Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Cancer Lett ; 599: 217147, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094826

RESUMO

The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.


Assuntos
Neoplasias da Mama , Ritmo Circadiano , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Resistência à Insulina , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Animais , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Carcinogênese/genética , Células MCF-7 , Camundongos Nus
2.
Int J Hematol ; 120(2): 157-166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814500

RESUMO

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.


Assuntos
Diferenciação Celular , Eritropoese , Hemina , Leucemia Eritroblástica Aguda , Correpressor 1 de Receptor Nuclear , Humanos , Células K562 , Eritropoese/genética , Leucemia Eritroblástica Aguda/patologia , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Hemina/farmacologia , Células Eritroides/metabolismo , Células Eritroides/citologia , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Hemoglobinas/metabolismo , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular
3.
Anticancer Res ; 43(11): 4801-4807, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37909960

RESUMO

BACKGROUND/AIM: B-cell lymphomas are characterized by diverse genetic anomalies affecting B-cell differentiation. To expand targeted therapies, an in-depth grasp of the molecular dynamics in the germinal center (GC) is vital. Transducin ß-like 1 X-linked receptor 1 (TBL1XR1) and nuclear receptor corepressor 1 (NCOR1) are instrumental within the GC, modulating myriad oncogenic pathways. Their prognostic roles in various cancers are established, yet their precise impact on B-cell lymphoma is elusive. MATERIALS AND METHODS: Digital RNA quantification (Nanostring) of previously curated 188 B-cell lymphoma specimens across four subtypes, follicular lymphoma (FL), diffuse large B-cell lymphoma, not otherwise specified (DLBCL-NOS), primary testicular lymphoma (PTL), and plasmablastic lymphoma (PBL), was reanalyzed with focus on TBL1XR1 and NCOR1 expression, juxtaposing them with 730 ontogenically linked genes. RESULTS: Notably, TBL1XR1 expression was significantly elevated in the PTL- ABC-subtype versus DLBCL-NOS- ABC-subtype (p<0.001), with no marked disparity in GCB-subtypes between them. The median TBL1XR1 expression was remarkably diminished in FL, yet, intriguingly, GCB-subtypes of DLBCL-NOS exhibited significantly enhanced expression compared to FL (p=0.001). In contrast, NCOR1's expression trajectory was consistent across DLBCL-NOS, PTL, and PBL. A strong inverse correlation between TBL1XR1 and NCOR1 was observed in PBL (p=0.001). Importantly, TBL1XR1's pronounced association with several DNA Damage repair (DDR) genes was noted suggesting influence on DNA repair. TBL1XR1-DDR gene signature was further validated employing a public data set of DLBCL-NOS. CONCLUSION: Our exploratory findings unravel the expression patterns of TBL1XR1/NCOR1 in B-cell lymphoma variants. The TBL1XR1-DDR genes connection offers insights into potential DNA repair roles, paving avenues for innovative therapies in B-cell lymphomas.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Linfoma Plasmablástico , Humanos , Linfoma Difuso de Grandes Células B/genética , Reparo do DNA , Dano ao DNA , Proteínas Repressoras/genética , Receptores Citoplasmáticos e Nucleares/genética , Correpressor 1 de Receptor Nuclear/genética
4.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751740

RESUMO

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Assuntos
Osteoclastos , RNA , Humanos , Camundongos , Animais , Proteínas Correpressoras/genética , Osteoclastos/metabolismo , Ligante RANK/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Expressão Gênica
5.
Nat Commun ; 14(1): 4987, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591884

RESUMO

PPARα corepressor NCoR1 is a key regulator of fatty acid ß-oxidation and ketogenesis. However, its regulatory mechanism is largely unknown. Here, we report that oncoprotein p21-activated kinase 4 (PAK4) is an NCoR1 kinase. Specifically, PAK4 phosphorylates NCoR1 at T1619/T2124, resulting in an increase in its nuclear localization and interaction with PPARα, thereby repressing the transcriptional activity of PPARα. We observe impaired ketogenesis and increases in PAK4 protein and NCoR1 phosphorylation levels in liver tissues of high fat diet-fed mice, NAFLD patients, and hepatocellular carcinoma patients. Forced overexpression of PAK4 in mice represses ketogenesis and thereby increases hepatic fat accumulation, whereas genetic ablation or pharmacological inhibition of PAK4 exhibites an opposite phenotype. Interestingly, PAK4 protein levels are significantly suppressed by fasting, largely through either cAMP/PKA- or Sirt1-mediated ubiquitination and proteasome degradation. In this way, our findings provide evidence for a PAK4-NCoR1/PPARα signaling pathway that regulates fatty acid ß-oxidation and ketogenesis.


Assuntos
Ácidos Graxos , PPAR alfa , Quinases Ativadas por p21 , Animais , Camundongos , Proteínas Correpressoras , Ácidos Graxos/metabolismo , Quinases Ativadas por p21/genética , PPAR alfa/genética , Correpressor 1 de Receptor Nuclear/genética , Humanos , Fosforilação , Transdução de Sinais
6.
Nat Immunol ; 23(12): 1763-1776, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316474

RESUMO

The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.


Assuntos
Hematopoese , Transdução de Sinais , Camundongos , Humanos , Animais , Proteínas Correpressoras , Núcleo Celular , Genômica , Correpressor 2 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/genética
7.
Nat Commun ; 13(1): 7199, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443319

RESUMO

Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Genes Reguladores , Proteínas Serina-Treonina Quinases/genética , Mama , Repressão Psicológica , Correpressor 1 de Receptor Nuclear/genética
8.
Front Immunol ; 13: 910705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238311

RESUMO

Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.


Assuntos
Interleucina-10 , Interleucina-6 , Animais , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear , Fator de Transcrição STAT3 , Serina-Treonina Quinases TOR/metabolismo
9.
Gerontology ; 68(11): 1291-1310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35439761

RESUMO

OBJECTIVES: Atherosclerosis (AS) remains a major contributor to death worldwide. This study sought to explore the role of Krüppel-like factor 7 (KLF7) in AS lesions via regulating glucose metabolic reprogramming (GMR) in macrophages. METHODS: AS mouse and cell models were established via high-fat-diet feeding and oxidized low-density lipoprotein (ox-LDL) induction. KLF7, histone deacetylase 4 (HDAC4), miR-148b-3p, and nuclear receptor corepressor 1 (NCOR1) expressions in aortic tissue and cells were detected via reverse transcription quantitative polymerase chain reaction or Western blotting. Parameters of AS lesions and mouse metabolism were detected via hematoxylin-eosin, oil red O, and Masson staining, assay kits, glucose tolerance test, and enzymatic analysis. Peritoneal macrophages of mice were isolated and cellular metabolism was detected via Seahorse metabolic flux analysis, assay kits, ELISA, and Western blotting. Bindings among KLF7, HDAC4, microRNA (miR)-148b-3p, and NCOR1 were testified via the dual-luciferase assay and chromatin immunoprecipitation assay. RESULTS: KLF7 was poorly expressed in AS mice and ox-LDL-induced RAW264.7 cells. KLF7 overexpression attenuated AS lesions and rescued metabolic abnormities in AS mice, and reduced glucose intake and GMR in ox-LDL-induced RAW264.7 cells. Mechanically, KLF7 bound to the HDAC4 promoter to activate HDAC4. HDAC4 reduced H3 and H4 acetylation levels in the miR-148b promoter to inhibit miR-148b-3p and promote NCOR1 transcription. HDAC4 downregulation abolished the protective role of KLF7 overexpression in AS mice and ox-LDL-induced RAW264.7 cells via the miR-148b-3p/NCOR1 axis. CONCLUSION: KLF7 bound to the HDAC4 promoter to activate HDAC4, inhibit miR-148b-3p via reducing acetylation level, and promote NCOR1 transcription, thereby limiting GMR in macrophages and alleviating AS lesions.


Assuntos
Aterosclerose , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Apoptose , Aterosclerose/metabolismo , Proliferação de Células , Glucose/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , MicroRNAs/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
Cancer Res ; 82(12): 2239-2253, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395674

RESUMO

Circular RNAs (circRNA) containing retained introns are normally sequestered in the nucleus. Dysregulation of cellular homeostasis can drive their nuclear export, which may be involved in cancer metastasis. However, the mechanism underlying circRNA nuclear export and its role in lymph node (LN) metastasis of bladder cancer remain unclear. Here, we identify an intron-retained circRNA, circNCOR1, that is significantly downregulated in LN metastatic bladder cancer and is negatively associated with poor prognosis of patients. Overexpression of circNCOR1 inhibited lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Nuclear circNCOR1 epigenetically promoted SMAD7 transcription by increasing heterogeneous nuclear ribonucleoprotein L (hnRNPL)-induced H3K9 acetylation in the SMAD7 promoter, leading to inhibition of the TGFß-SMAD signaling pathway. Nuclear retention of circNCOR1 was regulated by small ubiquitin-like modifier (SUMO)ylation of DDX39B, an essential regulatory factor responsible for circRNA nuclear-cytoplasmic transport. Reduced SUMO2 binding to DDX39B markedly increased circNCOR1 retention in the nucleus to suppress bladder cancer LN metastasis. By contrast, SUMOylated DDX39B activated nuclear export of circNCOR1, impairing the suppressive role of circNCOR1 on TGFß-SMAD cascade activation and bladder cancer LN metastasis. In patient-derived xenograft (PDX) models, overexpression of circNCOR1 and inhibition of TGFß signaling significantly repressed tumor growth and LN metastasis. This study highlights SUMOylation-induced nuclear export of circNCOR1 as a key event regulating TGFß-SMAD signaling and bladder cancer lymphangiogenesis, thus supporting circNCOR1 as a novel therapeutic agent for patients with LN metastatic bladder cancer. SIGNIFICANCE: This study identifies the novel intron-retained circNCOR1 and elucidates a SUMOylation-mediated DDX39B-circNCOR1-SMAD7 axis that regulates lymph node metastasis of bladder cancer.


Assuntos
Correpressor 1 de Receptor Nuclear/genética , RNA Circular , Neoplasias da Bexiga Urinária , Transporte Ativo do Núcleo Celular/genética , Humanos , Metástase Linfática , RNA Circular/genética , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Bexiga Urinária/patologia
11.
Acta Pharmacol Sin ; 43(9): 2351-2361, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35149852

RESUMO

Nuclear receptor corepressor 1 (NCoR1) is a corepressor of the epigenetic regulation of gene transcription that has important functions in metabolism and inflammation, but little is known about its role in alcohol-associated liver disease (ALD). In this study, we developed mice with hepatocyte-specific NCoR1 knockout (NCoR1Hep-/-) using the albumin-Cre/LoxP system and investigated the role of NCoR1 in the pathogenesis of ALD and the underlying mechanisms. The traditional alcohol feeding model and NIAAA model of ALD were both established in wild-type and NCoR1Hep-/- mice. We showed that after ALD was established, NCoR1Hep-/- mice had worse liver injury but less steatosis than wild-type mice. We demonstrated that hepatocyte-specific loss of NCoR1 attenuated liver steatosis by promoting fatty acid oxidation by upregulating BMAL1 (a circadian clock component that has been reported to promote peroxisome proliferator activated receptor alpha (PPARα)-mediated fatty ß-oxidation by upregulating de novo lipid synthesis). On the other hand, hepatocyte-specific loss of NCoR1 exacerbated alcohol-induced liver inflammation and oxidative stress by recruiting monocyte-derived macrophages via C-C motif chemokine ligand 2 (CCL2). In the mouse hepatocyte line AML12, NCoR1 knockdown significantly increased ethanol-induced CCL2 release. These results suggest that hepatocyte NCoR1 plays distinct roles in controlling liver inflammation and steatosis, which provides new insights into the development of treatments for steatohepatitis induced by chronic alcohol consumption.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Hepatopatias Alcoólicas , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Etanol/toxicidade , Hepatócitos/metabolismo , Inflamação/metabolismo , Ligantes , Fígado/metabolismo , Hepatopatias Alcoólicas/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
12.
J Cardiovasc Transl Res ; 15(4): 816-827, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35040081

RESUMO

Microglia/macrophage activation plays an essential role in Ischemic stroke (IS). Nuclear receptor corepressor 1 (NCoR1) has been identified as a vital regulator in macrophages. The present study aims to explore the functions of macrophage NCoR1 in IS. Macrophage NCoR1 knockout (MNKO) mice and littermate control mice were subjected to middle cerebral artery occlusion (MCAO). Our data showed that macrophage NCoR1 deficiency significantly reduced the infarct size and infarct volume as well as brain edema after MCAO. Additionally, MNKO induced less microglia/macrophage infiltration and activation, neuroinflammation, apoptosis of neuronal cells, and BBB disruption in brains after IS. Mechanistic studies revealed that NCoR1 interacted with LXRß in microglia and MNKO impaired the activation of the Nuclear factor-κB signaling pathway in brains after IS. Our data demonstrated that macrophage NCoR1 deficiency inhibited microglia/macrophage activation and protected against IS. Targeting NCoR1 in microglia/macrophage may be a potential approach for IS treatment.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Infarto da Artéria Cerebral Média/genética , Camundongos Knockout , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/prevenção & controle , Correpressor 1 de Receptor Nuclear/genética
13.
Neuromolecular Med ; 24(2): 113-124, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34075570

RESUMO

Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Correpressor 1 de Receptor Nuclear , Temozolomida , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Proteína 1 de Interação com Receptor Nuclear , Temozolomida/farmacologia
14.
mBio ; 12(6): e0268421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34749533

RESUMO

The life cycle of human papillomavirus (HPV) depends on keratinocyte differentiation as the virus modulates and takes advantage of cellular pathways to replicate its genome and assemble viral particles in differentiated cells. Viral genomes are amplified in nuclear replication foci in differentiated keratinocytes, and DNA repair factors from the DNA damage response signaling pathway are recruited to replicate viral DNA. The HPV genome is associated with cellular histones at all stages of the infectious cycle, and here, we show that the histone variant macroH2A1 is bound to the HPV genome and enriched in viral replication foci in differentiated cells. macroH2A1 isoforms play important roles in cellular transcriptional repression, double-strand break repair, and replication stress. The viral E8^E2 protein also binds to the HPV genome and inhibits viral replication and gene expression by recruiting NCoR/SMRT complexes. We show here that E8^E2 and SMRT also localize within replication foci, though independently from macroH2A1. Conversely, transcription complexes containing RNA polymerase II and Brd4 are located on the surface of the foci. Foci generated with an HPV16 E8^E2 mutant genome are not enriched for SMRT or macroH2A1 but contain transcriptional complexes throughout the foci. We propose that both the cellular macroH2A1 protein and viral E8^E2 protein help to spatially separate replication and transcription activities within viral replication foci. IMPORTANCE Human papillomaviruses are small DNA viruses that cause chronic infection of cutaneous and mucosal epithelium. In some cases, persistent infection with HPV can result in cancer, and 5% of human cancers are the result of HPV infection. In differentiated cells, HPV amplifies viral DNA in nuclear replication factories and transcribes late mRNAs to produce capsid proteins. However, very little is known about the spatial organization of these activities in the nucleus. Here, we show that repressive viral and cellular factors localize within the foci to suppress viral transcription, while active transcription takes place on the surface. The cellular histone variant macroH2A1 is important for this spatial organization.


Assuntos
Alphapapillomavirus/fisiologia , Genoma Viral , Infecções por Papillomavirus/virologia , Replicação Viral , Alphapapillomavirus/genética , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo
15.
J Steroid Biochem Mol Biol ; 210: 105873, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722704

RESUMO

Glucocorticoid (GC) receptor (GR) is a key transcription factor (TF) that regulates vital metabolic and anti-inflammatory processes. We have identified BCL6 corepressor (BCOR) as a dexamethasone-stimulated interaction partner of GR. BCOR is a component of non-canonical polycomb repressor complex 1.1 (ncPCR1.1) and linked to different developmental disorders and cancers, but the role of BCOR in GC signaling is poorly characterized. Here, using ChIP-seq we show that, GC induces genome-wide redistribution of BCOR chromatin binding towards GR-occupied enhancers in HEK293 cells. As assessed by RNA-seq, depletion of BCOR altered the expression of hundreds of GC-regulated genes, especially the ones linked to TNF signaling, GR signaling and cell migration pathways. Biotinylation-based proximity mapping revealed that GR and BCOR share several interacting partners, including nuclear receptor corepressor NCOR1. ChIP-seq showed that the NCOR1 co-occurs with both BCOR and GR on a subset of enhancers upon GC treatment. Simultaneous depletion of BCOR and NCOR1 influenced GR target gene expression in a combinatorial and gene-specific manner. Finally, we show using live cell imaging that the depletion of BCOR together with NCOR1 markedly enhances cell migration. Collectively, our data suggest BCOR as an important gene and pathway selective coregulator of GR transcriptional activity.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Receptores de Glucocorticoides/genética , Proteínas Repressoras/metabolismo , Sítios de Ligação , Movimento Celular/genética , Proliferação de Células/genética , Imunoprecipitação da Cromatina , Dexametasona/farmacologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/genética
16.
Front Immunol ; 12: 630773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763074

RESUMO

Immune checkpoint blockade (ICB) therapy has significantly progressed the treatment of bladder cancer (BLCA). Multiple studies have suggested that specific genetic mutations may serve as immune biomarkers for ICB therapy. Additionally, the nuclear receptor corepressor 1 (NCOR1) gene is a new player in the field of immune tolerance and the development of immune cells. In the ICI-treated-cohort, NCOR1 mutations may be used as a biomarker to predict the prognosis of BLCA patients receiving ICIs. The overall survival (OS) of the NCOR1-mutant (NCOR1-MT) group was significantly longer than that of NCOR1-wild-type (NCOR1-WT) group (P = 0·031; HR [95%CI]: 0·25 [0·12-0·52]). In the TCGA-BLCA-cohort, compared with NCOR1-WT, NCOR1-MT was associated with known predictors of ICB therapy efficacy, such as higher tumor mutational burden (TMB), neoantigen load and the number of mutations in the DNA damage-repair pathway. In addition, NCOR1-MT tumors had highly infiltrating TILs, activated antitumor immunity, and a high expression of immune-related genes, suggesting that NCOR1 mutations may serve as a potential biomarker to guide ICB therapy in BLCA.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação , Correpressor 1 de Receptor Nuclear/genética , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Biomarcadores Tumorais , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/mortalidade
17.
Nat Metab ; 3(1): 75-89, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462516

RESUMO

NADPH has long been recognized as a key cofactor for antioxidant defence and reductive biosynthesis. Here we report a metabolism-independent function of NADPH in modulating epigenetic status and transcription. We find that the reduction of cellular NADPH levels, achieved by silencing malic enzyme or glucose-6-phosphate dehydrogenase, impairs global histone acetylation and transcription in both adipocytes and tumour cells. These effects can be reversed by supplementation with exogenous NADPH or by inhibition of histone deacetylase 3 (HDAC3). Mechanistically, NADPH directly interacts with HDAC3 and interrupts the association between HDAC3 and its co-activator nuclear receptor corepressor 2 (Ncor2; SMRT) or Ncor1, thereby impairing HDAC3 activation. Interestingly, NADPH and the inositol tetraphosphate molecule Ins(1,4,5,6)P4 appear to bind to the same domains on HDAC3, with NADPH having a higher affinity towards HDAC3 than Ins(1,4,5,6)P4. Thus, while Ins(1,4,5,6)P4 promotes formation of the HDAC3-Ncor complex, NADPH inhibits it. Collectively, our findings uncover a previously unidentified and metabolism-independent role of NADPH in controlling epigenetic change and gene expression by acting as an endogenous inhibitor of HDAC3.


Assuntos
Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , NADP/farmacologia , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/biossíntese , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , Fosfatos de Inositol/farmacologia , Malato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Células NIH 3T3 , Correpressor 1 de Receptor Nuclear/biossíntese , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/biossíntese , Correpressor 2 de Receptor Nuclear/genética
18.
Front Immunol ; 11: 569358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117357

RESUMO

Atherosclerotic cardiovascular disease is part of chronic immunometabolic disorders such as type 2 diabetes and nonalcoholic fatty liver disease. Their common risk factors comprise hypertension, insulin resistance, visceral obesity, and dyslipidemias, such as hypercholesterolemia and hypertriglyceridemia, which are part of the metabolic syndrome. Immunometabolic diseases include chronic pathologies that are affected by both metabolic and inflammatory triggers and mediators. Important and challenging questions in this context are to reveal how metabolic triggers and their downstream signaling affect inflammatory processes and vice-versa. Along these lines, specific nuclear receptors sense changes in lipid metabolism and in turn induce downstream inflammatory and metabolic processes. The transcriptional activity of these nuclear receptors is regulated by the nuclear receptor corepressors (NCORs), including NCOR1. In this review we describe the function of NCOR1 as a central immunometabolic regulator and focus on its role in atherosclerosis and associated immunometabolic diseases.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Suscetibilidade a Doenças , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Animais , Aterosclerose/patologia , Proteínas de Transporte , Suscetibilidade a Doenças/imunologia , Metabolismo Energético/imunologia , Humanos , Imunomodulação , Metabolismo dos Lipídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Ligação Proteica , Transdução de Sinais
19.
FEBS Open Bio ; 10(12): 2678-2686, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058520

RESUMO

Prostate cancer (PCa) is the most frequently diagnosed male cancer. An earlier study of a cohort of 333 primary prostate carcinomas showed that 74% of these tumors fell into one of seven subtypes of a molecular taxonomy defined by specific gene fusions (ERG, ETV1/4 and FLI1) or mutations (SPOP, FOXA1 and IDH1). Molecular subtypes may aid in distinguishing indolent cases from aggressive cases and improving management of the disease. However, molecular features of PCa outside the seven subtypes are still not well studied. Here we report molecular features of PCa cases without typical features of the established subtypes. We performed comprehensive genomic analysis of 91 patients, including 54 primary and 37 metastatic cases, by whole-exome sequencing. TP53, SPOP, FOXA1, AR (androgen receptor) and a TMPRSS2-ERG fusion emerged as the most commonly altered genes in primary cases, whereas AR, FOXA1, PTEN, CDK12, APC and TP53 were the most commonly altered genes in metastatic cases. Nuclear receptor corepressor (NCOR1) genomic alterations have been identified in 5% of cases, which are nontypical molecular features of PCa subtypes. A novel NCOR1 c.2182G>C (p.Val728Leu) was identified in tumor. RT-PCR was used to show that this mutation caused loss of NCOR1 exon 19 and might be oncogenic in PCa. NCOR1 is involved in maintenance of mitochondrial membrane potential in PCa cells, and loss of NCOR1 might contribute to PCa progression. Therefore, NCOR1 may be a potential molecular marker of a subtype of PCa.


Assuntos
Biomarcadores Tumorais/genética , Correpressor 1 de Receptor Nuclear/genética , Neoplasias da Próstata/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/diagnóstico , RNA Mensageiro/genética
20.
Breast Cancer Res Treat ; 182(2): 503-509, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32441016

RESUMO

PURPOSE: Understanding the contribution of tumor genome biology to racial disparities of triple-negative breast cancer (TNBC) is important for narrowing the cancer mortality gap between Black and White women. METHODS: We evaluated tumor somatic mutations using targeted sequencing of a customized panel of 151 genes and 15 copy number variations (CNVs) within a population of 133 TNBC patients, including 71 Black and 62 White women. RESULTS: The overall mutational burden between Black and White women with TNBC was not significantly different, with a median of 5 somatic changes per patient (point mutations and CNVs combined) for the customized panel (range 1-31 for Blacks vs. 1-26 for Whites; p = 0.76). Of the 151 genes examined, none were mutated at a significantly higher frequency in Black than in White cases, whereas two genes were mutated at a higher frequency in White cases-PIK3CA and NCOR1. No significant difference in the frequency of CNVs was observed between Black and White women with TNBC in our study population. CONCLUSION: Of gene mutations and CNVs in TNBC tumors from Black and White women, only PIK3CA and NCOR1 had significantly different, although slight, frequencies by race. These results indicate that overall differences observed in the mutation spectra between Black and White women with breast cancer are likely due to the differential distributions of breast cancer subtypes by race.


Assuntos
Biomarcadores Tumorais/genética , Disparidades nos Níveis de Saúde , Neoplasias de Mama Triplo Negativas/genética , Adulto , Negro ou Afro-Americano/genética , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Mama/patologia , Estudos de Casos e Controles , Classe I de Fosfatidilinositol 3-Quinases/genética , Variações do Número de Cópias de DNA , Análise Mutacional de DNA/estatística & dados numéricos , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Correpressor 1 de Receptor Nuclear/genética , Fatores de Risco , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/patologia , População Branca/genética , População Branca/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA