Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 171(2): 878-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208257

RESUMO

Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans.


Assuntos
Corylus/enzimologia , Diacilglicerol O-Aciltransferase/genética , Glycine max/enzimologia , Óleos de Plantas/metabolismo , Carboidratos/análise , Corylus/genética , Diacilglicerol O-Aciltransferase/metabolismo , Cinética , Ácido Oleico/metabolismo , Óleos de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/enzimologia , Sementes/genética , Glycine max/genética
2.
Mol Biol Rep ; 37(7): 3439-44, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20012370

RESUMO

Geranylgeranyl diphosphate synthase (GGPPS) [EC 2.5.1.29] catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes such as taxol. Herein, a full-length cDNA encoding GGPPS (designated as CgGGPPS) was cloned and characterized from hazel (Corylus avellana L. Gasaway), a taxol-producing angiosperms. The full-length cDNA of CgGGPPS was 1515 bp with a 1122 bp open reading frame (ORF) encoding a 373 amino acid polypeptide. The CgGGPPS genomic DNA sequence was also obtained, revealing CgGGPPS gene was not interrupted by an intron. Southern blot analysis indicated that CgGGPPS belonged to a small gene family. Tissue expression pattern analysis indicated that CgGGPPS expressed the highest in leaves. RT-PCR analysis indicated that CgGGPPS expression could be induced by exogenous methyl jasmonate acid. Furthermore, carotenoid accumulation was observed in Escherichia coli carrying pACCAR25ΔcrtE plasmid carrying CgGGPPS. The result revealed that cDNA encoded a functional GGPP synthase.


Assuntos
Corylus/enzimologia , Corylus/genética , Farnesiltranstransferase/genética , Acetatos/farmacologia , Sequência de Bases , Southern Blotting , Carotenoides/metabolismo , Clonagem Molecular , Biologia Computacional , Ciclopentanos/farmacologia , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Farnesiltranstransferase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Genoma de Planta/genética , Dados de Sequência Molecular , Oxilipinas/farmacologia , Mapeamento por Restrição
3.
Eur J Biochem ; 270(21): 4365-75, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14622302

RESUMO

Plant lipoxygenases (LOXs) are a class of dioxygenases which display diverse functions in several physiological processes such as growth, development and response to biotic and abiotic stresses. Even though LOXs have been characterized from several plant species, the physiological role of seed LOXs is still unclear. With the aim to better clarify the occurrence of LOXs and their influence on hazelnut seed quality, we carried out the biochemical and molecular characterization of the main LOX isoforms expressed during seed development. A genomic clone containing a complete LOX gene was isolated and fully characterized. The 9887 bp sequence reported contains an open reading frame of 5334 bp encoding a putative polypeptide of 99 kDa. Semiquantitative RT-PCR carried out from RNAs extracted from seeds at different maturation stages showed that LOXs are mainly expressed at early developmental stages. These results were confirmed by LOX activity assays. Biochemical characterization of the reaction products of the hazelnut LOX indicated that it is a 9-LOX. Two cDNAs were isolated by RT-PCR carried out on total RNA from immature hazelnut seeds. Sequence analysis indicated that the two cDNAs are highly homologous (91.9% degree of identity) and one of these corresponded exactly to the genomic clone. The deduced amino acid sequences of the hazelnut LOXs showed that they are closely related to a previously reported almond LOX (79.5% identity) and, to a lesser extent, to some LOXs involved in plant responses to pathogens (cotton and tobacco LOXs, 75.5 and 74.6% identity, respectively). The physiological role of hazelnut LOXs and their role in influencing seed quality are also discussed.


Assuntos
Corylus/enzimologia , Lipoxigenase/metabolismo , Sementes/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Corylus/embriologia , DNA Complementar , Lipoxigenase/química , Lipoxigenase/classificação , Lipoxigenase/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA