Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.163
Filtrar
1.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 314-327, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700059

RESUMO

Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.


Assuntos
Substâncias Macromoleculares , Cristalografia por Raios X/métodos , Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas/química
2.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 350-361, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682668

RESUMO

CdaA is the most widespread diadenylate cyclase in many bacterial species, including several multidrug-resistant human pathogens. The enzymatic product of CdaA, cyclic di-AMP, is a secondary messenger that is essential for the viability of many bacteria. Its absence in humans makes CdaA a very promising and attractive target for the development of new antibiotics. Here, the structural results are presented of a crystallographic fragment screen against CdaA from Listeria monocytogenes, a saprophytic Gram-positive bacterium and an opportunistic food-borne pathogen that can cause listeriosis in humans and animals. Two of the eight fragment molecules reported here were localized in the highly conserved ATP-binding site. These fragments could serve as potential starting points for the development of antibiotics against several CdaA-dependent bacterial species.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/enzimologia , Cristalografia por Raios X/métodos , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Fosfatos de Dinucleosídeos/metabolismo , Fosfatos de Dinucleosídeos/química , Antibacterianos/farmacologia , Humanos , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica
3.
Biochemistry ; 63(9): 1131-1146, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38598681

RESUMO

Despite the importance of proline conformational equilibria (trans versus cis amide and exo versus endo ring pucker) on protein structure and function, there is a lack of convenient ways to probe proline conformation. 4,4-Difluoroproline (Dfp) was identified to be a sensitive 19F NMR-based probe of proline conformational biases and cis-trans isomerism. Within model compounds and disordered peptides, the diastereotopic fluorines of Dfp exhibit similar chemical shifts (ΔδFF = 0-3 ppm) when a trans X-Dfp amide bond is present. In contrast, the diastereotopic fluorines exhibit a large (ΔδFF = 5-12 ppm) difference in chemical shift in a cis X-Dfp prolyl amide bond. DFT calculations, X-ray crystallography, and solid-state NMR spectroscopy indicated that ΔδFF directly reports on the relative preference of one proline ring pucker over the other: a fluorine which is pseudo-axial (i.e., the pro-4R-F in an exo ring pucker, or the pro-4S-F in an endo ring pucker) is downfield, while a fluorine which is pseudo-equatorial (i.e., pro-4S-F when exo, or pro-4R-F when endo) is upfield. Thus, when a proline is disordered (a mixture of exo and endo ring puckers, as at trans-Pro in peptides in water), it exhibits a small Δδ. In contrast, when the Pro is ordered (i.e., when one ring pucker is strongly preferred, as in cis-Pro amide bonds, where the endo ring pucker is strongly favored), a large Δδ is observed. Dfp can be used to identify inherent induced order in peptides and to quantify proline cis-trans isomerism. Using Dfp, we discovered that the stable polyproline II helix (PPII) formed in the denatured state (8 M urea) exhibits essentially equal populations of the exo and endo proline ring puckers. In addition, the data with Dfp suggested the specific stabilization of PPII by water over other polar solvents. These data strongly support the importance of carbonyl solvation and n → π* interactions for the stabilization of PPII. Dfp was also employed to quantify proline cis-trans isomerism as a function of phosphorylation and the R406W mutation in peptides derived from the intrinsically disordered protein tau. Dfp is minimally sterically disruptive and can be incorporated in expressed proteins, suggesting its broad application in understanding proline cis-trans isomerization, protein folding, and local order in intrinsically disordered proteins.


Assuntos
Flúor , Prolina , Prolina/química , Prolina/análogos & derivados , Flúor/química , Cristalografia por Raios X/métodos , Conformação Proteica , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Molecular
4.
Toxins (Basel) ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202176

RESUMO

Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from Naja naja cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both "water" and "membrane" conformations of the central loop (loop-2) were determined by X-ray crystallography. The "water" conformation of the loop was frequently observed. It was similar to the structure of loop-2 of numerous CTs, determined by either NMR spectroscopy in aqueous solution, or the X-ray method. The "membrane" conformation is rare one and, to date has only been observed by NMR for a single cytotoxin 1 from N. oxiana (CT1No) in detergent micelle. Both CT13Nn and CT1No are S-type CTs. Membrane-binding of these CTs probably involves an additional step-the conformational transformation of the loop-2. To confirm this suggestion, we conducted molecular dynamics simulations of both CT1No and CT13Nn in the Highly Mimetic Membrane Model of palmitoiloleoylphosphatidylglycerol, starting with their "water" NMR models. We found that the both toxins transform their "water" conformation of loop-2 into the "membrane" one during the insertion process. This supports the hypothesis that the S-type CTs, unlike their P-type counterparts, require conformational adaptation of loop-2 during interaction with lipid membranes.


Assuntos
Proteínas Cardiotóxicas de Elapídeos/química , Cristalografia por Raios X/métodos , Citotoxinas/química , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
5.
Biochim Biophys Acta Proteins Proteom ; 1870(3): 140756, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026466

RESUMO

Nicking endonuclease Nt.BspD6I (Nt.BspD6I) is the large subunit of the heterodimeric restriction endonuclease R.BspD6I. It recognizes the short specific DNA sequence 5´'- GAGTC and cleaves only the top strand in dsDNA at a distance of four nucleotides downstream the recognition site toward the 3´'-terminus. A mechanism of interaction of this protein with DNA is still unknown. Here we report the crystal structure of Cysteine-free Nt.BspD6I, with four cysteine residues (11, 160, 508, 578) substituted by serine, which was determined with a resolution of 1.93 Å. A comparative structural analysis showed that the substitution of cysteine residues induced marked conformational changes in the N-terminal recognition and the C-terminal cleavage domains. As a result of this changes were formed three new hydrogen bonds and the electrostatic field in these regions changed compared with wild type Nt.BspD6I. The substitution of cysteine residues did not alter the nicking function of Cysteine-free Nt.BspD6I but caused change in the activity of Cysteine-free heterodimeric restriction endonuclease R.BspD6I due to a change in the interaction between its large and small subunits. The results obtained contribute to the identification of factors influencing the interactions of subunits in the heterodimeric restriction enzyme R.BspD6I.


Assuntos
Cisteína/química , Desoxirribonuclease I/química , Endonucleases/química , Serina/química , Bacillus/enzimologia , Sítios de Ligação , Cristalografia por Raios X/métodos , DNA/química , DNA/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Dimerização , Endonucleases/genética , Endonucleases/metabolismo , Ligação de Hidrogênio , Hidrólise , Estrutura Molecular , Mutagênese Sítio-Dirigida , Subunidades Proteicas/química
6.
J Inorg Biochem ; 228: 111696, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35030390

RESUMO

Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.


Assuntos
Anti-Inflamatórios não Esteroides/química , Complexos de Coordenação/química , Cobre/química , DNA/química , Niacinamida/química , Soroalbumina Bovina/química , Células A549 , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Etídio/química , Fenamatos/química , Humanos , Substâncias Intercalantes/química , Oxirredução
7.
Nat Commun ; 13(1): 472, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078976

RESUMO

The Kaposi's sarcoma associated herpesvirus protein ORF45 binds the extracellular signal-regulated kinase (ERK) and the p90 Ribosomal S6 kinase (RSK). ORF45 was shown to be a kinase activator in cells but a kinase inhibitor in vitro, and its effects on the ERK-RSK complex are unknown. Here, we demonstrate that ORF45 binds ERK and RSK using optimized linear binding motifs. The crystal structure of the ORF45-ERK2 complex shows how kinase docking motifs recognize the activated form of ERK. The crystal structure of the ORF45-RSK2 complex reveals an AGC kinase docking system, for which we provide evidence that it is functional in the host. We find that ORF45 manipulates ERK-RSK signaling by favoring the formation of a complex, in which activated kinases are better protected from phosphatases and docking motif-independent RSK substrate phosphorylation is selectively up-regulated. As such, our data suggest that ORF45 interferes with the natural design of kinase docking systems in the host.


Assuntos
Cristalografia por Raios X/métodos , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/química , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Sarcoma de Kaposi/metabolismo , Linhagem Celular , Biologia Computacional , Herpesvirus Humano 8/química , Herpesvirus Humano 8/isolamento & purificação , Humanos , Proteínas Imediatamente Precoces/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais
8.
J Inorg Biochem ; 228: 111697, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34999425

RESUMO

In this study, four hybrid organic-inorganic compounds (8-H2Q)2[PdCl4] (1), (H2ClQ)2[PdCl4] (2), (H2NQ)2[PdCl4] (3) and (H2MeQ)2[PdCl4]·2H2O (4) (where 8-H2Q = 8-hydroxyquinolinium, H2ClQ = 5-chloro-8-hydroxyquinolinium, H2NQ = 5-nitro-8-hydroxyquinolinium and H2MeQ = 2-methyl-8-hydroxyquinolinium) were synthesized through organic cation modulation. Single-crystal X-ray structure analysis of compounds 1 and 3 indicates that their structures are planar and consist of [PdCl4]2- anions and 8-H2Q or H2NQ cations, respectively. Both ionic components are held together through ionic interactions and hydrogen bonds forming infinite chains linked through π-π interactions to form 2D structures. Furthermore, NMR spectroscopy, UV-Vis spectroscopy, elemental analysis, and FT-IR spectroscopy were used to explore the synthesized compounds. The DNA interaction, antimicrobial activity, antiproliferative activity, and radical scavenging effect of the compounds were evaluated. The hybrid compounds and their free ligands can interact with the calf thymus DNA via an intercalation mode involving the insertion of the aromatic chromophore between the base pairs of DNA; compound 1 has the highest binding affinity. Moreover, they have high antimicrobial efficacy against the tested 14 strains of microorganisms with minimum inhibitory concentration values ranging from <1.95 to 250 µg/mL. The antiproliferative activity of the compounds was investigated against three different cancer cell lines, and their selectivity was verified on mesenchymal stem cells. Compounds 1 and 2 displayed selective and high cytotoxicity against human lung and breast cancer cells and showed moderate cytotoxicity against colon cancer cells. Accordingly, they might be auspicious candidates for future pharmacological investigations in lung and breast cancer research.


Assuntos
Complexos de Coordenação/química , Hidroxiquinolinas/química , Paládio/química , Compostos de Quinolínio/química , Células A549 , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Quelantes/química , Cristalografia por Raios X/métodos , DNA/química , Sequestradores de Radicais Livres/química , Células HCT116 , Humanos , Hidroxiquinolinas/síntese química , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Testes de Sensibilidade Microbiana/métodos , Estrutura Molecular , Compostos de Quinolínio/síntese química , Espécies Reativas de Oxigênio/metabolismo
9.
Biochim Biophys Acta Proteins Proteom ; 1870(3): 140754, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995802

RESUMO

Protein tyrosine phosphatases (PTPs) are key virulence factors in pathogenic bacteria, consequently, they have become important targets for new approaches against these pathogens, especially in the fight against antibiotic resistance. Among these targets of interest YopH (Yersinia outer protein H) from virulent species of Yersinia is an example. PTPs can be reversibly inhibited by nitric oxide (NO) since the oxidative modification of cysteine residues may influence the protein structure and catalytic activity. We therefore investigated the effects of NO on the structure and enzymatic activity of Yersinia enterocolitica YopH in vitro. Through phosphatase activity assays, we observe that in the presence of NO YopH activity was inhibited by 50%, and that this oxidative modification is partially reversible in the presence of DTT. Furthermore, YopH S-nitrosylation was clearly confirmed by a biotin switch assay, high resolution mass spectrometry (MS) and X-ray crystallography approaches. The crystal structure confirmed the S-nitrosylation of the catalytic cysteine residue, Cys403, while the MS data provide evidence that Cys221 and Cys234 might also be modified by NO. Interestingly, circular dichroism spectroscopy shows that the S-nitrosylation affects secondary structure of wild type YopH, though to a lesser extent on the catalytic cysteine to serine YopH mutant. The data obtained demonstrate that S-nitrosylation inhibits the catalytic activity of YopH, with effects beyond the catalytic cysteine. These findings are helpful for designing effective YopH inhibitors and potential therapeutic strategies to fight this pathogen or others that use similar mechanisms to interfere in the signal transduction pathways of their hosts.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Cisteína/química , Óxido Nítrico/química , Proteínas Tirosina Fosfatases/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Biotina/metabolismo , Catálise , Cristalografia por Raios X/métodos , Cisteína/metabolismo , Humanos , Espectrometria de Massas/métodos , Estrutura Molecular , Óxido Nítrico/metabolismo , Oxirredução , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Yersinia enterocolitica/metabolismo
10.
J Nat Prod ; 85(1): 148-161, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35029398

RESUMO

Twelve new dimeric tetrahydroxanthones, muyocoxanthones A-L (1-12), were isolated from the endophytic fungus, Muyocopron laterale. Their structures were characterized on the basis of the interpretation of NMR and HRESIMS data. The absolute configurations of 1-10 and 12 were unambiguously determined by ECD spectrum data and single-crystal X-ray diffraction analysis. Compounds 2, 6, and 11 showed inhibitory activity against the LPS-induced production of nitric oxide (NO) in RAW 264.7 cells with IC50 values of 5.2, 1.3, and 5.1 µM, respectively.


Assuntos
Anti-Inflamatórios/farmacologia , Ascomicetos/química , Xantonas/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X/métodos , Dimerização , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Biochem J ; 479(1): 57-74, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34890451

RESUMO

Serine acetyltransferase (SAT) catalyzes the first step in the two-step pathway to synthesize l-cysteine in bacteria and plants. SAT synthesizes O-acetylserine from substrates l-serine and acetyl coenzyme A and is a key enzyme for regulating cellular cysteine levels by feedback inhibition of l-cysteine, and its involvement in the cysteine synthase complex. We have performed extensive structural and kinetic characterization of the SAT enzyme from the antibiotic-resistant pathogen Neisseria gonorrhoeae. Using X-ray crystallography, we have solved the structures of NgSAT with the non-natural ligand, l-malate (present in the crystallization screen) to 2.01 Šand with the natural substrate l-serine (2.80 Å) bound. Both structures are hexamers, with each monomer displaying the characteristic left-handed parallel ß-helix domain of the acyltransferase superfamily of enzymes. Each structure displays both extended and closed conformations of the C-terminal tail. l-malate bound in the active site results in an interesting mix of open and closed active site conformations, exhibiting a structural change mimicking the conformation of cysteine (inhibitor) bound structures from other organisms. Kinetic characterization shows competitive inhibition of l-cysteine with substrates l-serine and acetyl coenzyme A. The SAT reaction represents a key point for the regulation of cysteine biosynthesis and controlling cellular sulfur due to feedback inhibition by l-cysteine and formation of the cysteine synthase complex. Data presented here provide the structural and mechanistic basis for inhibitor design and given this enzyme is not present in humans could be explored to combat the rise of extensively antimicrobial resistant N. gonorrhoeae.


Assuntos
Cisteína/antagonistas & inibidores , Retroalimentação Fisiológica , Neisseria gonorrhoeae/enzimologia , Serina O-Acetiltransferase/química , Serina O-Acetiltransferase/metabolismo , Acetilcoenzima A/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Clonagem Molecular/métodos , Cristalização , Cristalografia por Raios X/métodos , Cisteína/biossíntese , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Ligantes , Malatos/química , Malatos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Serina/química , Serina/metabolismo , Serina O-Acetiltransferase/genética
12.
J Nat Prod ; 85(1): 205-214, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34961313

RESUMO

Nine new pinguisane sesquiterpenoid compounds, 1-9, including a highly oxygenated compound (1) and two amides (7 and 8), along with three known compounds (10, 11, and 12), were isolated from the Chinese liverwort Trocholejeunea sandvicensis Mizut (Lejeuneaceae). The structures of these compounds were determined by analysis of IR, UV, HRESIMS, NMR spectroscopic data, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Inhibitory effects against lipopolysaccharide (LPS)-induced NO production in RAW 264.7 murine macrophages indicated that the maximum inhibition rates of NO production of compounds 1, 9, and 10 were 83.15%, 83.54%, and 96.28% under the nontoxic tested concentration, respectively. Compound 9 also displayed moderate anti-inflammatory activity in vivo in a CuSO4-induced transgenic zebrafish model.


Assuntos
Anti-Inflamatórios/farmacologia , Hepatófitas/química , Sesquiterpenos/farmacologia , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cristalografia por Raios X/métodos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Análise Espectral/métodos , Peixe-Zebra
13.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948332

RESUMO

The concept of peptidomimetics is based on structural modifications of natural peptides that aim not only to mimic their 3D shape and biological function, but also to reduce their limitations. The peptidomimetic approach is used in medicinal chemistry to develop drug-like compounds that are more active and selective than natural peptides and have fewer side effects. One of the synthetic strategies for obtaining peptidomimetics involves mimicking peptide α-helices, ß-sheets or turns. Turns are usually located on the protein surface where they interact with various receptors and are therefore involved in numerous biological events. Among the various synthetic tools for turn mimetic design reported so far, our group uses an approach based on the insertion of different ferrocene templates into the peptide backbone that both induce turn formation and reduce conformational flexibility. Here, we conjugated methyl 1'-aminoferrocene-carboxylate with homo- and heterochiral Pro-Ala dipeptides to investigate the turn formation potential and antiproliferative properties of the resulting peptidomimetics 2-5. Detailed spectroscopic (IR, NMR, CD), X-ray and DFT studies showed that the heterochiral conjugates 2 and 3 were more suitable for the formation of ß-turns. Cell viability study, clonogenic assay and cell death analysis showed the highest biological potential of homochiral peptide 4.


Assuntos
Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X/métodos , Dipeptídeos/química , Dipeptídeos/farmacologia , Células HeLa , Humanos , Células MCF-7 , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Estereoisomerismo
14.
J Nat Prod ; 84(12): 3080-3089, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34802242

RESUMO

Five new cyclohexene derivatives, dipandensin A and B (1 and 2) and pandensenols A-C (3-5), and 16 known secondary metabolites (6-21) were isolated from the methanol-soluble extracts of the stem and root barks of Uvaria pandensis. The structures were characterized by NMR spectroscopic and mass spectrometric analyses, and that of 6-methoxyzeylenol (6) was further confirmed by single-crystal X-ray crystallography, which also established its absolute configuration. The isolated metabolites were evaluated for antibacterial activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus epidermidis and the Gram-negative bacteria Enterococcus raffinosus, Escherichia coli, Paraburkholderia caledonica, Pectobacterium carotovorum, and Pseudomonas putida, as well as for cytotoxicity against the MCF-7 human breast cancer cell line. A mixture of uvaretin (20) and isouvaretin (21) exhibited significant antibacterial activity against B. subtilis (EC50 8.7 µM) and S. epidermidis (IC50 7.9 µM). (8'α,9'ß-Dihydroxy)-3-farnesylindole (12) showed strong inhibitory activity (EC50 9.8 µM) against B. subtilis, comparable to the clinical reference ampicillin (EC50 17.9 µM). None of the compounds showed relevant cytotoxicity against the MCF-7 human breast cancer cell line.


Assuntos
Cicloexenos/química , Oxigênio/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Caules de Planta/química , Uvaria/química , Cristalografia por Raios X/métodos , Cicloexenos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
15.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 348-355, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605439

RESUMO

Human coronavirus NL63 (HCoV-NL63), which belongs to the genus Alphacoronavirus, mainly infects children and the immunocompromized and is responsible for a series of clinical manifestations, including cough, fever, rhinorrhoea, bronchiolitis and croup. HCoV-NL63, which was first isolated from a seven-month-old child in 2004, has led to infections worldwide and accounts for 10% of all respiratory illnesses caused by etiological agents. However, effective antivirals against HCoV-NL63 infection are currently unavailable. The HCoV-NL63 main protease (Mpro), also called 3C-like protease (3CLpro), plays a vital role in mediating viral replication and transcription by catalyzing the cleavage of replicase polyproteins (pp1a and pp1ab) into functional subunits. Moreover, Mpro is highly conserved among all coronaviruses, thus making it a prominent drug target for antiviral therapy. Here, four crystal structures of HCoV-NL63 Mpro in the apo form at different pH values are reported at resolutions of up to 1.78 Å. Comparison with Mpro from other human betacoronaviruses such as SARS-CoV-2 and SARS-CoV reveals common and distinct structural features in different genera and extends knowledge of the diversity, function and evolution of coronaviruses.


Assuntos
Coronavirus Humano NL63/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica
16.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593638

RESUMO

Sarcoplasmic reticulum (SR) Ca2+-ATPase transports two Ca2+ ions from the cytoplasm to the SR lumen against a large concentration gradient. X-ray crystallography has revealed the atomic structures of the protein before and after the dissociation of Ca2+, while biochemical studies have suggested the existence of intermediate states in the transition between E1P⋅ADP⋅2Ca2+ and E2P. Here, we explore the pathway and free energy profile of the transition using atomistic molecular dynamics simulations with the mean-force string method and umbrella sampling. The simulations suggest that a series of structural changes accompany the ordered dissociation of ADP, the A-domain rotation, and the rearrangement of the transmembrane (TM) helices. The luminal gate then opens to release Ca2+ ions toward the SR lumen. Intermediate structures on the pathway are stabilized by transient sidechain interactions between the A- and P-domains. Lipid molecules between TM helices play a key role in the stabilization. Free energy profiles of the transition assuming different protonation states suggest rapid exchanges between Ca2+ ions and protons when the Ca2+ ions are released toward the SR lumen.


Assuntos
Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Difosfato de Adenosina/metabolismo , Cristalografia por Raios X/métodos , Citoplasma/metabolismo , Simulação de Dinâmica Molecular , Prótons , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia
17.
J Inorg Biochem ; 224: 111548, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481347

RESUMO

The protonation state of ascorbate peroxidase compound II (APX-II) has been a subject of debate. A combined X-ray/neutron crystallographic study reported that APX-II is best described as an iron(IV)hydroxide species with an FeO distance of 1.88 Å (Kwon, et al. Nat Commun2016, 7, 13,445), while X-ray absorption spectroscopy (XAS) experiments (utilizing extended X-ray absorption fine structure (EXAFS) and pre-edge analyses) indicate APX-II is an authentic iron(IV)oxo species with an FeO distance 1.68 Å (Ledray, et al. Journal of the American Chemical Society2020,142, 20,419). Previous debates concerning ferryl protonation states have been resolved through the application of Badger's rule, which correlates FeO bond distances with FeO vibrational frequencies. To obtain the required vibrational data, we have collected Nuclear Resonance Vibrational Spectroscopy (NRVS) data for APX-II. We observe a broad vibrational feature in the range associated with iron(IV)oxo stretching (700-800 cm-1). This feature appears to have two peaks at 732 cm-1 and 770 cm-1, corresponding to FeO distances of 1.69 and 1.67 Å, respectively. The broad vibrational envelope and the presence of multiple resonances could reflect a distribution of hydrogen bonding interactions within the active-site pocket.


Assuntos
Ascorbato Peroxidases/química , Hidróxidos/química , Ferro/química , Cristalografia por Raios X/métodos , Compostos Férricos/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Oxigênio/química , Prótons , Análise Espectral Raman/métodos , Espectroscopia por Absorção de Raios X/métodos
18.
Biochem Biophys Res Commun ; 576: 66-72, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34482025

RESUMO

Phage-derived endolysins, enzymes that degrade peptidoglycans, have the potential to serve as alternative antimicrobial agents. Psa, which was identified as an endolysin encoded in the genome of Clostridium perfringens st13, was shown to specifically lyse C. perfringens. Psa has an N-terminal catalytic domain that is homologous to the Amidase_2 domain (PF01510), and a novel C-terminal cell wall-binding domain. Here, we determined the X-ray structure of the Psa catalytic domain (Psa-CD) at 1.65 Å resolution. Psa-CD has a typical Amidase_2 domain structure, consisting of a spherical structure with a central ß-sheet surrounded by two α-helix groups. Furthermore, there is a Zn2+ at the center of Psa-CD catalytic reaction site, as well as a unique T-shaped substrate-binding groove consisting of two grooves on the molecule surface. We performed modeling study of the enzyme/substrate complex along with a mutational analysis, and demonstrated that the structure of the substrate-binding groove is closely related to the amidase activity. Furthermore, we proposed a Zn2+-mediated catalytic reaction mechanism for the Amidase_2 family, in which tyrosine constitutes part of the catalytic reaction site.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Clostridium perfringens/enzimologia , Endopeptidases/química , Endopeptidases/metabolismo , Zinco/metabolismo , Domínio Catalítico , Parede Celular/metabolismo , Clostridium perfringens/química , Cristalografia por Raios X/métodos , Modelos Moleculares , Peptidoglicano/metabolismo , Conformação Proteica , Zinco/química
19.
J Inorg Biochem ; 224: 111590, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507110

RESUMO

The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.


Assuntos
Amidas/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Paládio/química , Compostos de Piridínio/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X/métodos , DNA/química , Células HeLa , Humanos , Ligantes , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
20.
J Synchrotron Radiat ; 28(Pt 5): 1309-1320, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475280

RESUMO

X-ray-based techniques are a powerful tool in structural biology but the radiation-induced chemistry that results can be detrimental and may mask an accurate structural understanding. In the crystallographic case, cryocooling has been employed as a successful mitigation strategy but also has its limitations including the trapping of non-biological structural states. Crystallographic and solution studies performed at physiological temperatures can reveal otherwise hidden but relevant conformations, but are limited by their increased susceptibility to radiation damage. In this case, chemical additives that scavenge the species generated by radiation can mitigate damage but are not always successful and the mechanisms are often unclear. Using a protein designed to undergo a large-scale structural change from breakage of a disulfide bond, radiation damage can be monitored with small-angle X-ray scattering. Using this, we have quantitatively evaluated how three scavengers commonly used in crystallographic experiments - sodium nitrate, cysteine, and ascorbic acid - perform in solution at 10°C. Sodium nitrate was the most effective scavenger and completely inhibited fragmentation of the disulfide bond at a lower concentration (500 µM) compared with cysteine (∼5 mM) while ascorbic acid performed best at 5 mM but could only reduce fragmentation by ∼75% after a total accumulated dose of 792 Gy. The relative effectiveness of each scavenger matches their reported affinities for solvated electrons. Saturating concentrations of each scavenger shifted fragmentation from first order to a zeroth-order process, perhaps indicating the direct contribution of photoabsorption. The SAXS-based method can detect damage at X-ray doses far lower than those accessible crystallographically, thereby providing a detailed picture of scavenger processes. The solution results are also in close agreement with what is known about scavenger performance and mechanism in a crystallographic setting and suggest that a link can be made between the damage phenomenon in the two scenarios. Therefore, our engineered approach might provide a platform for more systematic and comprehensive screening of radioprotectants that can directly inform mitigation strategies for both solution and crystallographic experiments, while also clarifying fundamental radiation damage mechanisms.


Assuntos
Ácido Ascórbico/química , Cristalografia por Raios X/métodos , Cisteína/química , Sequestradores de Radicais Livres/química , Nitratos/química , Dissulfetos/química , Estrutura Molecular , Espalhamento a Baixo Ângulo , Soluções/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA