RESUMO
Neltuma nigra seed and cotyledon flours were prepared and characterized. Both flours showed high protein and fiber content, and low carbohydrate and fat content. The major storage proteins in N. nigra flours were albumin and globulin. In addition, flours contained carotenoids and potassium as the main micronutrients. The free and bound phenolic compounds, tannins and flavonoids were the major phytochemical components. The phenolic enriched extracts (PEE) of both flours contained apigenin-derived C-glycosyl flavones, including schaftoside, and isoschaftoside as the main components. The PEE from seed flour contained higher antioxidant capacity on ABTSË+, FRAP, H2O2, O2Ë- and higher inhibitory effect on α-amylase and α-glucosidase than the cotyledon flour extract. Techno-functional property analyses showed better water retention capacity and emulsifying stability for cotyledon flour and better oil holding capacity and emulsifying activity for seed flour. The results suggest better biological properties and a low-cost accessibility of seed flour, and a better macronutrient balance for cotyledon flour. Therefore, both can be considered as ingredients or functional food for special foods related to the metabolic syndrome and diseases related to oxidative processes.
Assuntos
Antioxidantes , Cotilédone , Farinha , Extratos Vegetais , Polifenóis , Sementes , Cotilédone/química , Sementes/química , Polifenóis/análise , Polifenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Farinha/análise , Antioxidantes/química , Antioxidantes/farmacologia , Valor Nutritivo , Suplementos Nutricionais , Compostos Fitoquímicos/química , alfa-Amilases/metabolismo , Flavonoides/análiseRESUMO
Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line-HL, and root line-RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5-50.2 mg/g dry weight) and blue (51.4-53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products.
Assuntos
Polifenóis , Salvia , Polifenóis/metabolismo , Salvia/metabolismo , Salvia/química , Antioxidantes/metabolismo , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Cinamatos/metabolismo , Cinamatos/química , Ácido Rosmarínico , Depsídeos/metabolismo , Cotilédone/metabolismo , Cotilédone/química , Ácidos Naftalenoacéticos/farmacologia , Ácidos Naftalenoacéticos/química , Ácidos Naftalenoacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacosRESUMO
KEY MESSAGE: Several members of WOX and KNOX gene families and several plant growth regulators, basically cytokinins and auxins, play a key role during adventitious caulogenesis in the conifer Pinus pinea. Similar to Arabidopsis thaliana, Pinus pinea shoot organogenesis is a multistep process. However, there are key differences between both species, which may alter the underlying physiological and genetic programs. It is unknown if the genic expression models during angiosperm development may be applicable to conifers. In this work, an analysis of the endogenous content of different plant growth regulators and the expression of genes putatively involved in adventitious caulogenesis in P. pinea cotyledons was conducted. A multivariate analysis of both datasets was also realized through partial least squares regression and principal component analysis to obtain an integral vision of the mechanisms involved in caulogenesis in P. pinea. Analyses show that cotyledons cultured in the presence of benzyladenine during long times (2-6 days) cluster separately from the rest of the samples, suggesting that the benzyladenine increase observed during the first hours of culture is sufficient to trigger the caulogenic response through the activation of specific developmental programs. In particular, the most relevant factors involved in this process are the cytokinins trans-zeatin, dihydrozeatin, trans-zeatin riboside and isopentenyl adenosine; the auxin indoleacetic acid; and the genes PpWUS, PpWOX5, PpKN2, PpKN3 and PipiRR1. WUS is functional in pines and has an important role in caulogenesis. Interestingly, WOX5 also seems to participate in the process, although its specific role has not been determined.
Assuntos
Cotilédone/química , Cotilédone/metabolismo , Meristema/metabolismo , Pinus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Aminobutiratos/farmacologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cotilédone/efeitos dos fármacos , Cotilédone/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/química , Meristema/genética , Pinus/química , Pinus/genética , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massas em TandemRESUMO
BACKGROUND: There is a growing interest in buckwheat germination regarding the improvement of its health benefits. The aims of this study were to evaluate the effects of germination on polyphenol compounds, antioxidant activity, and phenylalanine ammonia-lyase (PAL) gene expression in different tissues (cotyledon, hypocotyl, and radicle) of buckwheat sprouts during germination for 12 days, as well as to investigate their interactions. RESULTS: Total polyphenol and total flavonoid contents, antioxidant activity, main polyphenol components, and PAL gene expression significantly increased during germination. On day 12, the rutin content in cotyledons was elevated to 88.6 g kg-1 , which was 7.7-times and 39.4-times compared to those in buckwheat seeds and radicles, respectively. Meanwhile, chlorogenic acid in hypocotyls reached 7.84 g kg-1 , which was 36.3-fold higher than those in radicles. However, the PAL gene showed the highest expression in radicles. CONCLUSION: Present results showed that polyphenol compounds mainly accumulated in cotyledons and hypocotyls. There was a negative correlation between polyphenol compounds and PAL gene expression. The discrepancy suggested that polyphenol compounds might experience transportation within buckwheat sprouts. The study could provide useful information for further application of buckwheat in functional foods, and revelation of the correlation between bioactive components and related gene expressions. © 2018 Society of Chemical Industry.
Assuntos
Antioxidantes/química , Fagopyrum/química , Fenilalanina Amônia-Liase/genética , Proteínas de Plantas/genética , Polifenóis/química , Antioxidantes/metabolismo , Cotilédone/química , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Alimento Funcional/análise , Regulação da Expressão Gênica de Plantas , Germinação , Hipocótilo/química , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Sementes/química , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismoRESUMO
In this study, the effects of UV-B radiation on the isoflavones accumulation, physiological and nutritional quality, water status, and characteristics of proteins in germinated soybeans were investigated. The results showed that isoflavones content in soybeans increased with appropriate intensity and time of UV-B radiation and decreased with excessive treatment. Fresh weight, length, free amino acids, reducing sugar contents and bulk water (T23) in germinated soybeans decreased with increasing radiation time, indicating that UV-B inhibited the growth and nutrients metabolism of soybean during germination. Cell damage was detected in germinated soybeans with excessive UV-B radiation, as shown by the black spots in cotyledons and the increased intercellular water determined by LF-NMR. Germination resulted in an increase in random coil structures, while UV-B radiation induced no obvious changes in FT-IR spectrum and protein conformation of soybeans. Both UV-B radiation and germination caused the increase in soluble proteins, especially in 1.0-75.0â¯kDa fraction.
Assuntos
Glycine max/efeitos da radiação , Isoflavonas/metabolismo , Sementes/crescimento & desenvolvimento , Carboidratos , Cotilédone/química , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Cotilédone/efeitos da radiação , Germinação , Isoflavonas/química , Valor Nutritivo , Sementes/química , Sementes/metabolismo , Sementes/efeitos da radiação , Glycine max/química , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Raios UltravioletaRESUMO
A novel type I ribosome-inactivating protein (RIP), designated as curcin C, was purified from Jatropha curcas, an important feedback source of bio-fuel. Molecular mass and isoelectric point of curcin C were 31.398 kDa and 7.12 as detected by MALTI-TOF assay and capillary electrophoresis assay, respectively. N-terminal sequence and LC-MS/MS analyses confirmed that curcin C is a type I RIP having high homology, but not the exactly the same with curcin, another type 1 RIP isolated from the endosperm of J. curcas. It exhibited N-glycosidase activity and in vitro translation inhibition activity. Moreover, curcin C displayed a strong selectively anti-tumor activity on human cancer cells. Its cytotoxicity against osteosarcoma cell line U20S is even higher than that of Paclitaxel with IC50 of 0.019 µM. Purification and identification of curcin C not only suggested its potential in natural anticancer drug development, but also provide chance to understanding different cytotoxic action among different RIPs.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cotilédone/química , Jatropha/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Sequência de Aminoácidos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Humanos , Concentração Inibidora 50 , Ponto Isoelétrico , Jatropha/crescimento & desenvolvimento , Jatropha/metabolismo , Peso Molecular , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/isolamento & purificaçãoRESUMO
Strategies that enhance the Fe bioavailability of the bean are of keen interest to nutritionists, bean breeders and growers. In beans, the cotyledons contain 75-80% of the total seed Fe, most of which appears to be located within the cotyledon cells. The cotyledon cell walls are known to be resistant to digestion in the stomach and the upper small intestine. Therefore, given the above and the general belief that the primary site for human Fe absorption is the upper small intestine, the present study was designed to determine if the cotyledon cell walls represent a barrier to Fe absorption from the bean. To do so, we utilized high pressure to rupture bean cotyledon cells. The iron bioavailability of cooked bean samples was assessed using an in vitro digestion/Caco-2 cell culture model. Microscopy analyses confirmed that the cotyledon cell walls are highly resistant to pepsin, the low pH of the stomach, and the pancreatic enzymes, indicating that the walls are a barrier to Fe absorption from the bean. Relatively high intracellular pressure (>4000 psi) was required to initiate cell wall rupture. Surprisingly, the lysis of cotyledon cells did not result in a consistent or strong enhancement of bioavailable Fe, suggesting that the liberated intracellular starch and protein influenced the Fe bioavailability by creating a matrix that inhibited the exchange of Fe with the cell transport mechanism. Such observations warrant further pursuit in vivo as the confirmation of these effects would reshape strategies to enhance Fe absorption from beans.
Assuntos
Parede Celular/química , Cotilédone/química , Ferro/farmacocinética , Phaseolus/química , Disponibilidade Biológica , Células CACO-2 , Digestão , Mucosa Gástrica/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Pepsina A/metabolismoRESUMO
The Prosopis alba seed is a waste material in the process to produce pod flour. To suggest a potential use of these seeds it is necessary to determine the nutritional, phytochemical and functional quality of cotyledon flour from Prosopis alba. This flour showed high level of proteins (62%), low content of total carbohydrate and fat. Free polyphenol (1150±20mg GAE/100g flour) and carotenoids (10.55±0.05mg ß-CE/100g flour) compounds were the dominant compounds. The main identified constituents in the polyphenolic extracts were C- glycosyl flavones, including schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin. The extract enriched in polyphenolic compounds exhibited ABTS(+) reducing capacity and scavenging activity of H2O2; and was able to inhibit phospholipase, lipoxygenase and cyclooxygenase, three pro-inflammatory enzymes. According to our results, the P. alba cotyledon flour could be considered as a new alternative in the formulation of functional foods or food supplements.
Assuntos
Cotilédone/química , Farinha/análise , Compostos Fitoquímicos/análise , Prosopis/química , Antioxidantes/química , Apigenina/análise , Carotenoides/análise , Glucosídeos/análise , Polifenóis/análise , Sementes/químicaRESUMO
Germination is an inexpensive process to improve the nutritional properties of legumes. The effect of germinating black bean seeds on the production of cotyledon protein hydrolysates (CPH) with antioxidant and antiinflammatory activities was analyzed in this research. After simulated enzymatic digestion, the oxygen radical absorbance capacity (ORAC) of CPH obtained from germinated black beans was lower than that observed for raw cotyledons. There were no significant differences among CPH cellular antioxidant activities (CAA), except for the high CAA of the 120 min hydrolysate obtained from one day germinated black bean cotyledons. The most significant changes due to germination and enzymatic hydrolysis were observed for the inhibition of nitric oxide (NO) production in macrophages. The NO synthesis inhibition observed for raw CPH was reduced after simulated gastrointestinal digestion but for germinated samples the inhibition was doubled. Peptides derived from cell wall proteins produced during germination could be responsible of antiinflammatory activity.
Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Germinação , Phaseolus/química , Proteínas de Plantas/química , Hidrolisados de Proteína/farmacologia , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Células CACO-2 , Cotilédone/química , Digestão/fisiologia , Humanos , Hidrólise , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Modelos Biológicos , Óxido Nítrico/antagonistas & inibidores , Pancreatina/química , Pepsina A/química , Phaseolus/crescimento & desenvolvimento , Hidrolisados de Proteína/química , Sementes/química , Sementes/crescimento & desenvolvimentoRESUMO
Total saponin content, total phenolics content, total flavonoids content, condensed tannin content in hull, cotyledon and whole grain of both adzuki bean and mung bean were determined by colorimetric methods. Vitexin and isovitexin contents in mung bean were determined by HPLC. Antioxidant effects were evaluated with DPPH scavenging activity and ferric reducing antioxidant power assay. In vitro anti-inflammatory and anti-diabetic effects of beans were evaluated by protease and aldose reductase inhibitory assays, respectively. The results indicated that the bean hulls were the most abundant in phytochemicals and largely contributed antioxidant activities, anti-inflammatory effects and anti-diabetic effects of whole grains. The result showed that mung bean hull was the most abundant with vitexin at 37.43 mg/g and isovitexin at 47.18 mg/g, respectively. Most of the phytochemicals and bioactivities were most predominantly contributed by the bean hulls with exception for condensed tannin of mung bean; which was more abundant in the cotyledon than its hull.
Assuntos
Anti-Inflamatórios/análise , Antioxidantes/química , Cotilédone/química , Diabetes Mellitus/dietoterapia , Fabaceae/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Flavonoides/análise , Fenóis/análiseRESUMO
BACKGROUND: The nutraceutical uses of soybean (Glycine max L. Merr.) have received increasing attention in recent years, due to the therapeutic effects of high seed isoflavone concentrations against heart disease, cancer and menopausal symptoms. RESULTS: We found a close correlation between seed isoflavone abundance and hilum colour in a set of 17 contrasting soybean varieties. Image analysis of the hilum grey level pattern allowed us to identify a power model which approximates total cotyledon isoflavone concentrations (TCIC) at 65-71% by the normalised modal grey level. Higher TCIC levels were assigned to darker hilum varieties and vice versa within a variety-dependent response. Optimisation of the algorithm required correction for a few specific varieties falling in the intermediate 1.1-1.5 mg g(-1) TCIC range, which were over-estimated by the model, perhaps due to variations in hilar optical properties related to the geometric features of both hilum and seed. CONCLUSION: In view of its easy, low-cost detection, seed hilum colour is a useful phenotypic trait in soybean for rapid evaluation of isoflavone abundance in food uses and for improving specific nutraceutical breeding programmes. © 2016 Society of Chemical Industry.
Assuntos
Glycine max/química , Isoflavonas/análise , Análise por Conglomerados , Cor , Cotilédone/química , Itália , Análise Multivariada , Proteínas de Plantas/análise , Sementes/químicaRESUMO
A wide range of health benefits have been attributed to wheatgrass, the young grass of the common wheat plant Triticum aestivum. Its components include chlorophyll, flavonoids, and vitamins C and E. Forms of wheatgrass include fresh juice, frozen juice, tablets, and powders, with compositions varying according to their production processes, as well as to the growing conditions of the wheatgrass. Laboratory in vitro studies, mostly using the fermented wheat germ extract, have demonstrated anti-cancer potential and have identified apoptosis as a possible mechanism. In animal experiments, wheatgrass demonstrated benefits in cancer prevention and as an adjunct to cancer treatment, as well as benefits to immunological activity and oxidative stress. Clinical trials show that wheatgrass may induce synergistic benefits to chemotherapy and may attenuate chemotherapy-related side effects, as well as benefit rheumatoid arthritis, ulcerative colitis, hematological diseases, diabetes, obesity, and oxidative stress. However, all the trials were small and a number of methodological problems arose. No adverse events of wheatgrass have been reported, although some forms pose problems of tolerability. The popularity of wheatgrass continues to grow. Nevertheless, the advantages seen in the clinical trials need to be proved in larger studies before clinical recommendations for the public can be given.
Assuntos
Cotilédone/química , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Triticum/química , Animais , Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/imunologia , Extratos Vegetais/farmacologiaRESUMO
El endurecimiento de los granos de Phaseolus vulgaris almacenados a alta temperatura y alta humedad relativa es una de las principales limitantes para su consumo. El objetivo de esta investigación fue evaluar por microscopia de barrido electrónico los cambios estructurales ocurridos en los cotiledones y en la testa de los granos endurecidos. Los granos recién cosechados se almacenaron durante doce meses bajo dos condiciones: 5°C-34% HR y 37°C-75% HR. Esta última con el fin de propiciar el endurecimiento. Los granos almacenados crudos y cocidos se liofilizaron y se fracturaron. Las secciones de testa y cotiledones se observaron en un microscopio electrónico JSM-6390. Al cabo de doce meses se constató que los granos almacenados a 37°C-75% HR aumentaron su dureza en un 503%, mientras que los granos almacenados a 5°C-34% HR no incrementaron su dureza significativamente. A nivel microestructural, en los cotiledones de los granos crudos se notaron claras diferencias en el aspecto de la pared celular, en el tamaño del espacio intercelular y en la textura de la matriz proteica. Mientras que en la testa de los granos crudos se evidenciaron diferencias en la compactación de la empalizada y de la capa sub-epidérmica. En los granos cocidos se observó una total separación entre las células de los cotiledones de los granos blandos y una muy limitada separación en los granos duros. Se concluye que las diferencias observadas en los granos duros y blandos, demostraron una participación importante de ambas estructuras, cotiledones y testa, en el endurecimiento de los granos.
The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these of hard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains´ hardening.
Assuntos
Humanos , Phaseolus/ultraestrutura , Cotilédone/química , Cotilédone/ultraestrutura , Manipulação de Alimentos , Dureza , Temperatura Alta , Umidade , Microscopia Eletrônica de Varredura , Phaseolus/químicaRESUMO
Valorization of hemp seed meal, a byproduct of hemp oil processing, was performed by measuring the distribution of nutritional and antinutritional compounds in different hemp seed meal fractions. According to chemical composition, two cotyledon-containing fractions (>180 and <180 µm) were significantly richer in protein (p < 0.05) (41.2% ± 0.04% and 44.4% ± 0.02%, respectively), lipid (15.1% ± 0.02% and 18.6% ± 0.04%, respectively), and sugar content (4.96% ± 0.11% and 3.46% ± 0.08%, respectively) in comparison to the hull-containing fractions (>350 and >250 µm), which were significantly richer in crude fiber content (29.5% ± 0.04% and 21.3% ± 0.03%, respectively). The free radical scavenging capacity (IC50) of fraction extracts increased (p < 0.05) with increasing mean particle size (from 17.18 ± 0.59 to 5.29 ± 0.30 mg/mL). Cannabisin B and N-trans-caffeoyltyramine were the most abundant phenolic compounds in the hull fractions (from 267 ± 15.9 to 287 ± 23.1 mg/kg), while cotyledon fractions had higher content of catechin (from 313 ± 12.4 to 744 ± 22.2 mg/kg) and p-hydroxybenzoic acid (from 124 ± 6.47 to 129 ± 8.56 mg/kg (P < 0.05). Well-balanced ω-6 to ω-3 fatty acid ratio (3:1) was determined in all fractions. Antinutrients (trypsin inhibitors, phytic acid, glucosinolates, and condensed tannins) were mostly located in the cotyledon fractions. These findings indicate that the separation of hemp seed meal into different fractions could be used to concentrate valuable target compounds and consequently facilitate their recovery.
Assuntos
Cannabis/química , Extratos Vegetais/química , Óleos de Plantas/química , Resíduos/análise , Cannabis/embriologia , Carboidratos/química , Cotilédone/química , Sequestradores de Radicais Livres/química , Lipídeos/química , Proteínas de Plantas/química , Sementes/química , Sementes/embriologia , Inibidores da Tripsina/químicaRESUMO
Prosopis species are considered multipurpose trees and shrubs by FAO and their fruit constitute a food source for humans and animals. According to the "Código Alimentario Argentino", "algarrobo flour" is produced by grinding the whole mature pod, but in the traditional process most of the seeds are discarded. In this paper, the flour from seed was obtained. Then, the proteins were extracted and enzymatic hydrolysis was carried out. According to their amino acid profile and chemical score (>100%), the Prosopis alba proteins, are not deficient in essential amino acids considering the amount of amino acid necessary by adults. The protein isolate showed a good solubility (pH 7.4-9), emulsificant capacity, oil binding capacity and water adsorption capacity. The antioxidant ability of proteins was significantly increased with hydrolysis (SC50 values: 50-5µg/mL, respectively). Inhibitory activity of pro-inflammatory enzymes (lipoxygenase and phospholipase) was described. The mutagenicity/antimutagenicity of proteins and protein hydrolysates from seed flour were also analysed. The results suggest that P. alba cotyledon flour could be a new alternative in the formulation of functional foods not only for its high protein content but also by the biological and functional properties of its proteins and protein hydrolysates.
Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Mutagênicos/toxicidade , Prosopis/química , Hidrolisados de Proteína/farmacologia , Sementes/efeitos adversos , Adulto , Aminoácidos/análise , Animais , Cotilédone/química , Farinha/análise , Humanos , Hidrolisados de Proteína/toxicidade , Sementes/químicaRESUMO
Phloem mobility is an important factor for long-distance transport of systemic pesticides in plants. Our previous study revealed that a fluorescent glucose-insecticide conjugate, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-iodo-1H-pyrazol-5-yl}-N-{[1-(ß-D-glucopyranosyl)-1H-1,2,3-triazole-4-yl]methyl}-N-{[1-((N-(7-nitrobenz-2-oxa-1,3-diazole-4-amine))-propyl)-1H-1,2,3-triazole-4-yl]methyl}amine (IPGN), can be transported in tobacco cells. Several studies have also indicated that glucose moieties can guide the conjugates into plant cells. In this study, we investigated the phloem mobility of IPGN within castor bean seedlings. Cotyledon uptake experiment results show that IPGN could enter the phloem of the mid-veins of cotyledons. The results of further quantitative analysis show that IPGN was present in small amounts in the phloem sap despite the inconsistencies of physicochemical properties with diffusion through the plasma membrane. Its concentration in the phloem sap (about 370nM at 5h) was much lower than that in the incubation medium (100µM), which suggests that IPGN exhibited weak phloem mobility. After the leaves of Ricinus plantlets were treated with IPGN, green fluorescence could be observed in the phloem of the petioles, bud apical nodes, bud mid-veins, and mid-veins of the untreated leaves. The localization of the fluorescent conjugate at various levels of Ricinus plantlets indicates that it was translocated at a distance to sink organs via sieve tubes. The results proved that introducing a glucose group is a feasible approach to modify non-phloem-mobile pesticides and produce phloem-mobile pesticides.
Assuntos
Corantes Fluorescentes/química , Glucose/química , Glucosídeos/química , Oxidiazóis/química , Ricinus/metabolismo , Triazóis/química , Cromatografia Líquida de Alta Pressão , Cotilédone/química , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Glucosídeos/farmacologia , Microscopia de Fluorescência , Oxidiazóis/farmacologia , Floema/química , Floema/efeitos dos fármacos , Floema/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo , Triazóis/farmacologiaRESUMO
As Aedes aegypti transmits the etiologic agents of both yellow and dengue fever; vector control is considered essential to minimise their incidence. The aim of this work was to identify the component of Carica papaya seed toxic to A. aegypti, and the identification of tegupain, the enzyme that generates it. Aqueous extracts (1%, w/v) of the seed tegument and cotyledon of C. papaya are not larvicidal isolately. However, a mixture of 17µgmL(-1) tegument extract and 27µgmL(-1) cotyledon extract caused 100% larval mortality in a bioassay. The mixture was no longer larvicidal after the tegument extract was pre-treated at 100°C for 10min. The enzyme tegupain efficiently hydrolysed the substrate Z-Phe-Arg-pNan (Km 58.8µM, Kcat 28020s(-1), Kcat/Km 5×10(8)M(-1) s(-1)), and its activity increased with 2mM dithiothreitol (DTT), at 37°C, pH 5.0. The chelating agent EDTA did not modify the enzyme activity. Inhibition of tegupain by cystatin (Kiapp 2.43nM), E64 (3.64nM, 83% inhibition), and the propeptide N-terminal sequence indicate that the toxic activity is due to a novel cysteine proteinase-like enzyme, rendered active upon the hydrolysis of a cotyledon component of C. papaya seeds.
Assuntos
Aedes/efeitos dos fármacos , Carica/química , Extratos Vegetais/toxicidade , Proteínas de Plantas/toxicidade , Aedes/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Cotilédone/química , Cistatinas/química , Cistatinas/metabolismo , Concentração de Íons de Hidrogênio , Larva/efeitos dos fármacos , Dados de Sequência Molecular , Extratos Vegetais/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Ligação Proteica , Sementes/química , Alinhamento de Sequência , Especificidade por SubstratoRESUMO
Cysteine peptidases are the best characterized peptidases among those involved with storage protein mobilization during seed germination. In the present work we show two major groups of cysteine peptidase activities, one of higher (55 to 97 kDa) and other with lower (15 to 20 kDa) molecular masses which are temporally activated after 24 and 48 HAI, respectively, in germinating cowpeas. The former group is found both in protein bodies and in cytoplasmic fraction, while the latter is mostly present outside protein bodies. A third cysteine peptidase activity of ~37 kDa was specifically active at quiescent cotyledons and at 12 and 60 hours after imbibition (HAI). Main peptidase activities of albumin fractions were synchronizedly detected with radicle emergence at 36 HAI. Major vicilin mobilization was more pronounced from 60 HAI onwards and steadily increased until 144 HAI, when low levels of the smallest vicilin subunit were present. Cysteine peptidases were susceptible to iodoacetamide, E-64, iodoacetic acid, pCMB and ß-mercaptoethanol, except for the ~37 kDa peptidase, which was not affected by any of the inhibitors. By a two-dimensional native/SDS-PAGE combination it was observed an apparent linear arrangement of protein breakdown products as well as of peptidase activity spots. The finding may indicate a complex set of sequential proteolytic events where peptidases induce or activate new peptidases, which may act upon different aggregates or zymogens, and these hydrolysis products appear in a line of constant decreasing Rf x Mr ratio.
Assuntos
Cotilédone/química , Cisteína Endopeptidases/metabolismo , Fabaceae/química , Proteínas de Plantas/metabolismo , Albuminas/química , Albuminas/metabolismo , Cotilédone/enzimologia , Cisteína Endopeptidases/química , Citoplasma/química , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Fabaceae/enzimologia , Germinação , Globulinas/química , Globulinas/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/químicaRESUMO
Psoralen, an important furanocoumarin occurring abundantly in seeds of Psoralea corylifolia is used as an anticancerous compound against leukemia and other cancer cell lines. Evaluation and isolation of psoralen from the calluses derived from different plant parts, viz. cotyledons, nodes, leaves and roots have been done in the present case for the first time. Amongst all, a maximum of 1934.75 µg/g f.w. of psoralen was recorded in callus derived from cotyledons, followed by 1875.50 and 1465.75 µg/g f.w. of psoralen in node and leaf derived calluses, respectively. Amount of psoralen enhanced further when cotyledonary calluses were exposed to different concentrations of organic elicitors (yeast extract, proline, inositol, casein hydrolyzate (CH), glycine, glutamine and sucrose) and precursors of psoralen (umbelliferone, cinnamic acid and NADPH). Isolation of psoralen was done using methanol as solvent through column chromatography and TLC. FT-IR and NMR further characterized and confirmed the structure of psoralen. In addition, the putative gene, psoralen synthase involved in psoralen synthesis pathway has been isolated, cloned and sequenced which comprised 1237 bp length. BLAST analysis of the gene sequence of psoralen synthase revealed that its nucleotide sequence showed 93% homology with psoralen synthase isolated from Ammi majus. This is the first report of isolation, cloning and characterization of psoralen synthase from Psoralea corylifolia.
Assuntos
Cotilédone/química , Sistema Enzimático do Citocromo P-450/genética , Ficusina/isolamento & purificação , Psoralea/química , Ammi/enzimologia , Ammi/genética , Antineoplásicos/química , Sequência de Bases , Cromatografia em Camada Fina , Cinamatos/farmacologia , Clonagem Molecular , Cotilédone/efeitos dos fármacos , Meios de Cultura/química , Técnicas de Cultura , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ficusina/análise , Ficusina/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Plasmídeos/genética , Plasmídeos/metabolismo , Psoralea/efeitos dos fármacos , Psoralea/enzimologia , Psoralea/genética , Sementes/química , Homologia de Sequência do Ácido Nucleico , Sacarose/farmacologia , Umbeliferonas/farmacologiaRESUMO
Dietary flaxseed (FS) inhibited the growth of human breast tumours and enhanced the effectiveness of tamoxifen (TAM) in athymic mice with low oestradiol (E2) levels. The present study determined whether the n-3 fatty acid-rich cotyledon fraction of FS (FC), alone or in combination with TAM, has a similar effect and thus can substitute for FS. In a 2 × 2 factorial design, ovariectomised mice with established oestrogen receptor (ER)-positive breast tumours (MCF-7) were treated as follows: groups 1 and 2 were fed the basal diet (BD, control) and FC diet (82 g FC/kg), respectively. Groups 3 and 4 with TAM implants (5 mg) were fed the BD and FC diet, respectively. At 8 weeks post-treatment, mice were euthanised, and tumours were analysed by immunohistochemistry and real-time PCR. BD, FC and FC/TAM groups significantly decreased tumour area, but the TAM group did not. Tumour regression in the FC/TAM group was greater compared to the TAM group. FC lowered cell proliferation but had no effect on apoptosis; the opposite was observed with TAM. FC suppressed mRNA expressions of pS2 and insulin-like growth factor 1 receptor (IGF-1R) and protein expressions of ERα, phosphospecific ERα, human epidermal growth factor receptor 2 (HER2), phosphospecific HER2 (pHER2) and amplified in breast 1 (AIB1), while TAM up-regulated mRNA expressions of Bcl2, progesterone receptor and IGF-1R and protein expression of pHER2, and down-regulated ERß mRNA. FC modulated the effect of TAM on tumour growth biomarkers. In conclusion, FC reduced the growth of ER+ human breast tumours at low circulating E2, alone and combined with TAM, in part through modulation of ER- and growth factor-mediated signalling pathways; it may substitute for FS in increasing the effectiveness of TAM.