Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytochem Anal ; 33(6): 961-970, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35702035

RESUMO

INTRODUCTION: Ramonda serbica and R. nathaliae are resurrection plants that have the remarkable ability to survive the complete desiccation of their vegetative organs (i.e. leaves, stem, roots) during periods of drought and rapidly revive when rewatered and rehydrated. OBJECTIVE: To investigate metabolic changes in R. serbica and R. nathaliae during their desiccation and recovery process METHODS: Proton nuclear magnetic resonance (1 H-NMR) and gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach coupled with multivariate data analysis was utilised to identify the metabolomes of the plants from 90 biological replicates. RESULTS: Sucrose and the polyphenolic glycoside myconoside were predominant in almost equal amounts in all samples studied, regardless of their water content at sampling. During the dehydration process, a decrease in the relative content of fructose, galactose, and galactinol was observed while the contents of those metabolites were preserved in the partially rehydrated plants. Raffinose and myo-inositol were accumulated in dry samples. CONCLUSION: Using 1 H-NMR and GC-MS as two complementary analytical platforms provided a more complete picture of the metabolite composition for investigation of the desiccation and recovery process in resurrection plants.


Assuntos
Craterostigma , Craterostigma/metabolismo , Dessecação , Metabolômica , Folhas de Planta/metabolismo , Água/metabolismo
2.
Physiol Plant ; 162(1): 13-34, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28466470

RESUMO

Osmotin is a key protein associated with abiotic and biotic stress response in plants. In this study, an osmotin from the resurrection plant Tripogon loliiformis (TlOsm) was characterized and functionally analyzed under abiotic stress conditions in T. loliiformis as well as in transgenic Nicotiana tabacum (tobacco) and Oryza sativa (rice) plants. Real-time PCR analysis on mixed elicitor cDNA libraries from T. loliiformis showed that TlOsm was upregulated a 1000-fold during the early stages of osmotic stresses (cold, drought, and salinity) in both shoots and roots but downregulated in shoots during heat stress. There was no change in TlOsm gene expression in roots of heat-stressed plants and during plant development. The plasma membrane localization of TlOsm was showed in fluorescent-tagged TlOsm tobacco plants using confocal laser scanning microscopic analysis. Transgenic rice plants expressing TlOsm were assessed for enhanced tolerance to salinity, drought and cold stresses. Constitutively expressed TlOsm in transgenic rice plants showed increased tolerance to cold, drought and salinity stress when compared with the wild-type and vector control counterparts. This was evidenced by maintained growth, retained higher water content and membrane integrity, and improved survival rate of TlOsm-expressing plants. The results thus indicate the involvement of TlOsm in plant response to multiple abiotic stresses, possibly through the signaling pathway, and highlight its potential applications for engineering crops with improved tolerance to cold, drought and salinity stress.


Assuntos
Adaptação Fisiológica , Craterostigma/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Membrana Celular/metabolismo , Temperatura Baixa , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas , Salinidade , Análise de Sequência de Proteína , Frações Subcelulares/metabolismo , Água
3.
Biotechnol Adv ; 32(6): 1091-101, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24681091

RESUMO

Resurrection species are a group of land plants that can tolerate extreme desiccation of their vegetative tissues during harsh drought stress, and still quickly - often within hours - regain normal physiological and metabolic functions following rehydration. At the molecular level, this desiccation tolerance is attributed to basal cellular mechanisms including the constitutive expression of stress-associated genes and high levels of protective metabolites present already in the absence of stress, as well as to transcriptome and metabolome reconfigurations rapidly occurring during the initial phases of drought stress. Parts of this response are conferred by unique metabolites, including a diverse array of sugars, phenolic compounds, and polyols, some of which accumulate to high concentrations within the plant cell. In addition to drought stress, these metabolites are proposed to contribute to the protection against other abiotic stresses and to an increased oxidative stress tolerance. Recently, extracts of resurrection species and particular secondary metabolites therein were reported to display biological activities of importance to medicine, with e.g. antibacterial, anticancer, antifungal, and antiviral activities, rendering them possible candidates for the development of novel drug substances as well as for cosmetics. Herein, we provide an overview of the metabolite composition of resurrection species, summarize the latest reports related to the use of natural products from resurrection plants, and outline their potential for medical applications.


Assuntos
Anti-Infecciosos , Antineoplásicos , Craterostigma , Extratos Vegetais , Animais , Linhagem Celular , Craterostigma/química , Craterostigma/genética , Craterostigma/metabolismo , Humanos , Engenharia Metabólica , Camundongos
4.
Planta ; 235(4): 819-28, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22080919

RESUMO

Resurrection plants could survive severe drought stress, but the underlying mechanism for protecting their photosynthetic apparatus against drought stress is unclear. Cyclic electron flow (CEF) has been documented as a crucial mechanism for photoprotection in Arabidopsis and tobacco. We hypothesized that CEF plays an important role in protecting photosystem I (PSI) and photosystem II (PSII) against drought stress for resurrection plants. To address this hypothesis, the effects of mild drought stress on light energy distribution in PSII and P700 redox state were examined in a resurrection plant Paraboea rufescens. Cyclic electron flow was not activated below the photosynthetic photon flux density (PPFD) of 400 µmol m⁻² s⁻¹ in leaves without drought stress. However, CEF was activated under low light in leaves with mild drought stress, and the effective quantum yield of PSII significantly decreased. Meanwhile, non-photochemical quenching (NPQ) was significantly stimulated not only under high light but also under low light. Compared with the control, the fraction of overall P700 that cannot be oxidized in a given state (PSI acceptor side limitation) under high light was maintained at low level of 0.1 in leaves with water deficit, indicating that the over-reduction of the PSI acceptor side was prevented by the significant stimulation of CEF. Furthermore, methyl viologen could significantly increase the PSII photo-inhibition induced by high light compared with chloramphenicol. These results suggested that CEF is an important mechanism for protecting PSI and PSII from drought stress in resurrection plants.


Assuntos
Adaptação Fisiológica/fisiologia , Craterostigma/metabolismo , Secas , Dióxido de Carbono/metabolismo , China , Transporte de Elétrons , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
5.
Plant Biol (Stuttg) ; 13(5): 767-76, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21815981

RESUMO

Because of their unique tolerance to desiccation, the so-called resurrection plants can be considered as excellent models for extensive research on plant reactions to environmental stresses. The vegetative tissues of these species are able to withstand long dry periods and to recover very rapidly upon re-watering. This study follows the dynamics of key components involved in leaf tissue antioxidant systems under desiccation in the resurrection plant Haberlea rhodopensis and the related non-resurrection species Chirita eberhardtii. In H. rhodopensis these parameters were also followed during recovery after full drying. A well-defined test system was developed to characterise the different responses of the two species under drought stress. Results show that levels of H2O2 decreased significantly both in H. rhodopensis and C. eberhardtii, but that accumulation of malondialdehyde was much more pronounced in the desiccation-tolerant H. rhodopensis than in the non-resurrection C. eberhardtii. A putative protective role could be attributed to accumulation of total phenols in H. rhodopensis during the late stages of drying. The total glutathione concentration and GSSG/GSH ratio increased upon complete dehydration of H. rhodopensis. Our data on soluble sugars suggest that sugar ratios might be important for plant desiccation tolerance. An array of different adaptations could thus be responsible for the resurrection phenotype of H. rhodopensis.


Assuntos
Glutationa/metabolismo , Magnoliopsida/metabolismo , Fenóis/metabolismo , Aclimatação , Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Craterostigma/metabolismo , Desidratação/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
6.
Plant Signal Behav ; 6(2): 243-50, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21330782

RESUMO

In this work, we have studied the transcriptional profiles of polyamine biosynthetic genes and analyzed polyamine metabolic fluxes during a gradual drought acclimation response in Arabidopsis thaliana and the resurrection plant Craterostigma plantagineum. The analysis of free putrescine, spermidine and spermine titers in Arabidopsis arginine decarboxylase (adc1-3, adc2-3), spermidine synthase (spds1-2, spds2-3) and spermine synthase (spms-2) mutants during drought stress, combined with the quantitative expression of the entire polyamine biosynthetic pathway in the wild-type, has revealed a strong metabolic canalization of putrescine to spermine induced by drought. Such canalization requires spermidine synthase 1 (SPDS1) and spermine synthase (SPMS) activities and, intriguingly, does not lead to spermine accumulation but to a progressive reduction in spermidine and spermine pools in the wild-type. Our results suggest the participation of the polyamine back-conversion pathway during the drought stress response rather than the terminal catabolism of spermine. The putrescine to spermine canalization coupled to the spermine to putrescine back-conversion confers an effective polyamine recycling-loop during drought acclimation. Putrescine to spermine canalization has also been revealed in the desiccation tolerant plant C. plantagineum, which conversely to Arabidopsis, accumulates high spermine levels which associate with drought tolerance. Our results provide a new insight to the polyamine homeostasis mechanisms during drought stress acclimation in Arabidopsis and resurrection plants.


Assuntos
Arabidopsis/metabolismo , Craterostigma/metabolismo , Secas , Poliaminas/metabolismo , Estresse Fisiológico , Adenosilmetionina Descarboxilase/metabolismo , Arabidopsis/genética , Carboxiliases/metabolismo , Mutação , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
7.
Plant J ; 63(2): 212-228, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20444235

RESUMO

Studies of the resurrection plant Craterostigma plantagineum have revealed some of the mechanisms which these desiccation-tolerant plants use to survive environments with extreme dehydration and restricted seasonal water. Most resurrection plants are polyploid with large genomes, which has hindered efforts to obtain whole genome sequences and perform mutational analysis. However, the application of deep sequencing technologies to transcriptomics now permits large-scale analyses of gene expression patterns despite the lack of a reference genome. Here we use pyro-sequencing to characterize the transcriptomes of C. plantagineum leaves at four stages of dehydration and rehydration. This reveals that genes involved in several pathways, such as those required for vitamin K and thiamin biosynthesis, are tightly regulated at the level of gene expression. Our analysis also provides a comprehensive picture of the array of cellular responses controlled by gene expression that allow resurrection plants to survive desiccation.


Assuntos
Craterostigma/metabolismo , Perfilação da Expressão Gênica , Craterostigma/genética , Desidratação , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , RNA de Plantas/genética , Análise de Sequência de DNA , Água/metabolismo
8.
Planta ; 219(4): 579-89, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15197590

RESUMO

The resurrection plant Craterostigma plantagineum Hochst. is used as an experimental system to investigate desiccation tolerance in higher plants. A search for genes activated during early stages of dehydration identified the gene CpEdi-9, which is expressed in mature seeds and in response to dehydration in the phloem cells of vascular tissues of leaves. Elements for the tissue-specific expression pattern reside in the isolated promoter of the CpEdi-9 gene, as shown through the analysis of transgenic plants. The CpEdi-9 promoter could be a suitable tool for expressing genes in the vascular system of dehydrated plants. CpEdi-9 encodes a small (10 kDa) hydrophilic protein, which does not have significant sequence homologies to known genes. The predicted protein CpEDI-9 shares some physicochemical features with LEA proteins from plants and a nematode. Based on the unique expression pattern and on the nucleotide sequence we propose that CpEdi-9 defines a new class of hydrophilic proteins that are supposed to contribute to cellular protection during dehydration. This group of proteins may have evolved because desiccation tolerance requires the abundant expression of protective proteins during early stages of dehydration in all tissues.


Assuntos
Craterostigma/genética , Genes de Plantas , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Craterostigma/metabolismo , Desidratação , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes , Nicotiana/genética
9.
Plant J ; 31(3): 293-303, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12164809

RESUMO

CDeT27-45 is a lea-like gene from the resurrection plant Craterostigma plantagineum (Scrophulariaceae) which is strongly expressed in vegetative tissues in response to dehydration or treatment with abscisic acid (ABA). Expression of the gene is correlated with the acquisition of desiccation tolerance. Nuclear proteins bind to a 29-bp cis-regulatory region of the promoter which is essential for transcriptional activation of the CDeT27-45 gene by ABA. Using a yeast one-hybrid screen, the cDNA clone CpR18 was isolated, which encodes a protein with specific binding activity for the cis-regulatory element in the CDeT27-45 promoter. The protein contains an acidic region, a SAP-domain, a zinc finger of the C3H-type, and two motifs which are conserved in proteins from several plant species. One of the conserved regions is rich in basic residues and is predicted to form a helix-loop-helix structure. The R18 gene shows high similarities to genomic sequences and ESTs from other plant species. The tissue-specific expression pattern of the rare R18 mRNA and the distribution of nuclear protein binding activity for the CDeT27-45 promoter fragment are compared. The R18 protein is indeed localized in the nucleus, and activates transcription of CDeT27-45 promoter-GUS fusion constructs in tobacco protoplasts. DNA blot analysis and isolation of genomic clones reveal that two copies of R18 are present in the C. plantagineum genome.


Assuntos
Ácido Abscísico/farmacologia , Craterostigma/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , Craterostigma/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dessecação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reporter , Dados de Sequência Molecular , Família Multigênica , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA