secretion of sAPE1 under various stimuli, and offers new perspectives in understanding the biological relevance of sAPE1 in cancer cells.
Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Transporte Proteico , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células HeLa , Endossomos/metabolismo , Células A549 , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Corpos Multivesiculares/metabolismo , Reparo por Excisão , Ácidos HidroxâmicosRESUMO
BACKGROUND: A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization. METHODS: Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase-polymerase chain reaction to analyze separated particles in more detail. RESULTS: We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein's 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3. CONCLUSIONS: Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.
Assuntos
Vírus da Hepatite E , Corpos Multivesiculares/metabolismo , Proteínas/metabolismo , Poliproteínas/metabolismo , Peptídeo Hidrolases/metabolismoRESUMO
BACKGROUND AND AIMS: The important role of extracellular vesicles (EVs) in liver fibrosis has been confirmed. However, EVs derived from liver sinusoidal endothelial cells (LSECs) in the activation of hepatic stellate cells (HSCs) and liver fibrosis is still unclear. Our previous work demonstrated that Aldosterone (Aldo) may have the potential to regulate EVs from LSECs via autophagy pathway. Thus, we aim to investigate the role of Aldo in the regulation of EVs derived from LSECs. APPROACH AND RESULTS: Using an Aldo-continuous pumping rat model, we observed that Aldo-induced liver fibrosis and capillarization of LSECs. In vitro, transmission electron microscopy (TEM) revealed that stimulation of Aldo led to the upregulation of autophagy and degradation of multivesicular bodies (MVBs) in LSECs. Mechanistically, Aldo upregulated ATP6V0A2, which promoted lysosomal acidification and subsequent autophagy in LSECs. Inhibiting autophagy with si-ATG5 adeno-associated virus (AAV) in LSECs effectively mitigated Aldo-induced liver fibrosis in rats. RNA sequencing and nanoparticle tracking (NTA) analyses of EVs derived from LSECs indicated that Aldo result in a decrease in both the quantity and quality of EVs. We also observed a reduction in the protective miRNA-342-5P in EVs derived from Aldo-treated LSECs, which may play a critical role in HSCs activation. Target knockdown of EV secretion with si-RAB27a AAV in LSECs led to the development of liver fibrosis and HSC activation in rats. CONCLUSION: Aldo-induced Autophagic degradation of MVBs in LSECs promotes a decrease in the quantity and quality of EVs derived from LSECs, resulting in the activation of HSCs and liver fibrosis under hyperaldosteronism. Modulating the autophagy level of LSECs and their EV secretion may represent a promising therapeutic approach for treating liver fibrosis.
Assuntos
Aldosterona , Células Endoteliais , Ratos , Animais , Aldosterona/metabolismo , Aldosterona/farmacologia , Células Endoteliais/patologia , Corpos Multivesiculares/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/patologia , AutofagiaRESUMO
Exosomes are secreted to the extracellular milieu when multivesicular endosomes (MVEs) dock and fuse with the plasma membrane. However, MVEs are also known to fuse with lysosomes for degradation. How MVEs are directed to the plasma membrane for exosome secretion rather than to lysosomes is unclear. Here we report that a conversion of phosphatidylinositol-3-phosphate (PI(3)P) to phosphatidylinositol-4-phosphate (PI(4)P) catalyzed sequentially by Myotubularin 1 (MTM1) and phosphatidylinositol 4-kinase type IIα (PI4KIIα) on the surface of MVEs mediates the recruitment of the exocyst complex. The exocyst then targets the MVEs to the plasma membrane for exosome secretion. We further demonstrate that disrupting PI(4)P generation or exocyst function blocked exosomal secretion of Programmed death-ligand 1 (PD-L1), a key immune checkpoint protein in tumor cells, and led to its accumulation in lysosomes. Together, our study suggests that the PI(3)P to PI(4)P conversion on MVEs and the recruitment of the exocyst direct the exocytic trafficking of MVEs for exosome secretion.
Assuntos
Exossomos , Exossomos/metabolismo , Endossomos/metabolismo , Fosfatidilinositóis/metabolismo , Corpos Multivesiculares/metabolismoRESUMO
Cataract is a leading ocular disease causing global blindness. The mechanism of cataractogenesis has not been well defined. Here, we demonstrate that the heat shock protein 90ß (HSP90ß) plays a fundamental role in suppressing cataractogenesis. HSP90ß is the most dominant HSP in normal lens, and its constitutive high level of expression is largely derived from regulation by Sp1 family transcription factors. More importantly, HSP90ß is significantly down-regulated in human cataract patients and in aging mouse lenses, whereas HSP90ß silencing in zebrafish causes cataractogenesis, which can only be rescued by itself but not other HSP90 genes. Mechanistically, HSP90ß can directly interact with CHMP4B, a newly-found client protein involved in control of cytokinesis. HSP90ß silencing causes upregulation of CHMP4B and another client protein, the tumor suppressor p53. CHMP4B upregulation or overexpression induces excessive division of lens epithelial cells without proper differentiation. As a result, these cells were triggered to undergo apoptosis due to activation of the p53/Bak-Bim pathway, leading to cataractogenesis and microphthalmia. Silence of both HSP90ß and CHMP4B restored normal phenotype of zebrafish eye. Together, our results reveal that HSP90ß is a critical inhibitor of cataractogenesis through negative regulation of CHMP4B and the p53-Bak/Bim pathway.
Assuntos
Catarata , Proteínas de Choque Térmico HSP90 , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Envelhecimento/genética , Catarata/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Corpos Multivesiculares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Cadmium is a heavy environmental pollutant that presents a high risk to male-fertility and targets the different cellular and steroidogenic supporting germ cells networks during spermatogenesis. However, the mechanism accounting for its toxicity in multivesicular bodies (MVBs) biogenesis, and exosomal secretion associated with spermatozoa remains obscure. In the current study, the light and electron microscopy revealed that, the Sertoli cells perform a dynamic role with secretion of well-developed early endosomes (Ee) and MVBs pathway associated with spermatozoa during spermatogenesis. In addition, some apical blebs containing nano-scale exosomes located on the cell surface and after fragmentation nano-scale exosomes were directly linked with spermatozoa in the luminal compartment of seminiferous tubules, indicating normal spermatogenesis. Controversially, the cadmium treated group showed limited and deformed spermatozoa with damaging acromion process and mid-peace, and the cytoplasmic vacuolization of spermatids. After cadmium treatment, there is very limited biogenesis of MVBs inside the cytoplasm of Sertoli cells, and no obvious secretions of nano-scale exosomes interacted with spermatozoa. Interestingly, the cadmium treated group demonstrated relatively higher formation of autophagosomes and autolysosome, and the autophagosomes were enveloped by MVBs that later formed the amphisome which degraded by lysosomes, indicating the hypo-spermatogenesis. Moreover, cadmium declined the exosomal protein cluster of differentiation (CD63) and increased the autophagy-related proteins microtubule-associated light chain (LC3), sequestosome 1 (P62) and lysosomal-associated membrane protein 2 (LAMP2) expression level were confirmed by Western blotting. These results provide rich information regarding how cadmium is capable of triggering impaired spermatozoa development during spermatogenesis by reduction of MVBs pathway through high activation of autophagic pathway. This study explores the toxicant effect of cadmium on nano-scale exosomes secretion interacting with spermatozoa.
Assuntos
Cádmio , Corpos Multivesiculares , Masculino , Humanos , Corpos Multivesiculares/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Túbulos Seminíferos , Espermatogênese , EspermatozoidesRESUMO
Proper control of epidermal growth factor receptor (EGFR) signaling is important for maintaining cellular homeostasis. Given that EGFR signaling occurs at the plasma membrane and endosomes following internalization, endosomal trafficking of EGFR spatiotemporally regulates EGFR signaling. In this process, leucine-rich repeat kinase 1 (LRRK1) has multiple roles in kinase activity-dependent transport of EGFR-containing endosomes and kinase-independent sorting of EGFR into the intraluminal vesicles (ILVs) of multivesicular bodies. Active, phosphorylated EGFR inactivates the LRRK1 kinase activity by phosphorylating Y944. In this study, we demonstrate that LRRK1 facilitates EGFR dephosphorylation by PTP1B (also known as PTPN1), an endoplasmic reticulum (ER)-localized protein tyrosine phosphatase, at the ER-endosome contact site, after which EGFR is sorted into the ILVs of endosomes. LRRK1 is required for the PTP1B-EGFR interaction in response to EGF stimulation, resulting in the downregulation of EGFR signaling. Furthermore, PTP1B activates LRRK1 by dephosphorylating pY944 on the contact site, which promotes the transport of EGFR-containing endosomes to the perinuclear region. These findings provide evidence that the ER-endosome contact site functions as a hub for LRRK1-dependent signaling that regulates EGFR trafficking.
Assuntos
Endossomos , Receptores ErbB , Humanos , Células HeLa , Endossomos/metabolismo , Receptores ErbB/metabolismo , Retículo Endoplasmático/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Proteico/fisiologia , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
When multivesicular endosomes (MVEs) fuse with the plasma membrane, exosomes are released into the extracellular space where they can affect other cells. The ability of exosomes to regulate cells nearby or further away depends on whether they remain attached to the secreting cell membrane. The regulation and kinetics of exosome secretion are not well characterized, but probes for directly imaging single MVE fusion events have allowed for visualization of the fusion and release process. In particular, the design of an exosome marker with a pH-sensitive dye in the middle of the tetraspanin protein CD63 has facilitated studies of individual MVE fusion events. Using TIRF microscopy, single fusion events were measured in A549 cells held at 23-37°C and events were identified using an automated detection algorithm. Stable docking precedes fusion almost always and a decrease in temperature was accompanied by decrease in the rate of content loss and in the frequency of fusion events. The loss of CD63-pHluorin fluorescence was measured at fusion sites and fit with a single or double exponential decay, with most events requiring two components and a plateau because the loss of fluorescence was typically incomplete. To interpret the kinetics, fusion events were simulated as a localized release of tethered/untethered exosomes coupled with the membrane diffusion of CD63. The experimentally observed decay required three components in the simulation: 1) free exosomes, 2) CD63 membrane diffusion from the endosomal membrane into the plasma membrane, and 3) tethered exosomes. Modeling with slow diffusion of the tethered exosomes (0.0015-0.004 µm2/s) accurately fits the experimental data for all temperatures. However, simulating with immobile tethers or the absence of tethers fails to replicate the data. Our model suggests that exosome release from the fusion site is incomplete due to postfusion, membrane attachment.
Assuntos
Exossomos , Exossomos/metabolismo , Temperatura , Tetraspanina 30/metabolismo , Endossomos/metabolismo , Corpos Multivesiculares/metabolismoRESUMO
Autophagy and multivesicular bodies (MVBs) represent 2 closely related lysosomal/vacuolar degradation pathways. In Arabidopsis (Arabidopsis thaliana), autophagy is stress-induced, with deficiency in autophagy causing strong defects in stress responses but limited effects on growth. LYST-INTERACTING PROTEIN 5 (LIP5) is a key regulator of stress-induced MVB biogenesis, and mutation of LIP5 also strongly compromises stress responses with little effect on growth in Arabidopsis. To determine the functional interactions of these 2 pathways in Arabidopsis, we generated mutations in both the LIP5 and AUTOPHAGY-RELATED PROTEIN (ATG) genes. atg5/lip5 and atg7/lip5 double mutants displayed strong synergistic phenotypes in fitness characterized by stunted growth, early senescence, reduced survival, and greatly diminished seed production under normal growth conditions. Transcriptome and metabolite analysis revealed that chloroplast sulfate assimilation was specifically downregulated at early seedling stages in the atg7/lip5 double mutant prior to the onset of visible phenotypes. Overexpression of adenosine 5'-phosphosulfate reductase 1, a key enzyme in sulfate assimilation, substantially improved the growth and fitness of the atg7/lip5 double mutant. Comparative multi-omic analysis further revealed that the atg7/lip5 double mutant was strongly compromised in other chloroplast functions including photosynthesis and primary carbon metabolism. Premature senescence and reduced survival of atg/lip5 double mutants were associated with increased accumulation of reactive oxygen species and overactivation of stress-associated programs. Blocking PHYTOALEXIN DEFICIENT 4 and salicylic acid signaling prevented early senescence and death of the atg7/lip5 double mutant. Thus, stress-responsive autophagy and MVB pathways play an important cooperative role in protecting essential chloroplast functions including sulfur assimilation under normal growth conditions to suppress salicylic-acid-dependent premature cell-death and promote plant growth and fitness.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Sulfatos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Cloroplastos/metabolismo , Corpos Multivesiculares/metabolismo , Mutação/genética , Sulfatos/metabolismoRESUMO
Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.
Assuntos
Exossomos , Neoplasias , Humanos , Animais , Camundongos , Exossomos/metabolismo , Proteômica , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Transporte Biológico , Corpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismoRESUMO
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Corpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Comunicação Celular , Membrana Celular/metabolismoRESUMO
The NF-κB pathway is central pathway for inflammatory and immune responses, and IKKγ/NEMO is essential for NF-κB activation. In a previous report, we identified the role of glycogen synthase kinase-3ß (GSK-3ß) in NF-κB activation by regulating IKKγ/NEMO. Here, we show that NEMO phosphorylation by GSK-3ß leads to NEMO localization into multivesicular bodies (MVBs). Using the endosome marker Rab5, we observed localization into endosomes. Using siRNA, we identified the AAA-ATPase Vps4A, which is involved in recycling the ESCRT machinery by facilitating its dissociation from endosomal membranes, which is necessary for NEMO stability and NF-κB activation. Co-immunoprecipitation studies of NEMO and mutated NEMO demonstrated its direct interaction with Vps4A, which requires NEMO phosphorylation. The transfection of cells by a mutated and constitutively active form of Vps4A, Vps4A-E233Q, resulted in the formation of large vacuoles and strong augmentation in NEMO expression compared to GFP-Vps4-WT. In addition, the overexpression of the mutated form of Vps4A led to increased NF-κB activation. The treatment of cells with the pharmacologic V-ATPase inhibitor bafilomycin A led to a dramatic downregulation of NEMO and, in this way, inhibited NF-κB signal transduction. These results reveal an unexpected role for GSK-3ß and V-ATPase in NF-κB signaling activation.
Assuntos
Quinase I-kappa B , NF-kappa B , Adenosina Trifosfatases , Glicogênio Sintase Quinase 3 beta/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Corpos Multivesiculares/metabolismo , NF-kappa B/metabolismoRESUMO
The purpose of this study is to investigate exosome-like vesicle (ELV) plasma concentrations and markers of multivesicular body (MVB) biogenesis in skeletal muscle in response to acute exercise. Seventeen healthy [body mass index (BMI): 23.5 ± 0.5 kg·m-2] and 15 prediabetic (BMI: 27.3 ± 1.2 kg·m-2) men were randomly assigned to two groups performing an acute cycling bout in normoxia or hypoxia ([Formula: see text] 14.0%). Venous blood samples were taken before (T0), during (T30), and after (T60) exercise, and biopsies from m. vastus lateralis were collected before and after exercise. Plasma ELVs were isolated by size exclusion chromatography, counted by nanoparticle tracking analysis (NTA), and characterized according to international standards, followed by expression analyses of canonical ELV markers in skeletal muscle. In the healthy normoxic group, the total number of particles in the plasma increased during exercise from T0 to T30 (+313%) followed by a decrease from T30 to T60 (-53%). In the same group, an increase in TSG101, CD81, and HSP60 protein expression was measured after exercise in plasma ELVs; however, in the prediabetic group, the total number of particles in the plasma was not affected by exercise. The mRNA content of TSG101, ALIX, and CD9 was upregulated in skeletal muscle after exercise in normoxia, whereas CD9 and CD81 were downregulated in hypoxia. ELV plasma abundance increased in response to acute aerobic exercise in healthy subjects in normoxia, but not in prediabetic subjects, nor in hypoxia. Skeletal muscle analyses suggested that this tissue did not likely play a major role of the exercise-induced increase in circulating ELVs.