Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(6): e39839, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768139

RESUMO

Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca(2+)-induced permeability transition in the presence of a profound Ca(2+) uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca(2+)-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca(2+)-induced permeability transition. Ca(2+) uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca(2+)-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca(2+)-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena.


Assuntos
Ácido Bongcréquico/farmacologia , Cálcio/farmacologia , Crangonidae/metabolismo , Nucleotídeos/metabolismo , Palaemonidae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Crangonidae/efeitos dos fármacos , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dados de Sequência Molecular , Palaemonidae/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Filogenia , Alinhamento de Sequência
2.
Environ Sci Technol ; 46(11): 6324-9, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22550937

RESUMO

Methyl mercury accumulated at the top of aquatic food chains constitutes a toxicological risk to humans and other top predators. Because the methyl mercury enters the aquatic food chains at the lower trophic levels, uptake and elimination processes at these levels affect the methyl mercury content at the higher levels. Selenium modulates the biokinetics of mercury in aquatic organisms in fairly complex ways, increasing mercury retention in some aquatic mammals, but decreasing methyl mercury retention in fish. However, it is not known if selenium modulates methyl mercury accumulation at lower trophic levels in aquatic food chains. Here, we show that selenium administered via the food augments the elimination of methyl mercury from marine shrimp and that the effect is dose-dependent, demonstrable down to natural selenium concentrations in aquatic food items. Selenite, seleno-cystine, and seleno-methionine exert this effect but selenate does not. Our results suggest that the selenium naturally present at the lower trophic levels in marine food chains may play an essential role as a modifier of methyl mercury accumulation at these levels, thereby potentially also affecting biomagnification of methyl mercury toward the higher trophic levels in the aquatic food chains.


Assuntos
Crangonidae/efeitos dos fármacos , Crangonidae/metabolismo , Monitoramento Ambiental , Compostos de Metilmercúrio/metabolismo , Selênio/farmacologia , Animais , Dieta , Fezes/química , Meia-Vida , Selênio/administração & dosagem , Distribuição Tecidual/efeitos dos fármacos
3.
Food Addit Contam ; 21(6): 526-37, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15204530

RESUMO

Semicarbazide (SEM) is considered to be a characteristic protein-bound side-chain metabolite of the banned veterinary drug nitrofurazone. It is therefore used as a marker for nitrofurazone abuse. Recently, there has been concern about other sources of SEM in tissue samples, which are not linked to the illegal use of nitrofurazone. The present studies have shown that SEM can occur naturally, e.g. in algae, shrimps and eggs, and is formed from natural substances, e.g. arginine and creatine. A significant formation of SEM was observed in samples treated with hypochlorite commonly used in food processing for disinfection or bleaching. SEM was formed in different kinds of nitrogen compound-containing samples (0.3-20 microg kg(-1)) after treatment with 1% active chlorine. It was detected in the mg kg(-1) range after hypochlorite treatment (0.015% active chlorine) of creatine. Lower levels were also formed from creatinine, arginine and urea. SEM present in hypochlorite-treated carrageenan proved mostly to occur in the tissue-bound form. Therefore, differentiation between SEM from nitrofurazone abuse and SEM originating from natural constituents (due to hypochlorite treatment) seems not to be unambiguously possible.


Assuntos
Contaminação de Alimentos/análise , Ácido Hipocloroso/farmacologia , Nitrofurazona/farmacocinética , Semicarbazidas/análise , Detecção do Abuso de Substâncias/veterinária , Animais , Biomarcadores/análise , Carcinógenos/química , Crangonidae/metabolismo , Desinfetantes/farmacologia , Eucariotos/metabolismo , Manipulação de Alimentos/métodos , Humanos , Detecção do Abuso de Substâncias/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA