Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38478595

RESUMO

DDX11/Chl1R is a conserved DNA helicase with roles in genome maintenance, DNA replication, and chromatid cohesion. Loss of DDX11 in humans leads to the rare cohesinopathy Warsaw breakage syndrome. DDX11 has also been implicated in human cancer where it has been proposed to have an oncogenic role and possibly to constitute a therapeutic target. Given the multiple roles of DDX11 in genome stability and its potential as an anticancer target, we set out to define a complete genetic interaction profile of DDX11 loss in human cell lines. Screening the human genome with clustered regularly interspaced short palindromic repeats (CRISPR) guide RNA drop out screens in DDX11-wildtype (WT) or DDX11-deficient cells revealed a strong enrichment of genes with functions related to sister chromatid cohesion. We confirm synthetic lethal relationships between DDX11 and the tumor suppressor cohesin subunit STAG2, which is frequently mutated in several cancer types and the kinase HASPIN. This screen highlights the importance of cohesion in cells lacking DDX11 and suggests DDX11 may be a therapeutic target for tumors with mutations in STAG2.


Assuntos
Proteínas de Ciclo Celular , Cromátides , RNA Helicases DEAD-box , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Coesinas , Epistasia Genética , DNA Helicases/genética , Linhagem Celular
2.
Cell Mol Life Sci ; 81(1): 100, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388697

RESUMO

Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Coesinas , Cromátides/genética , Cromátides/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias/genética , Segregação de Cromossomos , Aneuploidia , Instabilidade Genômica
3.
Curr Biol ; 33(1): 58-74.e5, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525974

RESUMO

The complete separation of sister chromatids during anaphase is a fundamental requirement for successful mitosis. Therefore, divisions with either persistent DNA-based connections or lagging chromosome fragments threaten aneuploidy if unresolved. Here, we demonstrate the existence of an anaphase mechanism in normally dividing cells in which pervasive connections between telomeres of segregating chromosomes aid in rescuing lagging chromosome fragments. We observe that in a large proportion of Drosophila melanogaster neuronal stem cell divisions, early anaphase sister and non-sister chromatids remain connected by thin telomeric DNA threads. Normally, these threads are resolved in mid-to-late anaphase via a spatial mechanism. However, we find that the presence of a nearby unrepaired DNA break recruits histones, BubR1 kinase, Polo kinase, Aurora B kinase, and BAF to the telomeric thread of the broken chromosome, stabilizing it. Stabilized connections then aid lagging chromosome rescue. These results suggest a model in which pervasive anaphase telomere-telomere connections that are normally resolved quickly can instead be stabilized to retain wayward chromosome fragments. Thus, the liability of persistent anaphase inter-chromosomal connections in normal divisions may be offset by their ability to maintain euploidy in the face of chromosome damage and genome loss.


Assuntos
Cromátides , Proteínas de Drosophila , Animais , Cromátides/genética , Drosophila melanogaster/genética , Telômero/genética , Anáfase , DNA , Segregação de Cromossomos , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética
4.
PLoS Genet ; 18(8): e1010341, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994499

RESUMO

Sister chromatid cohesion (SCC) is an important process in chromosome segregation. ESCO2 is essential for establishment of SCC and is often deleted/altered in human cancers. We demonstrate that esco2 haploinsufficiency results in reduced SCC and accelerates the timing of tumor onset in both zebrafish and mouse p53 heterozygous null models, but not in p53 homozygous mutant or wild-type animals. These data indicate that esco2 haploinsufficiency accelerates tumor onset in a loss of heterozygosity (LOH) sensitive background. Analysis of The Cancer Genome Atlas (TCGA) confirmed ESCO2 deficient tumors have elevated number of LOH events throughout the genome. Further, we demonstrated heterozygous loss of sgo1, important in maintaining SCC, also results in reduced SCC and accelerated tumor formation in a p53 heterozygous background. Surprisingly, while we did observe elevated levels of chromosome missegregation and micronuclei formation in esco2 heterozygous mutant animals, this chromosomal instability did not contribute to the accelerated tumor onset in a p53 heterozygous background. Interestingly, SCC also plays a role in homologous recombination, and we did observe elevated levels of mitotic recombination derived p53 LOH in tumors from esco2 haploinsufficient animals; as well as elevated levels of mitotic recombination throughout the genome of human ESCO2 deficient tumors. Together these data suggest that reduced SCC contributes to accelerated tumor penetrance through elevated mitotic recombination.


Assuntos
Segregação de Cromossomos , Neoplasias , Acetiltransferases/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Humanos , Camundongos , Neoplasias/genética , Penetrância , Proteína Supressora de Tumor p53/genética , Peixe-Zebra/genética
5.
Cell Death Dis ; 13(6): 526, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660718

RESUMO

Abnormal expression of p120 catenin is associated with the malignant phenotype in human lung cancer. Numerous studies have focused on the function of p120 catenin in the juxta-membrane compartment. However, the role of nuclear p120 catenin remains unclear. In this study, the dynamic changes in nuclear p120 catenin localization during cell cycle progression were investigated. Immunofluorescent staining, FACS analysis, and western blotting revealed that nuclear p120 catenin is a major architectural constituent of the chromosome periphery during mitosis. During mitosis, granule-like p120 catenin dispersed into a cloudy-like structure and formed cordon-like structures surrounding the condensed chromosomes to create the peri-chromosomal layer. Interestingly, lumican and p120 catenin colocalized at the spindle fiber where the perichromosomal layer connects to the condensed chromosomes during mitosis. Furthermore, downregulation of p120 catenin using a specific siRNA induced cell cycle stalling in the G2/M phase and promoted aneuploidy. This study validates the role of nuclear p120 catenin in the formation of the chromosome periphery and reveals the p120 catenin-lumican interaction may couple orientation of cell division with the segregation of sister chromatids during mitosis. Our data suggest the protective role of p120 catenin in maintaining the integrity of chromosomes, and also warrants further studies to evaluate the contribution of the loss of p120 catenin to the creation of gene rearrangement in cancer evolution and tumor progression.


Assuntos
Cromátides , Neoplasias Pulmonares , Cateninas/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromátides/patologia , Segregação de Cromossomos , Humanos , Lumicana/genética , Neoplasias Pulmonares/patologia , Mitose/genética
6.
Radiat Res ; 197(3): 261-269, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860251

RESUMO

Metaphase-based cytogenetic methods based on scoring of chromosome aberrations for the estimation of the radiation dose received provide a powerful approach for evaluating the associated risk upon radiation exposure and form the bulk of our current knowledge of radiation-induced chromosome damages. They mainly rely on inducing quiescent peripheral lymphocytes into proliferation and blocking them at metaphases to quantify the damages at the chromosome level. However, human organs and tissues demonstrate various sensitivity towards radiation and within them, self-proliferating progenitor/stem cells are believed to be the most sensitive populations. The radiation-induced chromosome aberrations in these cells remain largely unknown, especially in the context of an intact living organism. Zebrafish is an ideal animal model for research into this aspect due to their small size and the large quantities of progenitor cells present during the embryonic stages. In this study, we employ a novel metaphase-based cytogenetic approach on zebrafish embryos and demonstrate that chromosome-type and chromatid-type aberrations could be identified in progenitor cells at different cell-cycle stages at the point of radiation exposure. Our work positions zebrafish at the forefront as a useful animal model for studying radiation-induced chromosome structural changes in vivo.


Assuntos
Cromátides , Peixe-Zebra , Animais , Cromátides/genética , Aberrações Cromossômicas , Análise Citogenética , Linfócitos , Metáfase , Peixe-Zebra/genética
7.
Cell Rep ; 35(12): 109274, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161767

RESUMO

Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.


Assuntos
Biblioteca Gênica , Genoma , Mosaicismo , Análise de Célula Única , Polipose Adenomatosa do Colo/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Cromátides/genética , Segregação de Cromossomos , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Marcadores Genéticos , Impressão Genômica , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitose , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Recombinação Genética/genética , Nicho de Células-Tronco , Dissomia Uniparental
8.
Genes Chromosomes Cancer ; 60(6): 410-417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368842

RESUMO

High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. The main driver event of this disease is a nonrandom aneuploidy consisting of gains of whole chromosomes but without overt evidence of chromosomal instability (CIN). Here, we investigated the frequency and severity of defective sister chromatid cohesion-a phenomenon related to CIN-in primary pediatric ALL. We found that a large proportion (86%) of hyperdiploid cases displayed aberrant cohesion, frequently severe, to compare with 49% of ETV6/RUNX1-positive ALL, which mostly displayed mild defects. In hyperdiploid ALL, cohesion defects were associated with increased chromosomal copy number heterogeneity, which could indicate increased CIN. Furthermore, cohesion defects correlated with RAD21 and NCAPG mRNA expression, suggesting a link to reduced cohesin and condensin levels in hyperdiploid ALL. Knockdown of RAD21 in an ALL cell line led to sister chromatid cohesion defects, aberrant mitoses, and increased heterogeneity in chromosomal copy numbers, similar to what was seen in primary hyperdiploid ALL. In summary, our study shows that aberrant sister chromatid cohesion is frequent but heterogeneous in pediatric high hyperdiploid ALL, ranging from mild to very severe defects, and possibly due to low cohesin or condensin levels. Cases with high levels of aberrant chromosome cohesion displayed increased chromosomal copy number heterogeneity, possibly indicative of increased CIN. These abnormalities may play a role in the clonal evolution of hyperdiploid pediatric ALL.


Assuntos
Cromátides/genética , Instabilidade Cromossômica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Variante 6 da Proteína do Fator de Translocação ETS
9.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106324

RESUMO

Chromosome fusion is a frequent intermediate in oncogenic chromosome rearrangements and has been proposed to cause multiple tumor-driving abnormalities. In conventional experimental systems, however, these abnormalities were often induced by randomly induced chromosome fusions involving multiple different chromosomes. It was therefore not well understood whether a single defined type of chromosome fusion, which is reminiscent of a sporadic fusion in tumor cells, has the potential to cause chromosome instabilities. Here, we developed a human cell-based sister chromatid fusion visualization system (FuVis), in which a single defined sister chromatid fusion is induced by CRISPR/Cas9 concomitantly with mCitrine expression. The fused chromosome subsequently developed extra-acentric chromosomes, including chromosome scattering, indicative of chromothripsis. Live-cell imaging and statistical modeling indicated that sister chromatid fusion generated micronuclei (MN) in the first few cell cycles and that cells with MN tend to display cell cycle abnormalities. The powerful FuVis system thus demonstrates that even a single sporadic sister chromatid fusion can induce chromosome instability and destabilize the cell cycle through MN formation.


Assuntos
Instabilidade Cromossômica/genética , Análise de Célula Única/métodos , Troca de Cromátide Irmã/fisiologia , Sistemas CRISPR-Cas/genética , Ciclo Celular/genética , Divisão Celular/genética , Cromátides/genética , Cromátides/patologia , Cromátides/fisiologia , Instabilidade Cromossômica/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Genética/métodos , Células HCT116 , Humanos , Microscopia de Fluorescência/métodos , Neoplasias/genética , Troca de Cromátide Irmã/genética
10.
Genes (Basel) ; 11(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784550

RESUMO

At each round of cell division, the DNA must be correctly duplicated and distributed between the two daughter cells to maintain genome identity. In order to achieve proper chromosome replication and segregation, sister chromatids must be recognized as such and kept together until their separation. This process of cohesion is mainly achieved through proteinaceous linkages of cohesin complexes, which are loaded on the sister chromatids as they are generated during S phase. Cohesion between sister chromatids must be fully removed at anaphase to allow chromosome segregation. Other (non-proteinaceous) sources of cohesion between sister chromatids consist of DNA linkages or sister chromatid intertwines. DNA linkages are a natural consequence of DNA replication, but must be timely resolved before chromosome segregation to avoid the arising of DNA lesions and genome instability, a hallmark of cancer development. As complete resolution of sister chromatid intertwines only occurs during chromosome segregation, it is not clear whether DNA linkages that persist in mitosis are simply an unwanted leftover or whether they have a functional role. In this review, we provide an overview of DNA linkages between sister chromatids, from their origin to their resolution, and we discuss the consequences of a failure in their detection and processing and speculate on their potential role.


Assuntos
Anáfase , DNA Catenado/genética , Instabilidade Genômica , Animais , Cromátides/química , Cromátides/genética , Segregação de Cromossomos , DNA Catenado/química , Humanos
11.
Mol Cell ; 79(6): 902-916.e6, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32768407

RESUMO

A long-standing conundrum is how mitotic chromosomes can compact, as required for clean separation to daughter cells, while maintaining close parallel alignment of sister chromatids. Pursuit of this question, by high resolution 3D fluorescence imaging of living and fixed mammalian cells, has led to three discoveries. First, we show that the structural axes of separated sister chromatids are linked by evenly spaced "mini-axis" bridges. Second, when chromosomes first emerge as discrete units, at prophase, they are organized as co-oriented sister linear loop arrays emanating from a conjoined axis. We show that this same basic organization persists throughout mitosis, without helical coiling. Third, from prophase onward, chromosomes are deformed into sequential arrays of half-helical segments of alternating handedness (perversions), accompanied by correlated kinks. These arrays fluctuate dynamically over <15 s timescales. Together these discoveries redefine the foundation for thinking about the evolution of mitotic chromosomes as they prepare for anaphase segregation.


Assuntos
Proteínas de Ciclo Celular/genética , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Mitose/genética , Adenosina Trifosfatases/genética , Anáfase/genética , Animais , Proteínas de Ciclo Celular/isolamento & purificação , Cromátides/genética , Proteínas Cromossômicas não Histona , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/isolamento & purificação , Imageamento Tridimensional , Mamíferos , Metáfase/genética , Prófase/genética
12.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32755595

RESUMO

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Cromátides/ultraestrutura , Proteínas Cromossômicas não Histona/ultraestrutura , DNA/ultraestrutura , Troca de Cromátide Irmã/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Microscopia Crioeletrônica , DNA/genética , Conformação de Ácido Nucleico , Conformação Proteica , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Coesinas
13.
J Cell Sci ; 133(10)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32299836

RESUMO

Eukaryotic chromosomes are replicated in interphase and the two newly duplicated sister chromatids are held together by the cohesin complex and several cohesin auxiliary factors. Sister chromatid cohesion is essential for accurate chromosome segregation during mitosis, yet has also been implicated in other processes, including DNA damage repair, transcription and DNA replication. To assess how cohesin and associated factors functionally interconnect and coordinate with other cellular processes, we systematically mapped the genetic interactions of 17 cohesin genes centered on quantitative growth measurements of >52,000 gene pairs in the budding yeast Saccharomyces cerevisiae Integration of synthetic genetic interactions unveiled a cohesin functional map that constitutes 373 genetic interactions, revealing novel functional connections with post-replication repair, microtubule organization and protein folding. Accordingly, we show that the microtubule-associated protein Irc15 and the prefoldin complex members Gim3, Gim4 and Yke2 are new factors involved in sister chromatid cohesion. Our genetic interaction map thus provides a unique resource for further identification and functional interrogation of cohesin proteins. Since mutations in cohesin proteins have been associated with cohesinopathies and cancer, it may also help in identifying cohesin interactions relevant in disease etiology.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
14.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197313

RESUMO

ISWI chromatin remodeling ATPase SMARCA5 (SNF2H) is a well-known factor for its role in regulation of DNA access via nucleosome sliding and assembly. SMARCA5 transcriptionally inhibits the myeloid master regulator PU.1. Upregulation of SMARCA5 was previously observed in CD34+ hematopoietic progenitors of acute myeloid leukemia (AML) patients. Since high levels of SMARCA5 are necessary for intensive cell proliferation and cell cycle progression of developing hematopoietic stem and progenitor cells in mice, we reasoned that removal of SMARCA5 enzymatic activity could affect the cycling or undifferentiated state of leukemic progenitor-like clones. Indeed, we observed that CRISPR/cas9-mediated SMARCA5 knockout in AML cell lines (S5KO) inhibited the cell cycle progression. We also observed that the SMARCA5 deletion induced karyorrhexis and nuclear budding as well as increased the ploidy, indicating its role in mitotic division of AML cells. The cytogenetic analysis of S5KO cells revealed the premature chromatid separation. We conclude that deleting SMARCA5 in AML blocks leukemic proliferation and chromatid cohesion.


Assuntos
Adenosina Trifosfatases/deficiência , Proliferação de Células , Cromátides , Proteínas Cromossômicas não Histona/deficiência , Técnicas de Inativação de Genes , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Humanos , Células K562 , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo
15.
Dev Cell ; 52(6): 683-698.e7, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32084359

RESUMO

Premature loss of sister chromatid cohesion at metaphase is a diagnostic marker for different cohesinopathies. Here, we report that metaphase spreads of many cancer cell lines also show premature loss of sister chromatid cohesion. Cohesion loss occurs independently of mutations in cohesion factors including SA2, a cohesin subunit frequently inactivated in cancer. In untransformed cells, induction of DNA replication stress by activation of oncogenes or inhibition of DNA replication is sufficient to trigger sister chromatid cohesion loss. Importantly, cell growth under conditions of replication stress requires the cohesin remover WAPL. WAPL promotes rapid RAD51-dependent repair and restart of broken replication forks. We propose that active removal of cohesin allows cancer cells to overcome DNA replication stress. This leads to oncogene-induced cohesion loss from newly synthesized sister chromatids that may contribute to genomic instability and likely represents a targetable cancer cell vulnerability.


Assuntos
Proteínas de Transporte/metabolismo , Cromátides/genética , Reparo do DNA , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Células HEK293 , Humanos , Camundongos , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Coesinas
16.
Sci Rep ; 10(1): 592, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953484

RESUMO

Chromosome instability (CIN), or continual changes in chromosome complements, is an enabling feature of cancer; however, the molecular determinants of CIN remain largely unknown. Emerging data now suggest that aberrant sister chromatid cohesion may induce CIN and contribute to cancer. To explore this possibility, we employed clinical and fundamental approaches to systematically assess the impact reduced cohesion gene expression has on CIN and cancer. Ten genes encoding critical functions in cohesion were evaluated and remarkably, each exhibits copy number losses in 12 common cancer types, and reduced expression is associated with worse patient survival. To gain mechanistic insight, we combined siRNA-based silencing with single cell quantitative imaging microscopy to comprehensively assess the impact reduced expression has on CIN in two karyotypically stable cell lines. We show that reduced expression induces CIN phenotypes, namely increases in micronucleus formation and nuclear areas. Subsequent direct tests involving a subset of prioritized genes also revealed significant changes in chromosome numbers with corresponding increases in moderate and severe cohesion defects within mitotic chromosome spreads. Collectively, our clinical and fundamental findings implicate reduced sister chromatid cohesion, resulting from gene copy number losses, as a key pathogenic event in the development and progression of many cancer types.


Assuntos
Cromátides/genética , Instabilidade Cromossômica , Redes Reguladoras de Genes , Neoplasias/genética , Linhagem Celular , Segregação de Cromossomos , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Avaliação de Resultados da Assistência ao Paciente , Análise de Célula Única , Análise de Sobrevida
17.
PLoS Genet ; 15(10): e1008355, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584931

RESUMO

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib, with the weakest phenotypes observed in RAD51B-deficient cells. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Rad51 Recombinase/genética , Núcleo Celular/genética , Cromátides/genética , Dano ao DNA/genética , Genoma Humano/genética , Células HEK293 , Humanos , Mutação
18.
Annu Rev Genet ; 53: 445-482, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31577909

RESUMO

Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.


Assuntos
Cromátides , Cromossomos/metabolismo , DNA/química , DNA/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos/química , Cromossomos/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Mitose , Complexos Multiproteicos/química , Regiões Promotoras Genéticas , Recombinação V(D)J , Coesinas
19.
Elife ; 82019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31204999

RESUMO

The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Dosagem de Genes , Expressão Gênica , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Recuperação de Fluorescência Após Fotodegradação/métodos , Fase G1/genética , Genoma Humano/genética , Células HeLa , Humanos , Espectrometria de Massas/métodos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Coesinas
20.
Mol Cell ; 75(2): 224-237.e5, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31201089

RESUMO

Cohesin entraps sister DNAs within tripartite rings created by pairwise interactions between Smc1, Smc3, and Scc1. Because Smc1/3 ATPase heads can also interact with each other, cohesin rings have the potential to form a variety of sub-compartments. Using in vivo cysteine cross-linking, we show that when Smc1 and Smc3 ATPases are engaged in the presence of ATP (E heads), cohesin rings generate a "SMC (S) compartment" between hinge and E heads and a "kleisin (K) compartment" between E heads and their associated kleisin subunit. Upon ATP hydrolysis, cohesin's heads associate in a different mode, in which their signature motifs and their coiled coils are closely juxtaposed (J heads), creating alternative S and K compartments. We show that K compartments of either E or J type can entrap single DNAs, that acetylation of Smc3 during S phase is associated with J heads, and that sister DNAs are entrapped in J-K compartments.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Cromátides/genética , DNA/química , Dimerização , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Troca de Cromátide Irmã/genética , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA