Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.120
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612751

RESUMO

The binding activity of various trastuzumab biosimilars versus the branded trastuzumab towards the glycosylated extracellular domain of the human epidermal growth factor receptor 2 (HER2) target in the presence of pertuzumab was investigated. We employed size exclusion chromatography with tetra-detection methodology to simultaneously determine absolute molecular weight, concentration, molecular size, and intrinsic viscosity. All trastuzumab molecules in solution exhibit analogous behavior in their binary action towards HER2 regardless of the order of addition of trastuzumab/pertuzumab. This analogous behavior of all trastuzumab molecules, including biosimilars, highlights the robustness and consistency of their binding activity towards HER2. Furthermore, the addition of HER2 to a mixture of trastuzumab and pertuzumab leads to increased formation of high-order HER2 complexes, up to concentrations of one order of magnitude higher than in the case of sequential addition. The observed increase suggests a potential synergistic effect between these antibodies, which could enhance their therapeutic efficacy in HER2-positive cancers. These findings underscore the importance of understanding the complex interplay between therapeutic antibodies and their target antigens, providing valuable insights for the development of more effective treatment strategies.


Assuntos
Medicamentos Biossimilares , Neoplasias , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Medicamentos Biossimilares/farmacologia , Medicamentos Biossimilares/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Cromatografia em Gel
2.
Exp Parasitol ; 261: 108765, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679126

RESUMO

Toxocara is a genus of nematodes, which infects a variety of hosts, principally dogs and cats, with potential zoonotic risks to humans. Toxocara spp. larvae are capable of migrating throughout the host tissues, eliciting eosinophilic and granulomatous reactions, while surviving for extended periods of time, unchanged, in the host. It is postulated that larvae are capable of altering the host's immune response through the release of excretory-secretory products, containing both proteins and extracellular vesicles (EVs). The study of EVs has increased exponentially in recent years, largely due to their potential use as a diagnostic tool, and in molecular therapy. To this end, there have been multiple isolation methods described for the study of EVs. Here, we use nanoparticle tracking to compare the yield, size distribution, and % labelling of EV samples acquired through various reported methods, from larval cultures of Toxocara canis and T. cati containing Toxocara excretory-secretory products (TES). The methods tested include ultracentrifugation, polymer precipitation, magnetic immunoprecipitation, size exclusion chromatography, and ultrafiltration. Based on these findings, ultrafiltration produces the best results in terms of yield, expected particle size, and % labelling of sample. Transmission electron microscopy confirmed the presence of EVs with characteristic cup-shaped morphology. These findings can serve as a guide for those investigating EVs, particularly those released from multicellular organisms, such as helminths, for which few comparative analyses have been performed.


Assuntos
Cromatografia em Gel , Exossomos , Vesículas Extracelulares , Microscopia Eletrônica de Transmissão , Toxocara canis , Toxocara , Ultracentrifugação , Animais , Toxocara/isolamento & purificação , Toxocara/metabolismo , Toxocara/química , Toxocara canis/química , Exossomos/química , Exossomos/ultraestrutura , Exossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/metabolismo , Cães , Larva , Imunoprecipitação , Toxocaríase/parasitologia , Gatos , Nanopartículas/química , Tamanho da Partícula , Proteínas de Helminto/análise , Proteínas de Helminto/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/isolamento & purificação
3.
Artigo em Inglês | MEDLINE | ID: mdl-38430603

RESUMO

Molecular size distribution (MSD) of polysaccharides serves as a key parameter that directly correlates to the immunogenicity of vaccine. MSD at meningococcal polysaccharide (A, C, Y and W) or conjugate bulk level is well established under detailed pharmacopeial and WHO guidelines. We report here, a newly developed method for determination of molecular size distribution of pentavalent Meningococcal conjugate vaccine comprising of A, C, Y, W and X (MenFive). Although serogroup specific molecular size could not be estimated here; lot to lot consistency monitoring, molecular aggregates distribution in final lot, are key takeaways of this method. Determination of MSD in pentavalent fill finished product was quite challenging. Various columns/detectors combination, buffers, physico-chemical conditions (temperature, 2-8 °C, 25 °C, 40 °C and 60 °C; flow rate, 0.3 mL to 0.8 mL), liquid/lyophilized formulations, were explored. Polymer-based packed columns were explored for estimation for MSD by aqueous size exclusion chromatography, using combinations of- Shodex OHPAK SB 807 HQ, Shodex OHPAK SB 806 HQ, G6000 PWXL, coupled with guard Shodex OHPAK SB-G-6B. MenFive showed heterogenous distribution of molecules ranging from 200 to 19000 kDa, indicating its complex nature. However, 1000-8000 kDa was dominant range, comprising of ≥ 50 % distribution of molecules, in both liquid as well as lyophilized formulations, with average molecular weight around 6000-6500 kDa. The molar mass distribution after slicing would provide an insight to the conformation of molecules through its presentation as HMW, LMW, aggregates and subsequently, the presence of dominant population of molecules of a particular molecular weight and its total contribution in the sample.


Assuntos
Vacinas Meningocócicas , Vacinas Meningocócicas/química , Vacinas Conjugadas/química , Polissacarídeos , Cromatografia em Gel , Peso Molecular , Anticorpos Antibacterianos
4.
J Chromatogr A ; 1718: 464684, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350350

RESUMO

Adeno-associated virus (AAV) analytical characterization is crucial to the well-defined and reproducible production of human gene therapies utilizing the AAV vector modality. The establishment of analytical methods based upon technology platforms currently widely used by bio-therapeutic manufacturers, namely HPLC, will assist efforts to produce high quality AAV reproducibly and decrease chemical manufacturing and control challenges in method portability and reliability. AAV analysis by size exclusion chromatography (SEC) is currently practiced with columns and mobile phase conditions traditional to SEC of proteins. Here, an improved method to measure multiple AVV critical quality attributes (CQA) rapidly by SEC is explored. The use of short columns made with small particles at high flow rates resulted in up to 80 % reduction in analysis time and 66 % in sample consumption while maintaining reliable quantitation of AAV aggregate or high molecular weight (HMW) content. These results were demonstrated across four different AAV serotypes. Furthermore, critical AAV sample handling learnings are shared.


Assuntos
Dependovirus , Proteínas , Humanos , Dependovirus/genética , Dependovirus/metabolismo , Reprodutibilidade dos Testes , Proteínas/metabolismo , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Vetores Genéticos
5.
J Chromatogr A ; 1719: 464756, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38402695

RESUMO

The recent approval of messenger ribonucleic acid (mRNA) as vaccine to combat the COVID-19 pandemic has been a scientific turning point. Today, the applicability of mRNA is being demonstrated beyond infectious diseases, for example in cancer immunotherapy, protein replacement therapy and gene editing. mRNA is produced by in vitro transcription (IVT) from a linear DNA template and modified at the 3' and 5' ends to improve translational efficiency and stability. Co-existing impurities such as RNA fragments and double-stranded RNA (dsRNA), amongst others, can drastically impact mRNA quality and efficacy. In this study, size-exclusion chromatography (SEC) is evaluated for the characterization of IVT-mRNA. The effect of mobile phase composition (ionic strength and organic modifier), pH, column temperature and pore size (300 Å, 1000 Å, and 2000 Å) on the separation performance and structural integrity of IVT-mRNA varying in size is described. Non-replicating, self-amplifying (saRNA), temperature degraded, and ribonuclease (RNase) digested mRNA, the latter to characterize the 3' poly(A) tail, were included in the study. Beyond ultraviolet (UV) detection, refractive index (RI) and multi-angle light scattering (MALS) detection were implemented to accurately determine molecular weight (MW) of mRNA. Finally, mass photometry is introduced as a complementary methodology to study mRNA under native conditions.


Assuntos
Luz , Pandemias , Humanos , Espalhamento de Radiação , Fotometria , Cromatografia em Gel , Peso Molecular , RNA Mensageiro
6.
Cell Mol Life Sci ; 81(1): 90, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353833

RESUMO

Extracellular vesicles (EVs) are important players in melanoma progression, but their use as clinical biomarkers has been limited by the difficulty of profiling blood-derived EV proteins with high depth of coverage, the requirement for large input amounts, and complex protocols. Here, we provide a streamlined and reproducible experimental workflow to identify plasma- and serum- derived EV proteins of healthy donors and melanoma patients using minimal amounts of sample input. SEC-DIA-MS couples size-exclusion chromatography to EV concentration and deep-proteomic profiling using data-independent acquisition. From as little as 200 µL of plasma per patient in a cohort of three healthy donors and six melanoma patients, we identified and quantified 2896 EV-associated proteins, achieving a 3.5-fold increase in depth compared to previously published melanoma studies. To compare the EV-proteome to unenriched blood, we employed an automated workflow to deplete the 14 most abundant proteins from plasma and serum and thereby approximately doubled protein group identifications versus native blood. The EV proteome diverged from corresponding unenriched plasma and serum, and unlike the latter, separated healthy donor and melanoma patient samples. Furthermore, known melanoma markers, such as MCAM, TNC, and TGFBI, were upregulated in melanoma EVs but not in depleted melanoma plasma, highlighting the specific information contained in EVs. Overall, EVs were significantly enriched in intact membrane proteins and proteins related to SNARE protein interactions and T-cell biology. Taken together, we demonstrated the increased sensitivity of an EV-based proteomic workflow that can be easily applied to larger melanoma cohorts and other indications.


Assuntos
Vesículas Extracelulares , Melanoma , Humanos , Proteoma , Proteômica , Cromatografia em Gel
7.
Adv Biol (Weinh) ; 8(1): e2300233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670402

RESUMO

Extracellular vesicles (EVs) are highly sought after as a source of biomarkers for disease detection and monitoring. Tumor EV isolation, processing, and evaluation from biofluids is convoluted by EV heterogeneity and biological contaminants and is limited by technical processing efficacy. This study rigorously compares common bulk EV isolation workflows (size exclusion chromatography, SEC; membrane affinity, MA) alongside downstream RNA extraction protocols to investigate molecular analyte recovery. EV integrity and recovery is evaluated using a variety of technologies to quantify total intact EVs, total and surface proteins, and RNA purity and recovery. A comprehensive evaluation of each analyte is performed, with a specific emphasis on maintaining user (n = 2), biological (n = 3), and technical replicates (n≥3) under in vitro conditions. Subsequent study of tumor EV spike-in into healthy donor plasma samples is performed to further validate biofluid-derived EV purity and isolation for clinical application. Results show that EV surface integrity is considerably preserved in eluates from SEC-derived EVs, but RNA recovery and purity, as well as bulk protein isolation, is significantly improved in MA-isolated EVs. This study concludes that EV isolation and RNA extraction pipelines govern recovered analyte integrity, necessitating careful selection of processing modality to enhance recovery of the analyte of interest.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografia em Gel , RNA/análise , RNA/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo
8.
Adv Biol (Weinh) ; 8(2): e2300185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884455

RESUMO

This study compares the impact of two isolation methods, ultracentrifugation (UC) and size exclusion chromatography (SEC), on small extracellular vesicles (sEVs) from primary human cardiac mesenchymal-derived progenitor cells (CPCs). sEV_UC and sEV_SEC exhibit similar size, marker expression, and miRNA cargo, but sEV_UC contains notably higher total protein levels. In vitro assays show that sEV_UC, despite an equal particle count, induces more robust ERK phosphorylation, cytoprotection, and proliferation in iPS-derived cardiomyocytes (iPS-CMs) compared to sEV_SEC. sEV_UC also contains elevated periostin (POSTN) protein levels, resulting in enhanced focal adhesion kinase (FAK) phosphorylation in iPS-CMs. Importantly, this effect persists with treatment with soluble free-sEV protein fraction from SEC (Prote_SEC), indicating that free proteins like POSTN in sEV_UC enhance FAK phosphorylation. In vivo, sEV contamination with soluble proteins doesn't affect cardiac targeting or FAK phosphorylation, underscoring the intrinsic tissue targeting properties of sEV. These findings emphasize the need for standardized sEV isolation methods, as the choice of method can impact experimental outcomes, particularly in vitro.


Assuntos
Carcinoma , Neoplasias do Plexo Corióideo , Vesículas Extracelulares , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Cromatografia em Gel
9.
Small ; 20(18): e2307240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100284

RESUMO

Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.


Assuntos
Vesículas Extracelulares , Lipoproteínas , Maleatos , Poliestirenos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Maleatos/química , Humanos , Animais , Cromatografia em Gel , Camundongos , Macrófagos/metabolismo
10.
J Chromatogr A ; 1714: 464587, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38150795

RESUMO

More and more transformative gene therapies (GTx) are reaching commercialization stage and many of them use Adeno Associated Viruses (AAVs) as their vector. Being larger than therapeutic antibodies, their size variant analysis poses an analytical challenge that must be addressed to speed up the development processes. Size exclusion chromatography (SEC) can provide critical information on the quality and purity of the product, but its full potential is not yet utilized by currently applied columns that are (i) packed with relatively large particles, (ii) prepared exclusively in large formats and (iii) built using metal hardware that is prone to secondary interactions. In this paper, we investigate the use of state-of-the-art sub-3 µm particles to address existing limitations. A prototype 2.5 µm column was found to deliver superior kinetic efficiency, significant reduction in run times and increased resolution of separations. No evidence for shear or sample sieving effects were found during comparisons with conventional 5 µm columns. Moreover, use of low adsorption hardware enabled the application of a wide range of mobile phase conditions and a chance to apply a more robust platform method for several AAV serotypes. The resulting method was tested for its reproducibility as well as utility for critical quality attribute assays, including multiangle light scattering based (MALS) measurements of size and molar mass. Thus, a new tool for higher resolution, higher throughput size variant analysis of AAVs has been described.


Assuntos
Adsorção , Reprodutibilidade dos Testes , Tamanho da Partícula , Cromatografia em Gel , Cinética
11.
J Chromatogr A ; 1715: 464575, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38150875

RESUMO

Antibody-drug conjugates (ADCs) are designed by chemically linking highly potent cytotoxic small molecule drugs to monoclonal antibodies of unique specificity for targeted destruction of cancer cells. This innovative class of molecules incurs unique developmental challenges due to its structural complexity of having both small molecule and protein components. The stability of the small molecule payload on the ADC is a critical attribute as it directly relates to product efficacy and patient safety. This study describes the use of an end-to-end automated workflow for effective and robust characterization of the small molecule drug while it is conjugated to the antibody. In this approach, online deconjugation was accomplished by an autosampler user defined program and 1D size exclusion chromatography was utilized to provide separation between small molecule and protein species. The small molecule portion was then trapped and sent to the 2D for separation and quantification by reversed-phase liquid chromatography with identification of impurities and degradants by mass spectrometry. The feasibility of this system was demonstrated on an ADC with a disulfide-based linker. This fully automated approach avoids tedious sample preparation that may lead to sample loss and large assay variability. Under optimized conditions, the method was shown to have excellent specificity, sensitivity (LOD of 0.036 µg/mL and LOQ of 0.144 µg/mL), linearity (0.04-72.1 µg/mL), precision (system precision %RSD of 1.7 and method precision %RSD of 3.4), accuracy (97.4 % recovery), stability-indicating nature, and was successfully exploited to analyze the small molecule drug on a panel of stressed ADC samples. Overall, the workflow established here offers a powerful analytical tool for profiling the in-situ properties of small molecule drugs conjugated to antibodies and the obtained information could be of great significance for guiding process/formulation development and understanding pharmacokinetic/pharmacodynamic behavior of ADCs.


Assuntos
Antineoplásicos , Imunoconjugados , Humanos , Imunoconjugados/química , Anticorpos Monoclonais/química , Cromatografia de Fase Reversa/métodos , Cromatografia em Gel , Espectrometria de Massas
12.
STAR Protoc ; 4(4): 102740, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048217

RESUMO

Circulating extracellular vesicles (EVs) could serve for the surveillance of diverse pathological conditions. We present a protocol for enriching and isolating plasma EVs from mouse blood. We describe steps for employing ultracentrifugation, size-exclusion chromatography, and density gradients, required for further quantitative and qualitative analysis. We detail the procedure for retrieving optimal volume of blood while preserving its integrity and avoiding hemolysis. We also describe the preparation of EVs from this complex fluid containing soluble proteins, aggregates, and lipoprotein particles. For complete details on the use and execution of this protocol, please refer to André-Grégoire et al. (2022).1.


Assuntos
Vesículas Extracelulares , Animais , Camundongos , Ultracentrifugação/métodos , Vesículas Extracelulares/química , Cromatografia em Gel
13.
Sci Rep ; 13(1): 20071, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973964

RESUMO

Recently, there is a growing interest in the research based on extracellular vesicles (EVs) which represent paracrine factors secreted by almost all cell types. Both, normal and pathological cells are able to release various types of EVs with different physiological properties, functions and compositions. EVs play an important role in intercellular communication, mechanism and tissue repair. Moreover, EVs could help not only in the treatment of diseases but also in their diagnostics. This work focused on the evaluation of the potential of EVs being used as biomarkers for the diagnosis of osteoarthritis (OA) based on a comparison of the composition of EVs separated from platelet-poor plasma (PPP) of healthy donors and OA patients at different stages of OA. OA is established as a complex syndrome with extensive impact on multiple tissues within the synovial joint. It is a chronic disease of musculoskeletal system that mainly affects the elderly. Depending on the use of the Kellgren-Lawrence classification system, there are four grades of OA which have a negative impact on patients' quality of life. It is very difficult to detect OA in its early stages, so it is necessary to find a new diagnostic method for its timely detection. PPP samples were prepared from whole blood. PPP-EVs were separated from 3 groups of donors-healthy control, early stage OA, end-stage OA, and their content was compared and correlated. EVs from PPP were separated by size exclusion chromatography and characterized in terms of their size, yield and purity by NTA, western blotting, ELISA and flow cytometry. Detection of surface markers expression in EVs was performed using MACSPlex approach. Inflammatory and growth factors in EVs were analysed using MAGPix technology. Our study confirmed significant differences between EVs surface markers of patients and healthy controls correlating with the age of donor (CD63, CD31 and ROR1) and stage of OA (CD45, CD326 and CD56), respectively. Circulating EVs have been under extensive investigation for their capability to predict OA pathology diagnosis as potential targets for biomarker discovery. Taken together, obtained results indicated that PPP-EVs surface markers could be used as potential biomarkers in the early diagnosis of OA.


Assuntos
Vesículas Extracelulares , Osteoartrite , Idoso , Humanos , Biomarcadores/metabolismo , Cromatografia em Gel , Vesículas Extracelulares/metabolismo , Osteoartrite/patologia , Qualidade de Vida , Molécula de Adesão da Célula Epitelial/metabolismo
14.
Curr Protoc ; 3(10): e903, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37812199

RESUMO

Extracellular vesicles (EVs) are nanoparticles that are released by cells and participate in the transfer of information. It is now known that EVs from mammalian cells are involved in different physiological and pathophysiological processes (antigen presentation, tissue regeneration, cancer, inflammation, diabetes, etc.). In the past few years, several studies on plants have demonstrated that EVs are also key tools for plant intercellular and cross-kingdom communications, suggesting that these nanostructures may contribute to distinct aspects of plant physiology such as development, defense, reproduction, symbiotic relationships, etc. These findings are challenging the traditional view of signaling in plants. EVs are probably involved in the phloem's transport system, since this vascular tissue plays a crucial role in translocating nutrients, defensive compounds, and informational signals throughout the plant. The collection of phloem is experimentally challenging because sap is under high turgor pressure inside the sieve elements, which have a small diameter and are hidden within the plant organs. The goals of this work are to develop new protocols that allow us to detect EVs for the first time in the phloem of the plants, and to isolate these nanovesicles for in-depth analysis and characterization. Our protocols describe two distinct methods to collect the phloem sap from rice and melon. The first method (Basic Protocol 1) involves 'Aphid stylectomy by radiofrequency microcautery' using rice plants and the aphid Sitobion avenae. This is considered the least invasive method for collecting phloem sap. The second method, 'Stem incision', involves cutting the stem of melon plants for collecting the exuded sap. Phloem sap EVs are then isolated by size exclusion chromatography. The results obtained in this study represent the first report on typical EVs isolated from in vivo-collected phloem sap. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of EVs from phloem sap: Aphid stylectomy by radiofrequency microcautery Basic Protocol 2: Isolation of EVs from phloem sap: Stem incision method.


Assuntos
Afídeos , Vesículas Extracelulares , Oryza , Animais , Floema , Cromatografia em Gel , Apresentação de Antígeno , Mamíferos
15.
Analyst ; 148(22): 5745-5752, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37842723

RESUMO

Extracellular vesicles (EVs), as a type of subcellular structure, have been extensively researched for their potential for developing advanced diagnostic technologies for various diseases. However, the biomolecular and biophysical heterogeneity of EVs has restricted their application in clinical settings. In this article, we developed a size-exclusion chromatography-based technique for simultaneous EV size subtyping and protein profiling. By eluting fluorescent aptamer-treated patient plasma through a size-exclusion column, the mixture can be classified into 50 nm aptamer-bound EVs, 100 nm aptamer-bound EVs and free-floating aptamers, which could further enable multiplex EV membrane protein profiling by analyzing the fluorescence intensities of EV-bound aptamers. Using this technique, we successfully identified EV size subtypes for differentiating gastrointestinal cancer prognosis states. Overall, we developed a rapid, user-friendly and low-cost EV size subtyping and protein profiling technique, which holds great potential for identifying crucial EV size subtypes for disease diagnosis in the clinic.


Assuntos
Vesículas Extracelulares , Neoplasias Gastrointestinais , Humanos , Vesículas Extracelulares/química , Cromatografia em Gel , Prognóstico , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/metabolismo , Proteínas de Membrana/análise
16.
Microb Cell Fact ; 22(1): 176, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679768

RESUMO

BACKGROUND: Bioemulsifiers are natural or microbial-based products with the ability to emulsify hydrophobic compounds in water. These compounds are biodegradable, eco-friendly, and find applications in various industries. RESULTS: Thirteen yeasts were isolated from different sources in Alexandria, Egypt, and evaluated for their potential to produce intracellular bioemulsifiers. One yeast, isolated from a local market in Egypt, showed the highest emulsification index (EI24) value. Through 26S rRNA sequencing, this yeast was identified as Saccharomyces cerevisiae strain MYN04. The growth kinetics of the isolate were studied, and after 36 h of incubation, the highest yield of cell dry weight (CDW) was obtained at 3.17 g/L, with an EI24 of 55.6%. Experimental designs were used to investigate the effects of culture parameters on maximizing bioemulsifier SC04 production and CDW. The study achieved a maximum EI24 of 79.0 ± 2.0%. Furthermore, the crude bioemulsifier was precipitated with 50% ethanol and purified using Sephadex G-75 gel filtration chromatography. Bioemulsifier SC04 was found to consist of 27.1% carbohydrates and 72.9% proteins. Structural determination of purified bioemulsifier SC04 was carried out using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance spectroscopy (NMR). FTIR spectroscopy revealed characteristic bands associated with carboxyl and hydroxyl groups of carbohydrates, as well as amine groups of proteins. HPLC analysis of monosaccharide composition detected the presence of mannose, galactose, and glucose. Physicochemical characterization of the fraction after gel filtration indicated that bioemulsifier SC04 is a high molecular weight protein-oligosaccharide complex. This bioemulsifier demonstrated stability at different pH values, temperatures, and salinities. At a concentration of 0.5 mg/mL, it exhibited 51.8% scavenging of DPPH radicals. Furthermore, in vitro cytotoxicity evaluation using the MTT assay revealed a noncytotoxic effect of SC04 against normal epithelial kidney cell lines. CONCLUSIONS: This study presents a new eco-friendly bioemulsifier, named SC04, which exhibits significant emulsifying ability, antioxidant and anticancer properties, and stabilizing properties. These findings suggest that SC04 is a promising candidate for applications in the food, pharmaceutical, and industrial sectors.


Assuntos
Antioxidantes , Saccharomyces cerevisiae , Linhagem Celular , Cromatografia em Gel , Galactose
17.
Anal Biochem ; 680: 115311, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666384

RESUMO

Adeno-associated virus (AAV) is the leading platform for in vivo gene therapy to treat numerous genetic diseases. Comprehensive analysis of the AAV particles is essential to ensure desired safety and efficacy. An array of techniques is required to evaluate their critical quality attributes. However, many of these techniques are expensive, time-consuming, labour-intensive, and varying in accuracy. Size exclusion chromatography coupled with fluorescence and triple-wavelength ultraviolet detection (SEC-FLD-TWUV) and incorporating an aromatic amino acid of tryptophan as an internal standard offers a simple, rapid, and reliable approach for simultaneous multi-attribute analysis of AAVs. In the current study, we demonstrate its capability for AAV characterization and quantification, that includes capsid concentration, empty to full capsid ratio, vector genome concentration, and the presence of aggregates or fragments. All were performed in 20-min chromatographic runs with minimal sample handling. Data analysis involves the assessment of intrinsic fluorescence and UV absorbance of samples at three wavelengths that can be utilised to determine the content of the capsid protein and genome copy number. The separation efficiency using SEC columns with different pore sizes, and elution buffers of varying compositions, ionic strength, and pH values was also evaluated. This SEC-FLD-TWUV method may serve as a powerful yet cost-effective tool for responsive quality evaluation of AAVs. This may enhance performance, robustness, and safety of bioprocessing for AAV vectors to be used in gene therapy.


Assuntos
Proteínas do Capsídeo , Dependovirus , Dependovirus/genética , Cromatografia em Gel , Proteínas do Capsídeo/genética , Terapia Genética , Triptofano
18.
Actual. osteol ; 19(2): 128-143, sept. 2023. ilus, tab
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1523882

RESUMO

El presente trabajo muestra la obtención de un material a partir de un polímero sintético (TerP) y otro natural, mediante entrecruzamiento físico y su caracterización fisicoquímica y biológica, con el fin de emplearlos para regeneración de tejido óseo. Las membranas fueron obtenidas por la técnica de evaporación del solvente y caracterizadas por espectroscopia FTIR, ensayos de hinchamiento, medidas de ángulo de contacto y microscopia electrónica de barrido (SEM). Se encontró que la compatibilidad entre los polímeros que la constituyen es estable a pH fisiológico y que, al incorporar mayor cantidad del TerP a la matriz, esta se vuelve más hidrofóbica y porosa. Además, teniendo en cuenta la aplicación prevista para dichos materiales, se realizaron estudios de biocompatibilidad y citotoxicidad con células progenitoras de médula ósea (CPMO) y células RAW264.7, respectivamente. Se evaluó la proliferación celular, la producción y liberación de óxido nítrico (NO) al medio de cultivo durante 24 y 48 horas y la expresión de citoquinas proinflamatorias IL-1ß y TNF-α de las células crecidas sobre los biomateriales variando la cantidad del polímero sintético. Se encontró mayor proliferación celular y menor producción de NO sobre las matrices que contienen menos proporción del TerP, además de poseer una mejor biocompatibilidad. Los resultados de este estudio muestran que el terpolímero obtenido y su combinación con un polímero natural es una estrategia muy interesante para obtener un biomaterial con posibles aplicaciones en medicina regenerativa y que podría extenderse a otros sistemas estructuralmente relacionados. (AU)


In the present work, the preparation of a biomaterial from a synthetic terpolymer (TerP) and a natural polymer, physically crosslinked, is shown. In order to evaluate the new material for bone tissue regeneration, physicochemical and biological characterizations were performed. The membranes were obtained by solvent casting and characterized using FTIR spectroscopy, swelling tests, contact angle measurements, and scanning electron microscopy (SEM). It was found that the compatibility between the polymers is stable at physiological pH and the incorporation of a higher amount of TerP into the matrix increases hydrophobicity and porosity.Furthermore, considering the intended application of these materials, studies of biocompatibility and cytotoxicity were conducted with Bone Marrow Progenitor Cells (BMPCs) and RAW264.7 cells, respectively. Cell proliferation, NO production and release into the culture medium for 24 and 48 hours, and proinflammatory cytokine expression of IL-1ß and TNF-α from cells grown on the biomaterials while varying the amount of the synthetic polymer were evaluated. Greater cell proliferation and lower NO production were found on matrices containing a lower proportion of TerP, in addition to better biocompatibility. The results of this study demonstrate that the obtained terpolymer and its combination with a natural polymer is a highly interesting strategy for biomaterial preparation with potential applications in regenerative medicine. This approach could be extended to other structurally related systems. (AU)


Assuntos
Animais , Ratos , Osteogênese , Polímeros/química , Materiais Biocompatíveis/síntese química , Osso e Ossos/química , Regeneração Óssea , Quitosana/química , Polímeros/toxicidade , Materiais Biocompatíveis/toxicidade , Teste de Materiais , Diferenciação Celular , Cromatografia em Gel , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas de Cultura de Células , Ressonância Magnética Nuclear Biomolecular , Quitosana/toxicidade
19.
Electrophoresis ; 44(24): 1934-1942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37599280

RESUMO

Preferential exclusion chromatography (PXC) sometimes described as hydrophobic interaction chromatography is a well-known, but not widely used technique for purification of Adeno-associated viruses. It employs high molarity of preferentially excluded cosolvent (salt in our case). The downside of this method is that high molarity of salt can lead to aggregation and precipitation of different compounds from the sample. In the case of viruses that are excreted to medium, the concentration of impurities is much lower compared to cell lysates, and PXC can be used as a first chromatographic, serotype independent step to concentrate and purify adeno-associated virus (AAV). Here, we explored PXC for adherent and suspension harvests using monolithic chromatographic columns (CIMmultus). Suspension extracellular adeno-associated virus, serotype 9 (AAV9) harvest had more impurities compared to adherent harvest, therefore it required higher input regarding method development. Final conditions for suspension harvest included higher molarity of binding salt and using more open channel format of chromatographic column (6 µm channel size). Vector genome analysis with droplet digital polymerase chain reaction (ddPCR) revealed 84% and 97% recovery for suspension and adherent AAV9 harvest, respectively. After PXC capture step, adherent AAV9 was purified by already described ion exchange techniques. Overall process vector genome recovery, from clarified harvest to anion exchange elution fraction, was 54% measured by ddPCR. Residual host cell DNA was measured at 40 ng per 1E13 vector genome, and empty AAV was below 5% in final anion exchange chromatography fraction.


Assuntos
Dependovirus , Vetores Genéticos , Cromatografia por Troca Iônica/métodos , Dependovirus/genética , Cromatografia em Gel , Ânions
20.
Methods Mol Biol ; 2699: 349-368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647006

RESUMO

The preparation of purified soluble proteins for biochemical studies is essential and the solubility of a protein of interest in various media is central to this process. Selectively altering the solubility of a protein is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of a polypeptide. Precipitation of proteins, released from cells upon lysis, is often used to concentrate a protein of interest before further purification steps (e.g., ion exchange chromatography, size exclusion chromatography etc).Recombinant proteins may be expressed in host cells as insoluble inclusion bodies due to various influences during overexpression. Such inclusion bodies can often be solubilized to be reconstituted as functional, correctly folded proteins.In this chapter, we examine strategies for extraction/precipitation/solubilization of proteins for protein purification. We also present bioinformatic tools to aid in understanding a protein's propensity to aggregate/solubilize that will be a useful starting point for the development of protein extraction, precipitation, and selective re-solubilization procedures.


Assuntos
Biologia Computacional , Morte Celular , Cromatografia de Afinidade , Cromatografia em Gel , Cromatografia por Troca Iônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA