Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 558: 29-35, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33895548

RESUMO

Estrogen therapy is used to treat patients with post-menopausal symptoms, such as hot flashes and dyspareunia. Estrogen therapy also decreases the risk of fractures from osteoporosis in post-menopausal women. However, estrogen increases the risk of venous thromboembolic events, such as pulmonary embolism, but the pathways through which estrogen increase the risk of thromboembolism is unknown. Here, we show that estrogen elicits endothelial exocytosis, the key step in vascular thrombosis and inflammation. Exogenous 17ß-estradiol (E2) stimulated endothelial exocytosis of Weibel-Palade bodies (WPBs), releasing von Willebrand factor (vWF) and interleukin-8 (IL-8). Conversely, the estrogen antagonist ICI-182,780 interfered with E2-induced endothelial exocytosis. The ERα agonist propyl pyrazole triol (PPT) but not the ERß agonist diarylpropionitrile (DPN) induced vWF release, while ERα silencing counteracted vWF release by E2, suggesting that ERα mediates this effect. Exocytosis triggered by E2 occurred rapidly within 15 min and was not inhibited by either actinomycin D or cycloheximide. On the contrary, it was inhibited by the pre-treatment of U0126 or SB203580, an ERK or a p38 inhibitor, respectively, suggesting that E2-induced endothelial exocytosis is non-genomically mediated by the MAP kinase pathway. Finally, E2 treatment enhanced platelet adhesion to endothelial cells ex vivo, which was interfered with the pre-treatment of ICI-182,780 or U0126. Taken together, our data show that estrogen activates endothelial exocytosis non-genomically through the ERα-MAP kinase pathway. Our data suggest that adverse cardiovascular effects such as vascular inflammation and thrombosis should be considered in patients before menopausal hormone treatment.


Assuntos
Células Endoteliais/efeitos dos fármacos , Estradiol/efeitos adversos , Exocitose/efeitos dos fármacos , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Terapia de Reposição de Estrogênios/efeitos adversos , Exocitose/fisiologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/fisiologia , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/fisiologia , Fatores de Risco , Tromboembolia/etiologia , Corpos de Weibel-Palade/efeitos dos fármacos , Corpos de Weibel-Palade/patologia , Corpos de Weibel-Palade/fisiologia
2.
Arterioscler Thromb Vasc Biol ; 39(9): 1843-1858, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315435

RESUMO

Objective Weibel-Palade bodies (WPBs) are endothelial cell (EC)-specific organelles formed by vWF (von Willebrand factor) polymerization and that contain the proangiogenic factor Ang-2 (angiopoietin-2). WPB exocytosis has been shown to be implicated for vascular repair and inflammatory responses. Here, we investigate the role of WPBs during angiogenesis and vessel stabilization. Approach and Results WPB density in ECs decreased at the angiogenic front of retinal vascular network during development and neovascularization compared with stable vessels. In vitro, VEGF (vascular endothelial growth factor) induced a VEGFR-2 (vascular endothelial growth factor receptor-2)-dependent exocytosis of WPBs that contain Ang-2 and consequently the secretion of vWF and Ang-2. Blocking VEGF-dependant WPB exocytosis and Ang-2 secretion promoted pericyte migration toward ECs. Pericyte migration was inhibited by adding recombinant Ang-2 or by silencing Ang-1 (angiopoietin-1) or Tie2 (angiopoietin-1 receptor) in pericytes. Consistently, in vivo anti-VEGF treatment induced accumulation of WPBs in retinal vessels because of the inhibition of WPB exocytosis and promoted the increase of pericyte coverage of retinal vessels during angiogenesis. In tumor angiogenesis, depletion of WPBs in vWF knockout tumor-bearing mice promoted an increase of tumor angiogenesis and a decrease of pericyte coverage of tumor vessels. By another approach, normalized tumor vessels had higher WPB density. Conclusions We demonstrate that WPB exocytosis and Ang-2 secretion are regulated during angiogenesis to limit pericyte coverage of remodeling vessels by disrupting Ang-1/Tie2 autocrine signaling in pericytes.


Assuntos
Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Pericitos/fisiologia , Corpos de Weibel-Palade/fisiologia , Angiopoietina-2/fisiologia , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Exocitose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/irrigação sanguínea , Retina/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
3.
Biochem Biophys Res Commun ; 501(1): 165-171, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29709479

RESUMO

The synaptic protein Neuroligin 2, similarly to its isoform Neuroligin 1, is produced by endothelial cells, but its activity in the vascular context remains unknown. This study aimed at verifying the hypothesis that Neuroligin 2, in parallel with its extraneuronal involvement in pancreatic beta cells exocytosis, modulated cytokine release from endothelial cells and consequently angiogenesis. We used in vitro approaches to modulate Neuroligin 2 expression and Neuroligin 2 null mice to test our hypotheses. In vitro, upon VEGF stimulation, Neuroligin 2 silencing strongly reduces Angiopoietin 2 release in the medium and increases the endothelial cell retention of Weibel Palade Bodies, the specialized organelles that store Angiopoietin 2 and various other cytokines. On the contrary, Neuroligin 2 overexpression almost depletes cells of Weibel Palade Bodies, independent of VEGF. In vivo, both the retina and tumor xenografts grown in NLGN2- null mice display an immature vasculature, with lower pericyte coverage and lower Tie2 phosphorylation. At the molecular level NLGN2 colocalizes with its neuronal partner collibystin, a CDC42 guanine nucleotide exchange factor, which is also expressed by endothelial cells and in turn modulates Angiopoietin 2 release. Neuroligin 2, an inhibitory synaptic protein, modulates a peculiar aspect of vascular function and could represent a novel target of therapy in various fields, from tumor angiogenesis to vascular diseases.


Assuntos
Angiopoietina-2/metabolismo , Moléculas de Adesão Celular Neuronais/fisiologia , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Vasos Retinianos/citologia , Vasos Retinianos/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Corpos de Weibel-Palade/fisiologia , Fator de von Willebrand/metabolismo
4.
J Proteome Res ; 11(5): 2925-36, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22468712

RESUMO

Vascular endothelial cells contain unique storage organelles, designated Weibel-Palade bodies (WPBs), that deliver inflammatory and hemostatic mediators to the vascular lumen in response to agonists like thrombin and vasopressin. The main component of WPBs is von Willebrand factor (VWF), a multimeric glycoprotein crucial for platelet plug formation. In addition to VWF, several other components are known to be stored in WPBs, like osteoprotegerin, monocyte chemoattractant protein-1 and angiopoetin-2 (Ang-2). Here, we used an unbiased proteomics approach to identify additional residents of WPBs. Mass spectrometry analysis of purified WPBs revealed the presence of several known components such as VWF, Ang-2, and P-selectin. Thirty-five novel candidate WPB residents were identified that included insulin-like growth factor binding protein-7 (IGFBP7), which has been proposed to regulate angiogenesis. Immunocytochemistry revealed that IGFBP7 is a bona fide WPB component. Cotransfection studies showed that IGFBP7 trafficked to pseudo-WPB in HEK293 cells. Using a series of deletion variants of VWF, we showed that targeting of IGFBP7 to pseudo-WPBs was dependent on the carboxy-terminal D4-C1-C2-C3-CK domains of VWF. IGFBP7 remained attached to ultralarge VWF strings released upon exocytosis of WPBs under flow. The presence of IGFBP7 in WPBs highlights the role of this subcellular compartment in regulation of angiogenesis.


Assuntos
Células Endoteliais/química , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Proteômica/métodos , Corpos de Weibel-Palade/química , Células Endoteliais/fisiologia , Exocitose , Vetores Genéticos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Neovascularização Fisiológica , Selectina-P/química , Estrutura Terciária de Proteína , Transporte Proteico , Transfecção , Corpos de Weibel-Palade/fisiologia , Fator de von Willebrand/química
5.
Yi Chuan ; 31(9): 882-8, 2009 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19819840

RESUMO

Weibel-Palade bodies (WPB) are specialized cigar-shaped secretory organelles in endothelial cells, which contain a variety of biologically active molecules. These contents can be released rapidly by stimulation and involved in hemostasis, inflammation and angiogenesis. The main component of WPB is von Willebrand factor (vWF), whose expression and tubulation are necessary for the formation of the unique rod-like WPBs. Different molecules such as vWF, P-selectin, CD63, Rab27A and Rab3D are recruited into WPB mediated by the AP-1, AP-3 or other transport machinery. The underlying mechanism of the formation of WPB remains further investigation, which will gain insights into its function. The molecular mechanism of WPB formation and its function were discussed in this review.


Assuntos
Corpos de Weibel-Palade/fisiologia , Animais , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo
6.
Proc Natl Acad Sci U S A ; 105(2): 482-7, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18182488

RESUMO

Endothelial cells assemble von Willebrand factor (VWF) multimers into ordered tubules within storage organelles called Weibel-Palade bodies, and tubular packing is necessary for the secretion of VWF filaments that can bind connective tissue and recruit platelets to sites of vascular injury. We now have recreated VWF tubule assembly in vitro, starting with only pure VWF propeptide (domains D1D2) and disulfide-linked dimers of adjacent N-terminal D'D3 domains. Assembly requires low pH and calcium ions and is reversed at neutral pH. Quick-freeze deep-etch electron microscopy and three-dimensional reconstruction of negatively stained images show that tubules contain a repeating unit of one D'D3 dimer and two propeptides arranged in a right-handed helix with 4.2 units per turn. The symmetry and location of interdomain contacts suggest that decreasing pH along the secretory pathway coordinates the disulfide-linked assembly of VWF multimers with their tubular packaging.


Assuntos
Corpos de Weibel-Palade/química , Fator de von Willebrand/química , Dimerização , Dissulfetos/química , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Íons , Lasers , Luz , Microscopia Eletrônica , Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento de Radiação , Corpos de Weibel-Palade/fisiologia
7.
J Cell Sci ; 121(Pt 1): 19-27, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18096688

RESUMO

Weibel-Palade bodies (WPBs) are secretory organelles used for post-synthesis storage in endothelial cells that can, very rapidly, be triggered to release their contents. They carry a variety of bioactive molecules that are needed to mount a rapid response to the complex environment of cells that line blood vessels. They store factors that are essential to haemostasis and inflammation, as well as factors that modulate vascular tonicity and angiogenesis. The number of WPBs and their precise content vary between endothelial tissues, reflecting their differing physiological circumstances. The particular functional demands of the highly multimerised haemostatic protein von Willebrand Factor (VWF), which is stored in WPBs as tubules until release, are responsible for the cigar shape of these granules. How VWF tubules drive the formation of these uniquely shaped organelles, and how WPB density increases during maturation, has recently been revealed by EM analysis using high-pressure freezing and freeze substitution. In addition, an AP1/clathrin coat has been found to be essential to WPB formation. Following recruitment of cargo at the TGN, there is a second wave of recruitment that delivers integral and peripheral membrane proteins to WPBs, some of which is AP3 dependent.


Assuntos
Corpos de Weibel-Palade/fisiologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Clatrina/metabolismo , Exocitose , Humanos , Corpos de Weibel-Palade/ultraestrutura , Rede trans-Golgi/fisiologia , Fator de von Willebrand/química , Fator de von Willebrand/fisiologia
8.
Microbes Infect ; 9(12-13): 1500-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17913538

RESUMO

Gingipains, cysteine proteases derived from Porphyromonas gingivalis, are important virulence factors in periodontal diseases. We found that arginine-specific gingipain A (RgpA) increased the responsiveness of vascular endothelial cells to P. gingivalis lipopolysaccharides (LPS) and P. gingivalis whole cells to induce enhanced IL-8 production through protease-activated receptors (PARs) and phospholipase C (PLC) gamma. We therefore investigated whether RgpA-induced enhanced cell activation is mediated through exocytosis of Weibel-Palade bodies (WPBs) because they store vasoactive substances. RgpA rapidly activated PAR- and PLCgamma-dependent WPB exocytosis. In addition, angiopoietin (Ang)-2, a substance of WPB, enhanced IL-8 production by P. gingivalis LPS, suggesting that Ang-2 mediates the RgpA-induced enhanced cell responses. Thus, we propose a novel role for RgpA in induction of a proinflammatory event through PAR-mediated WPB exocytosis, which may be an important step for enhanced endothelial responses to P. gingivalis.


Assuntos
Adesinas Bacterianas/imunologia , Cisteína Endopeptidases/imunologia , Células Endoteliais/imunologia , Endotélio Vascular/imunologia , Exocitose/fisiologia , Porphyromonas gingivalis/imunologia , Receptores Ativados por Proteinase/metabolismo , Corpos de Weibel-Palade/fisiologia , Células Cultivadas , Endotélio Vascular/citologia , Cisteína Endopeptidases Gingipaínas , Humanos , Veias Umbilicais
9.
Arterioscler Thromb Vasc Biol ; 26(5): 1002-7, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16469951

RESUMO

Agonist-induced release of endothelial cell specific storage granules, designated Weibel-Palade bodies (WPBs), provides the endothelium with the ability to rapidly respond to changes in its micro-environment. Originally being defined as an intracellular storage pool for von Willebrand factor (VWF), it has recently been shown that an increasing number of other components, including P-selectin, interleukin (IL)-8, eotaxin-3, endothelin-1, and angiopoietin-2, is present within this subcellular organelle, implicating a role for WPB exocytosis in inflammation, hemostasis, regulation of vascular tone and angiogenesis. Recent studies emphasize that WPBs provide a dynamic storage compartment whose contents can be regulated depending on the presence of inflammatory mediators in the vascular micro-environment. Additionally, release of WPBs is tightly regulated and feedback mechanisms have been identified that prevent excessive release of bioactive components from this subcellular organelle. The ability to regulate both contents and exocytosis of WPBs endows these endothelial cell specific organelles with a remarkable plasticity. This is most likely needed to allow for controlled delivery of bioactive components into the circulation on vascular perturbation.


Assuntos
Células Endoteliais/ultraestrutura , Corpos de Weibel-Palade/fisiologia , Animais , Cálcio/metabolismo , Quimiocina CCL26 , Quimiocinas CC/metabolismo , Células Endoteliais/fisiologia , Exocitose , Humanos , Interleucina-8/metabolismo , Selectina-P/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas rab27 de Ligação ao GTP , Fator de von Willebrand/análise
10.
Chin Med J (Engl) ; 117(8): 1143-50, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15361285

RESUMO

BACKGROUND: The release of Weibel-Palade Bodies (WPB) is a form of endothelial cell activation. But the signal transduction pathway leading to WPB release is not yet defined. We hypothesized that small G-protein rac1 and reactive oxygen species (ROS) mediate the ligand induced release of Weibel-Palade Bodies. METHODS: We tested this hypothesis by using wild-type and mutant adenoviral rac1 expression vectors, and by manipulating the production and destruction of superoxide and hydrogen peroxide in human aortic endothelial cells (HAEC). RESULTS: Thrombin (1.0 Unit, 30 min) induced the increase of WPB release by 3.7-fold in HAEC, and that H2O2 (0.1 mmol/L, 30 min) induced by 4.5-fold. These results correlated with thrombin-stimulated activation of rac-GTP binding activity by 3.5-fold, and increase of ROS production by 3.4-fold. The dominant negative adenoviral rac-N17 gene transfer dramatically inhibited the release of WPB by 64.2% (control) and 77.3% (thrombin-stimulation), and decreased ROS production by 65.5% (control) and 83.6% (thrombin-stimulation) compared with non-infected cells, respectively. Anti-oxidants, catalase and N-acetyl-cysteine significantly decreased the release of WPB by 34% and 79% in control cells, and further decreased by 63.6% and 46.7% in rac-N17 transferred cells compared with non-infected cells. We also confirmed that rac1 was located upstream of ROS in the WPB release pathway. CONCLUSIONS: Small G-protein rac1 medicates ligand-induced release of Weibel-Palade Bodies in human aortic endothelial cells, and the signal pathway of WPB release is a rac1-dependent ROS regulating mechanism.


Assuntos
Aorta/ultraestrutura , Células Endoteliais/ultraestrutura , Corpos de Weibel-Palade/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Humanos , Espécies Reativas de Oxigênio , Transdução de Sinais , Trombina/farmacologia
11.
Semin Cell Dev Biol ; 13(4): 313-24, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12243731

RESUMO

Weibel-Palade bodies (WPBs) are the lysosome-related secretory organelles of endothelial cells. Their content protein von Willebrand factor, plays a key role in haemostasis, whilst P-selectin in the membranes is critical in the initiation of inflammation. Biogenesis of these rod-shaped structures is driven by von Willebrand factor, since its heterologous expression leads to formation of organelles morphologically indistinguishable from bona fide WPBs. The two main membrane proteins of WPBs, CD63 and P-selectin, have complex itineraries controlled largely by cytoplasmic targeting signals. We are only just beginning to understand the way in which these three proteins come together to form mature WPBs.


Assuntos
Corpos de Weibel-Palade/fisiologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Humanos , Dados de Sequência Molecular , Selectina-P/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Tetraspanina 30
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA