Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cytokine ; 173: 156441, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995394

RESUMO

Macrophages have recently been discovered to assume a significant role in the progression of cryptococcosis. However, the potential involvement of macrophage-derived exosomes in the pathogenesis of cryptococcosis remains uncertain. In this study, we investigated the changes of microRNAs in macrophage exosomes (exo-miRNAs) in cryptococcal infections and the role of markedly altered exo-miRNAs in the modulation of Human Umbilical Vein Endothelial Cells (HUVEC) permeability and ROS accumulation and pyroptosis in Human Bronchial Epithelioid Cells (BEAS-2B). Techniques such as microarray analysis and real-time quantitative PCR were used to detect different exo-miRNAs and to screen for the most highly expressed exo-miRNAs. Then its mimics were transfected into HUVEC to study its effect on the monolayer permeability of HUVEC. Finally, the relationship between this exo-miRNAs and the ROS accumulation and pyroptosis was verified by bioinformatics analysis. The results showed that five exo-miRNAs were overexpressed and two exo-miRNAs were reduced, among which, exo-miR-4449 was expressed at the highest level. Exo-miR-4449 could be internalized by HUVEC and enhanced its monolayer permeability. Moreover, exo-miR-4449 was found to promote ROS accumulation and pyroptosis in BEAS-2B through HIC1 pathway. Thus, exo-miR-4449 plays an important role in the pathogenesis of cryptococcosis and holds promise as a significant biomarker for treatment.


Assuntos
Criptococose , Cryptococcus , MicroRNAs , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Piroptose/genética , Cryptococcus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Criptococose/metabolismo , Criptococose/patologia , Fatores de Transcrição Kruppel-Like
2.
Front Immunol ; 13: 931194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967332

RESUMO

Lungs balance threat from primary viral infection, secondary infection, and inflammatory damage. Severe pulmonary inflammation induces vascular permeability, edema, and organ dysfunction. We previously demonstrated that poly(I:C) (pICLC) induced type 1 interferon (t1IFN) protected mice from Cryptococcus gattii (Cg) via local iron restriction. Here we show pICLC increased serum protein and intravenously injected FITC-dextran in the lung airspace suggesting pICLC induces vascular permeability. Interestingly, pICLC induced a pro-inflammatory signature with significant expression of IL-1 and IL-6 which depended on MDA5 and t1IFN. Vascular permeability depended on MDA5, t1IFN, IL-1, and IL-6. T1IFN also induced MDA5 and other MDA5 signaling components suggesting that positive feedback contributes to t1IFN dependent expression of the pro-inflammatory signature. Vascular permeability, induced by pICLC or another compound, inhibited Cg by limiting iron. These data suggest that pICLC induces t1IFN which potentiates pICLC-MDA5 signaling increasing IL-1 and IL-6 resulting in leakage of antimicrobial serum factors into lung airspace. Thus, induced vascular permeability may act as an innate defense mechanism against opportunistic fungal infection, such as cryptococcosis, and may be exploited as a host-directed therapeutic target.


Assuntos
Criptococose , Cryptococcus gattii , Interferon Tipo I , Infecções Oportunistas , Animais , Permeabilidade Capilar , Criptococose/metabolismo , Interferon Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Ferro/metabolismo , Pulmão/metabolismo , Camundongos , Infecções Oportunistas/metabolismo
3.
Inflammation ; 45(3): 1269-1280, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35015189

RESUMO

Cryptococcosis (caused, for example, by Cryptococcus neoformans) and allergic asthma (caused, for example, by Dermatophagoides pteronyssinus) target the respiratory tract (the lung and bronchial epithelium). C. neoformans and D. pteronyssinus can coexist in the same indoor environment, and exposure to both can cause alterations in the local airway inflammatory milieu and exacerbation of airway inflammatory diseases. Here, we evaluated the effects of the association between C. neoformans and D. pteronyssinus in the modulation of airway inflammatory responses in an in vitro experimental model using human bronchial epithelial cells. BEAS-2B cells were cultivated and stimulated with D. pteronyssinus (10 µg/mL) and/or C. neoformans (MOI 100) for 24 h. No cytotoxic effect was observed in cells stimulated by C. neoformans and/or D. pteronyssinus. The production of IL-8, IL-6, and/or CCL2, but not IL-10, as well as the activation of NF-kB, STAT3, STAT6, and/or ERK1/2 were increased in cells stimulated by C. neoformans or D. pteronyssinus compared to controls. C. neoformans in association with D. pteronyssinus inhibited the CCL2­ERK1/2 signaling pathway in cells treated with both pathogens compared to cells stimulated by D. pteronyssinus alone. In addition, their association induced an additive effect on the IL-6/STAT3 signaling pathway in cells compared to cells stimulated with D. pteronyssinus or C. neoformans only. D. pteronyssinus increased the internalization and growth of C. neoformans in BEAS-2B cells. D. pteronyssinus in association with C. neoformans promoted pro- and anti-inflammatory responses, which can modulate cryptococcal infection and asthmaticus status.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Anti-Inflamatórios/farmacologia , Brônquios , Quimiocina CCL2/metabolismo , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Dermatophagoides pteronyssinus/metabolismo , Regulação para Baixo , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Transcrição STAT3/metabolismo
4.
Infect Immun ; 89(10): e0033021, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34251289

RESUMO

The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2 knockout [Dectin-2KO]) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.


Assuntos
Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagocitose/fisiologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Criptococose/metabolismo , Citocinas/metabolismo , Células Dendríticas/microbiologia , Feminino , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo
5.
Front Immunol ; 12: 654574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796117

RESUMO

The small molecule (molecular mass <900 Daltons) composition of extracellular vesicles (EVs) produced by the pathogenic fungus Cryptococcus gattii is unknown, which limits the understanding of the functions of cryptococcal EVs. In this study, we analyzed the composition of small molecules in samples obtained from solid cultures of C. gattii by a combination of chromatographic and spectrometric approaches, and untargeted metabolomics. This analysis revealed previously unknown components of EVs, including small peptides with known biological functions in other models. The peptides found in C. gattii EVs had their chemical structure validated by chemical approaches and comparison with authentic standards, and their functions tested in a Galleria mellonella model of cryptococcal infection. One of the vesicular peptides (isoleucine-proline-isoleucine, Ile-Pro-Ile) improved the survival of G. mellonella lethally infected with C. gattii or C. neoformans. These results indicate that small molecules exported in EVs are biologically active in Cryptococcus. Our study is the first to characterize a fungal EV molecule inducing protection, pointing to an immunological potential of extracellular peptides produced by C. gattii.


Assuntos
Criptococose/metabolismo , Cryptococcus gattii/fisiologia , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Invertebrados , Animais , Biologia Computacional/métodos , Criptococose/microbiologia , Vesículas Extracelulares/ultraestrutura , Metabolômica/métodos , Estrutura Molecular , Peptídeos
6.
Genetics ; 215(4): 1171-1189, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580959

RESUMO

Iron is essential for the growth of the human fungal pathogen Cryptococcus neoformans within the vertebrate host, and iron sensing contributes to the elaboration of key virulence factors, including the formation of the polysaccharide capsule. C. neoformans employs sophisticated iron acquisition and utilization systems governed by the transcription factors Cir1 and HapX. However, the details of the transcriptional regulatory networks that are governed by these transcription factors and connections to virulence remain to be defined. Here, we used chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and transcriptome analysis (RNA-seq) to identify genes directly regulated by Cir1 and/or HapX in response to iron availability. Overall, 40 and 100 genes were directly regulated by Cir1, and 171 and 12 genes were directly regulated by HapX, under iron-limited and replete conditions, respectively. More specifically, we found that Cir1 directly controls the expression of genes required for iron acquisition and metabolism, and indirectly governs capsule formation by regulating specific protein kinases, a regulatory connection not previously revealed. HapX regulates the genes responsible for iron-dependent pathways, particularly under iron-depleted conditions. By analyzing target genes directly bound by Cir1 and HapX, we predicted the binding motifs for the transcription factors and verified that the purified proteins bind these motifs in vitro Furthermore, several direct target genes were coordinately and reciprocally regulated by Cir1 and HapX, suggesting that these transcription factors play conserved roles in the response to iron availability. In addition, biochemical analyses revealed that Cir1 and HapX are iron-containing proteins, implying that the regulatory networks of Cir1 and HapX may be influenced by the incorporation of iron into these proteins. Taken together, our identification of the genome-wide transcriptional networks provides a detailed understanding of the iron-related regulatory landscape, establishes a new connection between Cir1 and kinases that regulate capsule, and underpins genetic and biochemical analyses that reveal iron-sensing mechanisms for Cir1 and HapX in C. neoformans.


Assuntos
Cápsulas Bacterianas/fisiologia , Criptococose/metabolismo , Cryptococcus neoformans/fisiologia , Proteínas Fúngicas/metabolismo , Homeostase , Ferro/fisiologia , Transcrição Gênica , Criptococose/genética , Criptococose/microbiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Humanos , Virulência
7.
J Clin Invest ; 130(9): 4546-4560, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484801

RESUMO

FTY720 is a treatment for relapsing remitting multiple sclerosis (MS). It is an analog of sphingosine-1-phosphate (S1P) and targets S1P receptors 1, 3, 4, and 5. Recent reports indicate an association between long-term exposure to FTY720 and cases of cryptococcal infection. Here, we studied the effect of FTY720 and its derivative, BAF312, which only target S1P receptors 1 and 5, in a mouse model of cryptococcal infection. We found that treatment with FTY720, but not with BAF312, led to decreased survival and increased organ burden in mouse cryptococcal granulomas. Both FTY720 and BAF312 caused a profound CD4+ and CD8+ T cell depletion in blood and lungs but only treatment with FTY720 led to cryptococcal reactivation. Treatment with FTY720, but not with BAF312, was associated with disorganization of macrophages and with M2 polarization at the granuloma site. In a cell system, FTY720 decreased phagocytosis and production of reactive oxygen species by macrophages, a phenotype recapitulated in the S1pr3-/- knockout macrophages. Our results suggest that FTY720 reactivates cryptococcosis from the granuloma through a S1P receptor 3-mediated mechanism and support the rationale for development of more-specific receptor modulators for therapeutic use of MS.


Assuntos
Criptococose/tratamento farmacológico , Cryptococcus neoformans/metabolismo , Cloridrato de Fingolimode/farmacologia , Granuloma/tratamento farmacológico , Macrófagos Peritoneais/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Linhagem Celular , Criptococose/metabolismo , Criptococose/patologia , Feminino , Granuloma/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Humanos , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos
8.
PLoS Pathog ; 16(2): e1008361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32101593

RESUMO

Monocytes exist in two major populations, termed Ly6Chi and Ly6Clow monocytes. Compared to Ly6Chi monocytes, less is known about Ly6Clow monocyte recruitment and mechanisms involved in the recruitment of this subset. Furthermore, the role of Ly6Clow monocytes during infections is largely unknown. Here, using intravital microscopy, we demonstrate that Ly6Clow monocytes are predominantly recruited to the brain vasculature following intravenous infection with Cryptococcus neoformans, a fungal pathogen causing meningoencephalitis. The recruitment depends primarily on the interaction of VCAM1 expressed on the brain endothelium with VLA4 expressed on Ly6Clow monocytes. Furthermore, TNFR signaling is essential for the recruitment through enhancing VLA4 expression on Ly6Clow monocytes. Interestingly, the recruited Ly6Clow monocytes internalized C. neoformans and carried the organism while crawling on and adhering to the luminal wall of brain vasculature and migrating to the brain parenchyma. Our study reveals a substantial recruitment of Ly6Clow monocytes to the brain and highlights important properties of this subset during infection.


Assuntos
Criptococose/imunologia , Monócitos/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Encéfalo/imunologia , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Feminino , Integrina alfa4beta1/metabolismo , Masculino , Meningoencefalite/metabolismo , Meningoencefalite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Micoses/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
10.
Mycoses ; 63(1): 4-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31597205

RESUMO

Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , MicroRNAs , Micoses , Infecções Oportunistas Relacionadas com a AIDS/imunologia , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Infecções Oportunistas Relacionadas com a AIDS/terapia , Animais , Aspergilose/imunologia , Aspergilose/metabolismo , Candidíase/imunologia , Candidíase/metabolismo , Coinfecção/imunologia , Coinfecção/metabolismo , Coinfecção/microbiologia , Criptococose/imunologia , Criptococose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunoterapia , MicroRNAs/biossíntese , MicroRNAs/imunologia , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Micoses/imunologia , Micoses/terapia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/metabolismo , Transdução de Sinais/genética
11.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31871099

RESUMO

Cryptococcosis is an infectious disease caused by two fungal species, Cryptococcus neoformans and Cryptococcus gattii While C. neoformans affects mainly immunocompromised patients, C. gattii infects both immunocompetent and immunocompromised individuals. Laccase is an important virulence factor that contributes to the virulence of C. neoformans by promoting pulmonary growth and dissemination to the brain. The presence of laccase in C. neoformans can shift the host immune response toward a nonprotective Th2-type response. However, the role of laccase in the immune response against C. gattii remains unclear. In this study, we characterized laccase activity in C. neoformans and C. gattii isolates from Thailand and investigated whether C. gattii that is deficient in laccase might modulate immune responses during infection. C. gattii was found to have higher laccase activity than C. neoformans, indicating the importance of laccase in the pathogenesis of C. gattii infection. The expression of laccase promoted intracellular proliferation in macrophages and inhibited in vitro fungal clearance. Mice infected with a lac1Δ mutant strain of C. gattii had reduced lung burdens at the early but not the late stage of infection. Without affecting type-1 and type-2 responses, the deficiency of laccase in C. gattii induced cryptococcus-specific interleukin-17 (IL-17) cytokine, neutrophil accumulation, and expression of the neutrophil-associated cytokine gene Csf3 and chemokine genes Cxcl1, Cxcl2, and Cxcl5 in vivo, as well as enhanced neutrophil-mediated phagocytosis and killing in vitro Thus, our data suggest that laccase constitutes an important virulence factor of C. gattii that plays roles in attenuating Th17-type immunity, neutrophil recruitment, and function during the early stage of infection.


Assuntos
Criptococose , Cryptococcus gattii/imunologia , Cryptococcus neoformans/imunologia , Lacase/metabolismo , Animais , Proliferação de Células , Quimiocinas/metabolismo , Criptococose/imunologia , Criptococose/metabolismo , Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/patogenicidade , Citocinas/metabolismo , Macrófagos/imunologia , Camundongos , Neutrófilos/metabolismo , Virulência/imunologia , Fatores de Virulência/metabolismo
13.
J Proteome Res ; 18(11): 3885-3895, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502459

RESUMO

Cryptococcus gattii is the causative agent of cryptococcosis infection that can lead to pneumonia and meningitis in immunocompetent individuals. The molecular basis of the pathogenic process and impact on the host biochemistry are poorly understood and remain largely unknown. In this context, a comparative proteomic analysis was performed to investigate the response of the host during an infection caused by C. gattii. Lungs of experimentally infected rats were analyzed by shotgun proteomics to identify differentially expressed proteins induced by C. gattii clinical strain. The proteomic results were characterized using bioinformatic tools, and subsequently, the molecular findings were validated in cell culture and lungs of infected animals. A dramatic change was observed in protein expression triggered by C. gattii infection, especially related to energy metabolism. The main pathways affected include aerobic glycolysis cycle, TCA cycle, and pyrimidine and purine metabolism. Analyses in human lung fibroblast cells confirmed the altered metabolic status found in infected lungs. Thus, it is clear that C. gattii infection triggers important changes in energy metabolism leading to the activation of glycolysis and lactate accumulation in lung cells, culminating in a cancerlike metabolic status known as the Warburg effect. The results presented here provide important insights to better understand C. gattii molecular pathogenesis.


Assuntos
Criptococose/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Pulmão/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Linhagem Celular , Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Masculino , Ratos Wistar
14.
PLoS Pathog ; 15(3): e1007597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30921435

RESUMO

Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis.


Assuntos
Cryptococcus neoformans/metabolismo , Dinoprostona/análogos & derivados , Eicosanoides/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Cultura de Células , Criptococose/metabolismo , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Dinoprostona/metabolismo , Dinoprostona/fisiologia , Modelos Animais de Doenças , Eicosanoides/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , PPAR gama/metabolismo , Virulência/fisiologia , Peixe-Zebra/microbiologia
15.
J Cutan Pathol ; 46(2): 143-147, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30362142

RESUMO

Cutaneous vasculitis has many underlying causes, and the clinical and histological findings often overlap. Inflammatory vasculitis can mimic infection; however, distinction is critical for the timely institution of appropriate therapy. We present two patients who had generalized polymorphous eruptions whose cutaneous pathology showed vasculitis with unusual haloed yeast-like cells within the inflammatory infiltrate, mimicking Cryptococcus. The unusual cells stained negatively with Gomori methenamine silver and periodic acid-Schiff fungal stains, but positively for CD68 and had cytoplasmic reactivity with antibody to myeloperoxidase (MPO). Both patients had positive serum anti-MPO antibodies. The first patient experienced a rapidly fatal course, whereas the second patient improved with prompt initiation of systemic corticosteroids. Interestingly, the second case had prior biopsy showing Sweet syndrome with crypotoccoid-appearing cells. Cryptococcoid cells have been described previously in association with neutrophilic dermatoses, but not in the setting of vasculitis as was seen in our patients. Our cases add to the existing literature on crypotoccoid mimickers, and are the first to be reported in association with vasculitis.


Assuntos
Criptococose , Cryptococcus , Dermatomicoses , Dermatopatias Vasculares , Síndrome de Sweet , Vasculite , Idoso , Criptococose/diagnóstico , Criptococose/metabolismo , Criptococose/patologia , Dermatomicoses/diagnóstico , Dermatomicoses/metabolismo , Dermatomicoses/patologia , Feminino , Humanos , Dermatopatias Vasculares/diagnóstico , Dermatopatias Vasculares/metabolismo , Dermatopatias Vasculares/patologia , Síndrome de Sweet/diagnóstico , Síndrome de Sweet/metabolismo , Síndrome de Sweet/patologia , Vasculite/diagnóstico , Vasculite/metabolismo , Vasculite/patologia
16.
Bioorg Med Chem ; 26(20): 5408-5419, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322754

RESUMO

Fungi cause serious life-threatening infections in immunocompromised individuals and current treatments are now complicated by toxicity issues and the emergence of drug resistant strains. Consequently, there is a need for development of new antifungal drugs. Inosine monophosphate dehydrogenase (IMPDH), a key component of the de novo purine biosynthetic pathway, is essential for growth and virulence of fungi and is a potential drug target. In this study, a high-throughput screen of 114,000 drug-like compounds against Cryptococcus neoformans IMPDH was performed. We identified three 3-((5-substituted)-1,3,4-oxadiazol-2-yl)thio benzo[b]thiophene 1,1-dioxides that inhibited Cryptococcus IMPDH and also possessed whole cell antifungal activity. Analogs were synthesized to explore the SAR of these hits. Modification of the fifth substituent on the 1,3,4-oxadiazole ring yielded compounds with nanomolar in vitro activity, but with associated cytotoxicity. In contrast, two analogs generated by substituting the 1,3,4-oxadiazole ring with imidazole and 1,2,4-triazole gave reduced IMPDH inhibition in vitro, but were not cytotoxic. During enzyme kinetic studies in the presence of DTT, nucleophilic attack of a free thiol occurred with the benzo[b]thiophene 1,1-dioxide. Two representative compounds with substitution at the 5 position of the 1,3,4-oxadiazole ring, showed mixed inhibition in the absence of DTT. Incubation of these compounds with Cryptococcus IMPDH followed by mass spectrometry analysis showed non-specific and covalent binding with IMPDH at multiple cysteine residues. These results support recent reports that the benzo[b]thiophene 1,1-dioxides moiety as PAINS (pan-assay interference compounds) contributor.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , IMP Desidrogenase/antagonistas & inibidores , Tiofenos/química , Tiofenos/farmacologia , Criptococose/tratamento farmacológico , Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Células HEK293 , Células Hep G2 , Humanos , IMP Desidrogenase/metabolismo , Modelos Moleculares , Oxidiazóis/química , Oxidiazóis/farmacologia
17.
PLoS Pathog ; 14(8): e1007220, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30071112

RESUMO

The battle for iron between invading microorganisms and mammalian hosts is a pivotal determinant of the outcome of infection. The pathogenic fungus, Cryptococcus neoformans, employs multiple mechanisms to compete for iron during cryptococcosis, a disease primarily of immunocompromised hosts. In this study, we examined the role of endocytic trafficking in iron uptake by characterizing a mutant defective in the Sec1/Munc18 (SM) protein Vps45. This protein is known to regulate the machinery for vesicle trafficking and fusion via interactions with SNARE proteins. As expected, a vps45 deletion mutant was impaired in endocytosis and showed sensitivity to trafficking inhibitors. The mutant also showed poor growth on iron-limited media and a defect in transporting the Cfo1 ferroxidase of the high-affinity iron uptake system from the plasma membrane to the vacuole. Remarkably, we made the novel observation that Vps45 also contributes to mitochondrial function in that a Vps45-Gfp fusion protein associated with mitotracker, and a vps45 mutant showed enhanced sensitivity to inhibitors of electron transport complexes as well as changes in mitochondrial membrane potential. Consistent with mitochondrial function, the vps45 mutant was impaired in calcium homeostasis. To assess the relevance of these defects for virulence, we examined cell surface properties of the vps45 mutant and found increased sensitivity to agents that challenge cell wall integrity and to antifungal drugs. A change in cell wall properties was consistent with our observation of altered capsule polysaccharide attachment, and with attenuated virulence in a mouse model of cryptococcosis. Overall, our studies reveal a novel role for Vps45-mediated trafficking for iron uptake, mitochondrial function and virulence.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas/fisiologia , Ferro/metabolismo , Mitocôndrias/fisiologia , Fatores de Virulência/fisiologia , Virulência/genética , Animais , Transporte Biológico , Criptococose/metabolismo , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Filogenia , Fatores de Virulência/genética
18.
J Immunol ; 200(10): 3539-3546, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29643192

RESUMO

The pathogenic fungus Cryptococcus enters the human host via inhalation into the lung and is able to reside in a niche environment that is serum- (opsonin) limiting. Little is known about the mechanism by which nonopsonic phagocytosis occurs via phagocytes in such situations. Using a combination of soluble inhibitors of phagocytic receptors and macrophages derived from knockout mice and human volunteers, we show that uptake of nonopsonized Cryptococcus neoformans and C. gattii via the mannose receptor is dependent on macrophage activation by cytokines. However, although uptake of C. neoformans is via both dectin-1 and dectin-2, C. gattii uptake occurs largely via dectin-1. Interestingly, dectin inhibitors also blocked phagocytosis of unopsonized Cryptococci in wax moth (Galleria mellonella) larvae and partially protected the larvae from infection by both fungi, supporting a key role for host phagocytes in augmenting early disease establishment. Finally, we demonstrated that internalization of nonopsonized Cryptococci is not accompanied by the nuclear translocation of NF-κB or its concomitant production of proinflammatory cytokines such as TNF-α. Thus, nonopsonized Cryptococci are recognized by mammalian phagocytes in a manner that minimizes proinflammatory cytokine production and potentially facilitates fungal pathogenesis.


Assuntos
Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/patogenicidade , Macrófagos/metabolismo , Macrófagos/microbiologia , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mariposas , NF-kappa B/metabolismo , Proteínas Opsonizantes/metabolismo , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagocitose/fisiologia , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Med Mycol ; 56(4): 458-468, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420779

RESUMO

Iron-sulfur clusters (ISC) are indispensable cofactors for essential enzymes in various cellular processes. In the model yeast Saccharomyces cerevisiae, the precursor of ISCs is exported from mitochondria via a mitochondrial ABC transporter Atm1 and used for cytosolic and nuclear ISC protein assembly. Although iron homeostasis has been implicated in the virulence of the human fungal pathogen Cryptococcus neoformans, the key components of the ISC biosynthesis pathway need to be fully elucidated. In the current study, a homolog of S. cerevisiae Atm1 was identified in C. neoformans, and its function was characterized. We constructed C. neoformans mutants lacking ATM1 and found that deletion of ATM1 affected mitochondrial functions. Furthermore, we observed diminished activity of the cytosolic ISC-containing protein Leu1 and the heme-containing protein catalase in the atm1 mutant. These results suggested that Atm1 is required for the biosynthesis of ISCs in the cytoplasm as well as heme metabolism in C. neoformans. In addition, the atm1 mutants were avirulent in a murine model of cryptococcosis. Overall, our results demonstrated that Atm1 plays a critical role in iron metabolism and virulence for C. neoformans.


Assuntos
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas , Ferro/metabolismo , Mitocôndrias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Criptococose/metabolismo , Criptococose/patologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/ultraestrutura , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/genética , Leucina/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Saccharomyces cerevisiae/genética , Deleção de Sequência , Superóxido Dismutase/genética , Virulência/genética
20.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311248

RESUMO

Cryptococcal species vary in capsule and cell size, thermotolerance, geographic distribution, and affected populations. Cryptococcus gattii sensu stricto and C. deuterogattii affect mainly immunocompetent hosts; however, C. bacillisporus, C. decagattii, and C. tetragattii cause infections mainly in immunocompromised hosts. This study aimed to compare the capacities of different species of the C. gattii species complex to induce cytokines and antimicrobial molecules in human peripheral blood mononuclear cells (PBMCs). Cryptococcus bacillisporus and C. deuterogattii induced the lowest levels of tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and IL-6 among the five species of the C. gattii complex. Cryptococcus deuterogattii induced higher levels of IL-22 than those induced by C. tetragattii and the environmental species C. flavescens In addition, C. bacillisporus and C. gattii sensu stricto proliferated inside human monocyte-derived macrophages after 24 h of infection. All Cryptococcus species were able to generate reactive oxygen species (ROS) in human PBMCs, with C. bacillisporus and C. deuterogattii being more efficient than the other species. In conclusion, C. bacillisporus and C. deuterogattii induce lower levels of the proinflammatory cytokines TNF-α, IL-1ß, and IL-6 and higher ROS levels than those induced by the other species. Species of the Cryptococcus gattii complex have different abilities to induce cytokine and ROS production by human PBMCs.


Assuntos
Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Citocinas/metabolismo , Proliferação de Células , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA