Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446087

RESUMO

Having previously shown that soluble E-cadherin (sE-cad) is found in sera of Q fever patients and that infection of BeWo cells by C. burnetii leads to modulation of the E-cad/ß-cat pathway, our purpose was to identify which sheddase(s) might catalyze the cleavage of E-cad. Here, we searched for a direct mechanism of cleavage initiated by the bacterium itself, assuming the possible synthesis of a sheddase encoded in the genome of C. burnetii or an indirect mechanism based on the activation of a human sheddase. Using a straightforward bioinformatics approach to scan the complete genomes of four laboratory strains of C. burnetii, we demonstrate that C. burnetii encodes a 451 amino acid sheddase (CbHtrA) belonging to the HtrA family that is differently expressed according to the bacterial virulence. An artificial CbHtrA gene (CoxbHtrA) was expressed, and the CoxbHtrA recombinant protein was found to have sheddase activity. We also found evidence that the C. burnetii infection triggers an over-induction of the human HuHtrA gene expression. Finally, we demonstrate that cleavage of E-cad by CoxbHtrA on macrophages-THP-1 cells leads to an M2 polarization of the target cells and the induction of their secretion of IL-10, which "disarms" the target cells and improves C. burnetii replication. Taken together, these results demonstrate that the genome of C. burnetii encodes a functional HtrA sheddase and establishes a link between the HtrA sheddase-induced cleavage of E-cad, the M2 polarization of the target cells and their secretion of IL-10, and the intracellular replication of C. burnetii.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Humanos , Coxiella burnetii/enzimologia , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Interleucina-10/metabolismo , Macrófagos/microbiologia , Febre Q/microbiologia , Febre Q/fisiopatologia , Células THP-1/microbiologia , Caderinas/metabolismo , Genoma Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Recombinantes/genética , Interações entre Hospedeiro e Microrganismos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Escherichia coli/genética
3.
Cell Microbiol ; 23(4): e13305, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33355405

RESUMO

The obligate intracellular pathogen Coxiella burnetii is the causative agent of the zoonosis Q fever. C. burnetii infection can have severe outcomes due to the development of chronic infection. To establish and maintain an infection, C. burnetii depends on a functional type IVB secretion system (T4BSS) and, thus, on the translocation of effector proteins into the host cell. Here, we showed that the C. burnetii T4BSS effector protein CaeB targets the conserved endoplasmatic reticulum (ER) stress sensor IRE1 during ER stress in mammalian and plant cells. CaeB-induced upregulation of IRE1 RNase activity was essential for CaeB-mediated inhibition of ER stress-induced cell death. Our data reveal a novel role for CaeB in ER stress signalling modulation and demonstrate that CaeB is involved in pathogenicity in vivo. Furthermore, we provide evidence that C. burnetii infection leads to modulation of the ER stress sensors IRE1 and PERK, but not ATF6 during ER stress. While the upregulation of the RNase activity of IRE1 during ER stress depends on CaeB, modulation of PERK is CaeB independent, suggesting that C. burnetii encodes several factors influencing ER stress during infection.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coxiella burnetii/patogenicidade , Estresse do Retículo Endoplasmático , Interações Hospedeiro-Patógeno , Mariposas/microbiologia , Transdução de Sinais , Animais , Morte Celular , Coxiella burnetii/química , Coxiella burnetii/genética , Replicação do DNA , Células HEK293 , Humanos , Larva/microbiologia
4.
mSphere ; 5(4)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699121

RESUMO

Coxiella burnetii, the causative agent of Query (Q) fever in humans, is a highly infectious obligate intracellular bacterium. Following uptake into a host cell, C. burnetii replicates within a phagolysosome-derived compartment referred to as the Coxiella-containing vacuole (CCV). During infection, C. burnetii exhibits tropism for tissues related to iron storage and recycling (e.g., the liver and splenic red pulp), suggesting that pathogen physiology is linked to host iron metabolism. Iron has been described to have a limited role in C. burnetii virulence regulation, despite evidence that C. burnetii-infected host cells increase expression of transferrin receptors, thereby suggesting that active iron acquisition by the bacterium occurs upon infection. Through the use of host cell-free culture, C. burnetii was separated from the host cell in order to directly assess the role of different forms of iron in C. burnetii replication and viability, and therefore virulence. Results indicate that C. burnetii tolerates molecular iron over a broad concentration range (i.e., ∼0.001 to 1 mM) and undergoes gross loss of viability upon iron starvation. C. burnetii protein synthesis and energy metabolism, however, occur nearly uninhibited under iron concentrations not permissive to replication. Despite the apparent absence of genes related to acquisition of host-associated iron-containing proteins, C. burnetii replication is supported by hemoglobin, transferrin, and ferritin, likely due to release of iron from such proteins under acidic conditions. Moreover, chelation of host iron pools inhibited pathogen replication during infection of cultured cells.IMPORTANCE Host organisms restrict the availability of iron to invading pathogens in order to reduce pathogen replication. To counteract the host's response to infection, bacteria can rely on redundant mechanisms to obtain biologically diverse forms of iron during infection. C. burnetii appears specifically dependent on molecular iron for replication and viability and exhibits a response to iron akin to bacteria that colonize iron-rich environments. Physiological adaptation of C. burnetii to the unique acidic and degradative environment of the CCV is consistent with access of this pathogen to molecular iron.


Assuntos
Coxiella burnetii/fisiologia , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Viabilidade Microbiana , Coxiella burnetii/patogenicidade , Células HeLa , Humanos , Fagossomos/microbiologia , Febre Q/microbiologia
5.
Transbound Emerg Dis ; 67(4): 1660-1670, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32027783

RESUMO

BACKGROUND: Following outbreaks in other parts of the Netherlands, the Dutch border region of South Limburg experienced a large-scale outbreak of human Q fever related to a single dairy goat farm in 2009, with surprisingly few cases reported from neighbouring German counties. Late chronic Q fever, with recent spikes of newly detected cases, is an ongoing public health concern in the Netherlands. We aimed to assess the scope and scale of any undetected cross-border transmission to neighbouring German counties, where individuals unknowingly exposed may carry extra risk of overlooked diagnosis. METHODS: (A) Seroprevalence rates in the Dutch area were estimated fitting an exponential gradient to the geographical distribution of notified acute human Q fever cases, using seroprevalence in a sample of farm township inhabitants as baseline. (B) Seroprevalence rates in 122 neighbouring German postcode areas were estimated from a sample of blood donors living in these areas and attending the regional blood donation centre in January/February 2010 (n = 3,460). (C) Using multivariate linear regression, including goat and sheep densities, veterinary Q fever notifications and blood donor sampling densities as covariates, we assessed whether seroprevalence rates across the entire border region were associated with distance from the farm. RESULTS: (A) Seroprevalence in the outbreak farm's township was 16.1%. Overall seroprevalence in the Dutch area was 3.6%. (B) Overall seroprevalence in the German area was 0.9%. Estimated mean seroprevalence rates (per 100,000 population) declined with increasing distance from the outbreak farm (0-19 km = 2,302, 20-39 km = 1,122, 40-59 km = 432 and ≥60 km = 0). Decline was linear in multivariate regression using log-transformed seroprevalence rates (0-19 km = 2.9 [95% confidence interval (CI) = 2.6 to 3.2], 20 to 39 km = 1.9 [95% CI = 1.0 to 2.8], 40-59 km = 0.6 [95% CI = -0.2 to 1.3] and ≥60 km = 0.0 [95% CI = -0.3 to 0.3]). CONCLUSIONS: Our findings were suggestive of widespread cross-border transmission, with thousands of undetected infections, arguing for intensified cross-border collaboration and surveillance and screening of individuals susceptible to chronic Q fever in the affected area.


Assuntos
Doenças Transmissíveis Importadas/transmissão , Coxiella burnetii/imunologia , Surtos de Doenças/estatística & dados numéricos , Febre Q/transmissão , Animais , Anticorpos Antibacterianos/sangue , Coleta de Amostras Sanguíneas/veterinária , Doenças Transmissíveis Importadas/mortalidade , Coxiella burnetii/patogenicidade , Testes Diagnósticos de Rotina , Surtos de Doenças/veterinária , Alemanha/epidemiologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Modelos Lineares , Programas de Rastreamento/veterinária , Países Baixos/epidemiologia , Febre Q/mortalidade , Reação em Cadeia da Polimerase em Tempo Real , Estudos Soroepidemiológicos , Ovinos
6.
Microbes Infect ; 22(3): 100-110, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31574310

RESUMO

Coxiella burnetii is an intracellular bacterium that causes acute and chronic Q fever. This unique pathogen has been historically challenging to study due to obstacles in genetically manipulating the organism and the inability of small animal models to fully mimic human Q fever. Here, we review the current state of C. burnetii research, highlighting new approaches that allow the mechanistic study of infection in disease relevant settings.


Assuntos
Coxiella burnetii/patogenicidade , Citoplasma/microbiologia , Macrófagos/microbiologia , Febre Q/microbiologia , Animais , Modelos Animais de Doenças , Saúde Global , Humanos
7.
Theranostics ; 9(17): 4849-4859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410186

RESUMO

Respiratory tract infections (RTIs) are severe acute infectious diseases, which require the timely and accurate identification of the pathogens involved so that the individual treatment plan can be selected, including optimized use of antibiotics. However, high throughput and ultrasensitive quantification of multiple nucleic acids is a challenge in a point of care testing (POCT) device. Methods: Herein, we developed a 2×3 microarray on a lateral flow strip with surface enhanced Raman scattering (SERS) nanotags encoding the nucleic acids of 11 common RTI pathogens. On account of the signal magnification of encoded SERS nanotags in addition to the high surface area to volume ratio of the nitrocellulose (NC) membrane, rapid quantification of the 11 pathogens with a broad linear dynamic range (LDR) and ultra-high sensitivity was achieved on one lateral flow microarray. Results: The limit of detection (LOD) for influenza A, parainfluenza 1, parainfluenza 3, respiratory syncytial virus, coxiella burnetii, legionella pneumophila, influenza B, parainfluenza 2, adenovirus, chlamydophila pneumoniae, and mycoplasma pneumoniae were calculated to be 0.031 pM, 0.030 pM, 0.038 pM, 0.038 pM, 0.040 pM, 0.039 pM, 0.035 pM, 0.032 pM, 0.040 pM, 0.039 pM, and 0.041 pM, respectively. The LDR of measurement of the target nucleic acids of the eleven RTI pathogens were 1 pM-50 nM, which span 5 orders of magnitude. Conclusions: We anticipate this novel approach could be widely adopted in the early and precise diagnosis of RTI and other diseases.


Assuntos
Nanopartículas Metálicas/química , Análise em Microsséries/métodos , Técnicas de Diagnóstico Molecular/métodos , Infecções Respiratórias/microbiologia , Análise Espectral Raman/métodos , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/patogenicidade , Colódio/química , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Ouro/química , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Limite de Detecção , Análise em Microsséries/normas , Técnicas de Diagnóstico Molecular/normas , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/patogenicidade , Oligonucleotídeos/química , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidade , Testes Imediatos/normas , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/virologia , Análise Espectral Raman/normas
8.
PLoS Pathog ; 15(8): e1007955, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31461509

RESUMO

Most intracellular pathogens that reside in a vacuole prevent transit of their compartment to lysosomal organelles. Effector mechanisms induced by the pro-inflammatory cytokine Interferon-gamma (IFNγ) can promote the delivery of pathogen-occupied vacuoles to lysosomes for proteolytic degradation and are therefore important for host defense against intracellular pathogens. The bacterial pathogen Coxiella burnetii is unique in that, transport to the lysosome is essential for replication. The bacterium modulates membrane traffic to create a specialized autophagolysosomal compartment called the Coxiella-containing vacuole (CCV). Importantly, IFNγ signaling inhibits intracellular replication of C. burnetii, raising the question of which IFNγ-activated mechanisms restrict replication of a lysosome-adapted pathogen. To address this question, siRNA was used to silence a panel of IFNγ-induced genes in HeLa cells to identify genes required for restriction of C. burnetii intracellular replication. This screen demonstrated that Indoleamine 2,3-dioxygenase 1 (IDO1) contributes to IFNγ-mediated restriction of C. burnetii. IDO1 is an enzyme that catabolizes cellular tryptophan to kynurenine metabolites thereby reducing tryptophan availability in cells. Cells deficient in IDO1 function were more permissive for C. burnetii replication when treated with IFNγ, and supplementing IFNγ-treated cells with tryptophan enhanced intracellular replication. Additionally, ectopic expression of IDO1 in host cells was sufficient to restrict replication of C. burnetii in the absence of IFNγ signaling. Using differentiated THP1 macrophage-like cells it was determined that IFNγ-activation resulted in IDO1 production, and that supplementation of IFNγ-activated THP1 cells with tryptophan enhanced C. burnetii replication. Thus, this study identifies IDO1 production as a key cell-autonomous defense mechanism that limits infection by C. burnetii, which suggests that peptides derived from hydrolysis of proteins in the CCV do not provide an adequate supply of tryptophan for bacterial replication.


Assuntos
Coxiella burnetii/patogenicidade , Interações Hospedeiro-Patógeno , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Lisossomos/virologia , Febre Q/prevenção & controle , RNA Interferente Pequeno/genética , Replicação Viral/genética , Coxiella burnetii/efeitos dos fármacos , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Febre Q/genética , Febre Q/virologia , Triptofano/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-31293984

RESUMO

Cadherins switching is a hallmark of neoplasic processes. The E-cadherin (E-cad) subtype is one of the surface molecules regulating cell-to-cell adhesion. After its cleavage by sheddases, a soluble fragment (sE-cad) is released that has been identified as a pro-carcinogenic inflammatory signal in several bacteria-induced cancers. Recently we reported that Q fever, a disease due to Coxiella burnetii infection, can be complicated by occurrence of non-Hodgkin lymphoma (NHL). Therefore, we studied E-cad switching in Q fever. The sE-cad levels were found increased in the sera of acute and persistent Q fever patients, whereas they remained at the baseline in controls groups of healthy donors, people cured of Q fever, patients suffering from unrelated inflammatory diseases, and past Q fever patients who developed NHL. These results indicate that sE-cad can be considered as a new biomarker of C. burnetii infection rather than a marker of NHL-associated to Q fever. We wondered if changes in sE-cad reflected variations in the CDH1 gene transcription. The expression of E-cad mRNA and its intracellular ligand ß-catenin was down-regulated in peripheral blood mononuclear cells (PBMCs) of patients with either acute or persistent forms of Q fever. Indeed, a lower cell-surface expression of E-cad was measured in a minority (<5%) subpopulation of HLADR+/CD16+ monocytes from patients with acute Q fever. However, a very strong increase in E-cad expression was observed on more than 30% of the HLADR+/CD16+ monocytes of persistent Q fever patients, a cell subpopulation known to be a target for C. burnetii in humans. An experimental in vitro infection of healthy donors' PBMCs with C. burnetii, was performed to directly evaluate the link between C. burnetii interaction with PBMCs and their E-cad expression. A significant increase in the percentage of HLADR+/CD16+ monocytes expressing E-cad was measured after PBMCs had been incubated for 8 h with C. burnetii Nine Mile strain. Altogether, these data demonstrate that C. burnetii severely impairs the E-cad expression in circulating cells of Q fever patients.


Assuntos
Biomarcadores/sangue , Caderinas/sangue , Coxiella burnetii/patogenicidade , Febre Q/sangue , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Feminino , Expressão Gênica , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Febre Q/genética , beta Catenina/metabolismo
10.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331958

RESUMO

Infection with Coxiella burnetii, the causative agent of Q fever, can result in life-threatening persistent infection. Reactogenicity hinders worldwide implementation of the only licensed human Q fever vaccine. We previously demonstrated long-lived immunoreactivity in individuals with past symptomatic and asymptomatic Coxiella infection (convalescents) to promiscuous HLA class II C. burnetii epitopes, providing the basis for a novel T-cell targeted subunit vaccine. In this study, we investigated in a cohort of 22 individuals treated for persistent infection (chronic Q fever) whether they recognize the same set of epitopes or distinct epitopes that could be candidates for a therapeutic vaccine or aid in the diagnosis of persistent infection. In cultured enzyme-linked immunosorbent spot (ELISpot) assays, individuals with chronic Q fever showed strong class II epitope-specific responses that were largely overlapping with the peptide repertoire identified previously for convalescents. Five additional peptides were recognized more frequently by chronic subjects, but there was no combination of epitopes uniquely recognized by or nonreactive in subjects with chronic Q fever. Consistent with more recent/prolonged exposure, we found, however, stronger ex vivo responses by direct ELISpot to both whole-cell C. burnetii and individual peptides in chronic patients than in convalescents. In conclusion, we have validated and expanded a previously published set of candidate epitopes for a novel T-cell targeted subunit Q fever vaccine in treated patients with chronic Q fever and demonstrated that they successfully mounted a T-cell response comparable to that of convalescents. Finally, we demonstrated that individuals treated for chronic Q fever mount a broader ex vivo response to class II epitopes than convalescents, which could be explored for diagnostic purposes.


Assuntos
Anticorpos Antibacterianos/biossíntese , Antígenos de Bactérias/imunologia , Coxiella burnetii/imunologia , Epitopos de Linfócito T/imunologia , Febre Q/imunologia , Idoso , Antibacterianos/uso terapêutico , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Doença Crônica , Convalescença , Coxiella burnetii/patogenicidade , ELISPOT , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Feminino , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Teste de Histocompatibilidade , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Peptídeos/imunologia , Febre Q/tratamento farmacológico , Febre Q/genética , Febre Q/prevenção & controle , Linfócitos T/imunologia , Linfócitos T/microbiologia
11.
PLoS One ; 14(6): e0217542, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31181104

RESUMO

Coxiella burnetii, the agent causing Q fever, has been associated with B-cell non-Hodgkin lymphoma (NHL). To better clarify this link, we analysed the genetic transcriptomic profile of peripheral blood leukocytes from patients with C. burnetii infection to identify possible links to lymphoma. Microarray analyses revealed that 1189 genes were expressed differently (p <.001 and fold change ≥4) in whole blood of patients with C. burnetii infection compared to controls. In addition, 95 genes expressed in patients with non-Hodgkin lymphoma (NHL) and in patients with C. burnetii persistent infection have allowed us to establish the 'C. burnetii-associated NHL signature'. Among these, 33 genes previously found modulated in C. burnetii-associated -NHL by the microarray analysis were selected and their mRNA expression levels were measured in distinct C. burnetii-induced pathologies, namely, acute Q fever, focalized persistent infection, lymphadenitis and C.burnetii-associated NHL. Specific genes involved in anti-apoptotic process were found highly expressed in leukocytes from patients with C. burnetii associated-NHL: MIR17HG, REL and SP100. This signature differed from that found for NHL-control group. Patients with C. burnetii lymphadenitis presented significant elevated levels of BCL2 and ETS1 mRNAs. Altogether, we identified a specific transcriptionnal signature for NHL during C. burnetii infection reflecting the up-regulation of anti-apoptotic processes and the fact that lymphadenitis might constitute a critical step towards lymphomagenesis.


Assuntos
Linfoma não Hodgkin/genética , Febre Q/genética , Transcrição Gênica/genética , Apoptose/genética , Coxiella burnetii/patogenicidade , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Linfadenite/genética , Linfadenite/microbiologia , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/microbiologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Febre Q/microbiologia , Regulação para Cima/genética
12.
PLoS One ; 14(1): e0209820, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30640917

RESUMO

Microtubules (Mts) are dynamic cytoskeleton structures that play a key role in vesicular transport. The Mts-mediated transport depends on motor proteins named kinesins and the dynein/dynactin motor complex. The Rab7 adapter protein FYCO1 controls the anterograde transport of the endocytic compartments through the interaction with the kinesin KIF5. Rab7 and its partner RILP induce the recruitment of dynein/dynactin to late endosomes regulating its retrograde transport to the perinuclear area to fuse with lysosomes. The late endosomal-lysosomal fusion is regulated by the HOPS complex through its interaction with RILP and the GTPase Arl8. Coxiella burnetii (Cb), the causative agent of Q fever, is an obligate intracellular pathogen, which generates a large compartment with autophagolysosomal characteristics named Cb-containing vacuole (CCV). The CCV forms through homotypic fusion between small non-replicative CCVs (nrCCV) and through heterotypic fusion with other compartments, such as endosomes and lysosomes. In this work, we characterise the role of Mts, motor proteins, RILP/Rab7 and Arl8 on the CCV biogenesis. The formation of the CCV was affected when either the dynamics and/or the acetylation state of Mts were modified. Similarly, the overexpression of the dynactin subunit non-functional mutants p150Glued and RILP led to the formation of small nrCCVs. This phenomenon is not observed in cells overexpressing WT proteins, the motor KIF5 or its interacting protein FYCO1. The formation of the CCV was normal in infected cells that overexpressed Arl8 alone or together with hVps41 (a HOPS subunit) or in cells co-overexpressing hVps41 and RILP. The dominant negative mutant of Arl8 and the non-functional hVps41 inhibited the formation of the CCV. When the formation of CCV was affected, the bacterial multiplication diminished. Our results suggest that nrCCVs recruit the molecular machinery that regulate the Mts-dependent retrograde transport, Rab7/RILP and the dynein/dynactin system, as well as the tethering processes such as HOPS complex and Arl8 to finally originate the CCV where C. burnetii multiplies.


Assuntos
Coxiella burnetii/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico , Chlorocebus aethiops , Coxiella burnetii/patogenicidade , Citoesqueleto/metabolismo , Complexo Dinactina/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Microtúbulos/fisiologia , Transporte Proteico/fisiologia , Febre Q/metabolismo , Vacúolos/metabolismo , Células Vero , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
13.
Artigo em Inglês | MEDLINE | ID: mdl-29938202

RESUMO

Lipid A is an essential basal component of lipopolysaccharide of most Gram-negative bacteria. Inhibitors targeting LpxC, a conserved enzyme in lipid A biosynthesis, are antibiotic candidates against Gram-negative pathogens. Here we report the characterization of the role of lipid A in Coxiella burnetii growth in axenic media, monkey kidney cells (BGMK and Vero), and macrophage-like THP-1 cells by using a potent LpxC inhibitor -LPC-011. We first determined the susceptibility of C. burnetii LpxC to LPC-011 in a surrogate E. coli model. In E. coli, the minimum inhibitory concentration (MIC) of LPC-011 against C. burnetii LpxC is < 0.05 µg/mL, a value lower than the inhibitor's MIC against E. coli LpxC. Considering the inhibitor's problematic pharmacokinetic properties in vivo and Coxiella's culturing time up to 7 days, the stability of LPC-011 in cell cultures was assessed. We found that regularly changing inhibitor-containing media was required for sustained inhibition of C. burnetii LpxC in cells. Under inhibitor treatment, Coxiella has reduced growth yields in axenic media and during replication in non-phagocytic cells, and has a reduced number of productive vacuoles in such cells. Inhibiting lipid A biosynthesis in C. burnetii by the inhibitor was shown in a phase II strain transformed with chlamydial kdtA. This exogenous KdtA enzyme modifies Coxiella lipid A with an α-Kdo-(2 → 8)-α-Kdo epitope that can be detected by anti-chlamydia genus antibodies. In inhibitor-treated THP-1 cells, Coxiella shows severe growth defects characterized by poor vacuole formation and low growth yields. Coxiella progenies prepared from inhibitor-treated cells retain the capability of normally infecting all tested cells in the absence of the inhibitor, which suggests a dispensable role of lipid A for infection and early vacuole development. In conclusion, our data suggest that lipid A has significance for optimal development of Coxiella-containing vacuoles, and for robust multiplication of C. burnetii in macrophage-like THP-1 cells. Unlike many bacteria, C. burnetii replication in axenic media and non-phagocytic cells was less dependent on normal lipid A biosynthesis.


Assuntos
Cultura Axênica/métodos , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/patogenicidade , Lipídeo A/antagonistas & inibidores , Macrófagos/microbiologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Chlorocebus aethiops , Coxiella burnetii/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Humanos , Ácidos Hidroxâmicos/farmacologia , Lipídeo A/genética , Macrófagos/efeitos dos fármacos , Células THP-1 , Treonina/análogos & derivados , Treonina/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/microbiologia , Células Vero
14.
BMC Microbiol ; 18(1): 33, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661138

RESUMO

BACKGROUND: Many gram-negative bacteria produce an outer membrane phospholipase A (PldA) that plays an important role in outer membrane function and is associated with virulence. RESULTS: In the current study, we characterized a pldA mutant of Coxiella burnetii, an intracellular gram-negative pathogen and the agent of human Q fever. The C. burnetti pldA open reading frame directs synthesis of a protein with conserved PldA active site residues. A C. burnetii ΔpldA deletion mutant had a significant growth defect in THP-1 macrophages, but not axenic medium, that was rescued by complementation. Thin layer chromatography was employed to assess whether pldA plays a role in remodeling membrane lipids during C. burnetii morphological differentiation. Extracted lipids were analyzed from replicating, logarithmic phase large cell variants (LCVs), non-replicating, stationary phase small cell variants (SCVs), and a mixture of LCVs and SCVs. Similar to Escherichia coli, all three forms contained cardiolipin (CL), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). However, PE and PG were present in lower quantities in the SCV while three additional lipid species were present in higher quantities. Co-migration with standards tentatively identified two of the three SCV-enriched lipids as lyso-phosphatidylethanolamine, a breakdown product of PE, and free fatty acids, which are generally toxic to bacteria. Developmental form lipid modifications required the activity of PldA. CONCLUSIONS: Collectively, these results indicate developmentally-regulated lipid synthesis by C. burnetii contributes to colonization of macrophages and may contribute to the environmental stability and the distinct biological properties of the SCV.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Coxiella burnetii/enzimologia , Coxiella burnetii/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Lipídeos de Membrana/metabolismo , Fosfolipases A1/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/metabolismo , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Citoplasma/microbiologia , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Genes Bacterianos/genética , Humanos , Fases de Leitura Aberta/genética , Fosfolipases A1/genética , Febre Q/microbiologia , Deleção de Sequência , Células THP-1 , Fatores de Virulência/metabolismo
15.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483292

RESUMO

Coxiella burnetii is the causative agent of human Q fever, a debilitating flu-like illness that can progress to chronic disease presenting as endocarditis. Following inhalation, C. burnetii is phagocytosed by alveolar macrophages and generates a lysosome-like replication compartment termed the parasitophorous vacuole (PV). A type IV secretion system (T4SS) is required for PV generation and is one of the pathogen's few known virulence factors. We previously showed that C. burnetii actively recruits autophagosomes to the PV using the T4SS but does not alter macroautophagy. In the current study, we confirmed that the cargo receptor p62/sequestosome 1 (SQSTM-1) localizes near the PV in primary human alveolar macrophages infected with virulent C. burnetii p62 and LC3 typically interact to select cargo for autophagy-mediated degradation, resulting in p62 degradation and LC3 recycling. However, in C. burnetii-infected macrophages, p62 was not degraded when cells were starved, suggesting that the pathogen stabilizes the protein. In addition, phosphorylated p62 levels increased, indicative of activation, during infection. Small interfering RNA experiments indicated that p62 is not absolutely required for intracellular growth, suggesting that the protein serves a signaling role during infection. Indeed, the Nrf2-Keap1 cytoprotective pathway was activated during infection, as evidenced by sustained maintenance of Nrf2 levels and translocation of the protein to the nucleus in C. burnetii-infected cells. Collectively, our studies identify a new p62-regulated host signaling pathway exploited by C. burnetii during intramacrophage growth.


Assuntos
Coxiella burnetii/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/metabolismo , Macrófagos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/fisiologia , Humanos
16.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339460

RESUMO

Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-derived vacuole. A determinant necessary for C. burnetii virulence is the Dot/Icm type IVB secretion system (T4SS). The Dot/Icm system delivers more than 100 proteins, called type IV effectors (T4Es), across the vacuolar membrane into the host cell cytosol. Several T4Es have been shown to be important for vacuolar biogenesis. Here, transposon (Tn) insertion sequencing technology (INSeq) was used to identify C. burnetii Nine Mile phase II mutants in an arrayed library, which facilitated the identification and clonal isolation of mutants deficient in 70 different T4E proteins. These effector mutants were screened in HeLa cells for deficiencies in Coxiella-containing vacuole (CCV) biogenesis. This screen identified and validated seven new T4Es that were important for vacuole biogenesis. Loss-of-function mutations in cbu0414 (coxH1), cbu0513, cbu0978 (cem3), cbu1387 (cem6), cbu1524 (caeA), cbu1752, or cbu2028 resulted in a small-vacuole phenotype. These seven mutant strains produced small CCVs in all cells tested, which included macrophage-like cells. The cbu2028::Tn mutant, though unable to develop large CCVs, had intracellular replication rates similar to the rate of the parental strain of C. burnetii, whereas the other six effector mutants defective in CCV biogenesis displayed significant reductions in intracellular replication. Vacuoles created by the cbu0513::Tn mutant did not accumulate lipidated microtubule-associated protein 1A/1B light chain 3 (LC3-II), suggesting a failure in fusion of the CCV with autophagosomes. These seven T4E proteins add to the growing repertoire of C. burnetii factors that contribute to CCV biogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/fisiologia , Febre Q/metabolismo , Febre Q/microbiologia , Autofagossomos/metabolismo , Sistemas de Secreção Bacterianos , Coxiella burnetii/genética , Coxiella burnetii/patogenicidade , Elementos de DNA Transponíveis , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Mutação , Transporte Proteico , Vacúolos/metabolismo
17.
BMC Infect Dis ; 17(1): 457, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28666412

RESUMO

BACKGROUND: The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and non-zoonotic disease in a rural farming community in western Kenya. METHODS: This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure or infection was identified using the spatial scan statistic. RESULTS: There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma duodenale or Necator americanus) (36.3% (95% CI 32.8-39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5-32.8)), and Plasmodium falciparum (29.4% (95% CI 26.8-32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16.7-22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2-0.9); Coxiella burnetii, 2.2% (95% CI 1.5-2.9); Rift Valley fever, 0.5% (95% CI 0.2-0.8)). A low prevalence of exposure to Brucella spp. was observed in cattle (0.26% (95% CI 0-0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5-2.22)) and C. burnetii (10.0% (95% CI 7.7-12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7-58.3) in cattle and 17.2% (95% CI 9.1-25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3-3.2), while the prevalence of infection with Mycobacterium spp. was 8.2% (95% CI 6.8-9.6) in people. CONCLUSION: Zoonotic infections in people and animals occur in the context of a wide range of co-endemic pathogens in a rural community in western Kenya. The wide diversity of pathogens under study provides a unique opportunity to explore the distribution and determinants of infection in a multi-pathogen, multi-host system.


Assuntos
Doenças dos Bovinos/epidemiologia , Zoonoses/epidemiologia , Animais , Brucella/patogenicidade , Brucelose/epidemiologia , Bovinos , Coxiella burnetii/patogenicidade , Estudos Transversais , Características da Família , Humanos , Quênia/epidemiologia , Lagos , Gado , Prevalência , Febre Q/epidemiologia , Febre do Vale de Rift/epidemiologia , População Rural , Sus scrofa , Suínos
18.
Cell Host Microbe ; 21(5): 637-649.e6, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28494245

RESUMO

Cryptococcus neoformans (Cn) is a deadly fungal pathogen whose intracellular lifestyle is important for virulence. Host mechanisms controlling fungal phagocytosis and replication remain obscure. Here, we perform a global phosphoproteomic analysis of the host response to Cryptococcus infection. Our analysis reveals numerous and diverse host proteins that are differentially phosphorylated following fungal ingestion by macrophages, thereby indicating global reprogramming of host kinase signaling. Notably, phagocytosis of the pathogen activates the host autophagy initiation complex (AIC) and the upstream regulatory components LKB1 and AMPKα, which regulate autophagy induction through their kinase activities. Deletion of Prkaa1, the gene encoding AMPKα1, in monocytes results in resistance to fungal colonization of mice. Finally, the recruitment of AIC components to nascent Cryptococcus-containing vacuoles (CnCVs) regulates the intracellular trafficking and replication of the pathogen. These findings demonstrate that host AIC regulatory networks confer susceptibility to infection and establish a proteomic resource for elucidating host mechanisms that regulate fungal intracellular parasitism.


Assuntos
Criptococose/imunologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais/fisiologia , Virulência/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Coxiella burnetii/patogenicidade , Criptococose/microbiologia , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fagocitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Células RAW 264.7 , Vacúolos/microbiologia , Virulência/fisiologia
19.
Infect Immun ; 85(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28438980

RESUMO

Coxiella burnetii is the causative agent of Q fever, a zoonotic disease that threatens both human and animal health. Due to the paucity of experimental animal models, little is known about how host factors interface with bacterial components and affect pathogenesis. Here, we used Drosophila melanogaster, in conjunction with the biosafety level 2 (BSL2) Nine Mile phase II (NMII) clone 4 strain of C. burnetii, as a model to investigate host and bacterial components implicated in infection. We demonstrate that adult Drosophila flies are susceptible to C. burnetii NMII infection and that this bacterial strain, which activates the immune deficiency (IMD) pathway, is able to replicate and cause mortality in the animals. We show that in the absence of Eiger, the only known tumor necrosis factor (TNF) superfamily homolog in Drosophila, Coxiella-infected flies exhibit reduced mortality from infection. We also demonstrate that the Coxiella type 4 secretion system (T4SS) is critical for the formation of the Coxiella-containing vacuole and establishment of infection in Drosophila Altogether, our data reveal that the Drosophila TNF homolog Eiger and the Coxiella T4SS are implicated in the pathogenesis of C. burnetii in flies. The Drosophila/NMII model mimics relevant aspects of the infection in mammals, such as a critical role of host TNF and the bacterial T4SS in pathogenesis. Our work also demonstrates the usefulness of this BSL2 model to investigate both host and Coxiella components implicated in infection.


Assuntos
Coxiella burnetii/imunologia , Coxiella burnetii/patogenicidade , Modelos Animais de Doenças , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno , Febre Q/microbiologia , Animais , Suscetibilidade a Doenças , Proteínas de Drosophila/deficiência , Drosophila melanogaster/imunologia , Proteínas de Membrana/deficiência , Febre Q/imunologia , Análise de Sobrevida , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Vacúolos/microbiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28293541

RESUMO

Coxiella burnetii is an obligate intracellular pathogen and the causative agent of human Q fever. Replication of the bacterium within a large parasitophorous vacuole (PV) resembling a host phagolysosome is required for pathogenesis. PV biogenesis is a pathogen driven process that requires engagement of several host cell vesicular trafficking pathways to acquire vacuole components. The goal of this study was to determine if infection by C. burnetii modulates endolysosomal flux to potentially benefit PV formation. HeLa cells, infected with C. burnetii or left uninfected, were incubated with fluorescent transferrin (Tf) for 0-30 min, and the amount of Tf internalized by cells quantitated by high-content imaging. At 3 and 5 days, but not 1 day post-infection, the maximal amounts of fluorescent Tf internalized by infected cells were significantly greater than uninfected cells. The rates of Tf uptake and recycling were the same for infected and uninfected cells; however, residual Tf persisted in EEA.1 positive compartments adjacent to large PV after 30 min of recycling in the absence of labeled Tf. On average, C. burnetii-infected cells contained significantly more CD63-positive endosomes than uninfected cells. In contrast, cells containing large vacuoles generated by Chlamydia trachomatis exhibited increased rates of Tf internalization without increased CD63 expression. Our results suggest that C. burnetii infection expands the endosomal system to increase capacity for endocytic material. Furthermore, this study demonstrates the power of high-content imaging for measurement of cellular responses to infection by intracellular pathogens.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/metabolismo , Endossomos/microbiologia , Endossomos/ultraestrutura , Vacúolos/microbiologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/citologia , Chlamydia trachomatis/fisiologia , Coxiella burnetii/citologia , Coxiella burnetii/patogenicidade , Endocitose , Endossomos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Lisossomos , Microscopia de Fluorescência , Fagossomos/microbiologia , Tetraspanina 30/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA