Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.143
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Anal Biochem ; 630: 114324, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363787

RESUMO

The effect of DNA topology on transfection efficiency of mammalian cells has been widely tested on plasmids smaller than 10 kb, but little is known for larger DNA vectors carrying intact genomic DNA containing introns, exons, and regulatory regions. Here, we demonstrate that circular BACs transfect more efficiently than covalently closed linear BACs. We found up to 3.1- and 8.9- fold higher eGFP expression from circular 11 kb and 100 kb BACs, respectively, compared to linear BACs. These findings provide insights for improved vector development for gene delivery and expression studies of large intact transgenes in mammalian cells.


Assuntos
Cromossomos Artificiais Bacterianos/genética , DNA/genética , Linhagem Celular Tumoral , Vetores Genéticos/genética , Humanos , Imagem Óptica , Plasmídeos , Transfecção
2.
Sci Rep ; 11(1): 16706, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408176

RESUMO

Although a canine adenovirus (CAdV)-based oncolytic virus (OV) candidate targeting canine tumors has been reported, its oncolytic effect could be attenuated by CAdV vaccine-induced neutralizing antibodies in dog patients. To circumvent this issue, we focused on the bat adenovirus (BtAdV) strain, which was previously isolated from healthy microbats. We previously showed that this virus replicated efficiently in canine cell lines and did not serologically cross-react with CAdVs, suggesting that it may offer the possibility of an OV candidate for canine tumors. Here, we tested the growth properties and cytotoxicity of the BtAdV Mm32 strain in a panel of canine tumor cells and found that its characteristics were equivalent to those of CAdVs. To produce an Mm32 construct with enhanced tumor specificity, we established a novel reverse genetics system for BtAdV based on bacterial artificial chromosomes, and generated a recombinant virus, Mm32-E1Ap + cTERTp, by inserting a tumor-specific canine telomerase reverse transcriptase promoter into its E1A regulatory region. The growth and cytotoxicity of this recombinant were superior to those of wild-type Mm32 in canine tumor cells, unlike in normal canine cells. These data suggest that Mm32-E1Ap + cTERTp could be a promising OV for alternative canine cancer therapies.


Assuntos
Quirópteros/virologia , Doenças do Cão/terapia , Mastadenovirus , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular Tumoral , Cromossomos Artificiais Bacterianos/genética , Cães , Células Madin Darby de Rim Canino , Mastadenovirus/genética , Mastadenovirus/metabolismo , Neoplasias/terapia , Neoplasias/veterinária , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo
3.
STAR Protoc ; 2(3): 100631, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34258592

RESUMO

Chromosomal instability (CIN), a type of genomic instability, favors changes in chromosome number and structure and it is associated with the progression and initiation of multiple diseases, including cancer. Therefore, CIN identification and analysis represents a useful tool for cancer diagnosis and treatment. Here, we report an optimized molecular cytogenetic protocol to detect CIN in formalin-fixed, paraffin-embedded mouse and human tissues, using fluorescent in situ hybridization to visualize and quantify chromosomal alterations such as amplifications, deletions, and translocations. For complete information on the generation and use of this protocol, please refer to Brandt et al. (2018).


Assuntos
Instabilidade Cromossômica , Hibridização in Situ Fluorescente/métodos , Interfase , Animais , Cromossomos Artificiais Bacterianos , DNA/genética , Eletroforese em Gel de Ágar , Camundongos , Inclusão em Parafina
4.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155099

RESUMO

Multiple independent sequence variants of the hTERT locus have been associated with telomere length and cancer risks in genome-wide association studies. Here, we identified an intronic variable number tandem repeat, VNTR2-1, as an enhancer-like element, which activated hTERT transcription in a cell in a chromatin-dependent manner. VNTR2-1, consisting of 42-bp repeats with an array of enhancer boxes, cooperated with the proximal promoter in the regulation of hTERT transcription by basic helix-loop-helix transcription factors and maintained hTERT expression during embryonic stem-cell differentiation. Genomic deletion of VNTR2-1 in MelJuSo melanoma cells markedly reduced hTERT transcription, leading to telomere shortening, cellular senescence, and impairment of xenograft tumor growth. Interestingly, VNTR2-1 lengths varied widely in human populations; hTERT alleles with shorter VNTR2-1 were underrepresented in African American centenarians, indicating its role in human aging. Therefore, this polymorphic element is likely a missing link in the telomerase regulatory network and a molecular basis for genetic diversities of telomere homeostasis and age-related disease susceptibilities.


Assuntos
Repetições Minissatélites/genética , Polimorfismo Genético , Telomerase/genética , Ativação Transcricional , Negro ou Afro-Americano/genética , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Cromossomos Artificiais Bacterianos/genética , Elementos E-Box/genética , Genoma Humano , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Regiões Promotoras Genéticas , Ligação Proteica/genética , Deleção de Sequência/genética , Homeostase do Telômero/genética
5.
Animal Model Exp Med ; 4(2): 116-128, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34179719

RESUMO

Background: Human leukocyte antigen (HLA)-DP is much less studied than other HLA class II antigens, that is, HLA-DR and HLA-DQ, etc. However, the accumulating data have suggested the important roles of DP-restricted responses in the context of cancer, allergy, and infectious disease. Lack of animal models expressing these genes as authentic cis-haplotypes blocks our understanding for the role of HLA-DP haplotypes in immunity. Methods: To explore the potential cis-acting control elements involved in the transcriptional regulation of the HLA-DPA1/DPB1 gene, we performed the expression analysis using bacterial artificial chromosome (BAC)-based transgenic humanized mice in the C57BL/6 background, which carried the entire HLA-DP401 gene locus. We further developed a mouse model of Staphylococcus aureus pneumonia in HLA-DP401 humanized transgenic mice, and performed the analysis on the expression pattern of HLA-DP401 and immunological responses in the model. Results: In this study, we screened and identified a BAC clone spanning the entire HLA-DP gene locus. DNA from this clone was analyzed for integrity by pulsed-field gel electrophoresis and then microinjected into fertilized mouse oocytes to produce transgenic founder animals. Nine sets of PCR primers for regional markers with an average distance of 15 kb between each primer were used to confirm the integrity of the transgene in the five transgenic lines carrying the HLA-DPA1/DPB1 gene. Transgene copy numbers were determined by real-time PCR analysis. HLA-DP401 gene expression was analyzed at the mRNA and protein level. Although infection with S aureus Newman did not alter the percentage of immune cells in the spleen and thymus from the HLA-DP401-H2-Aß1 humanized mice. Increased expression of HLA-DP401 was observed in the thymus of the humanized mice infected by S aureus. Conclusions: We generated several BAC transgenic mice, and analyzed the expression of HLA-DPA1/DPB1 in those mice. A model of Saureus-induced pneumonia in the HLA-DP401-H2-Aß1-/- humanized mice was further developed, and S aureus infection upregulated the HLA-DP401 expression in thymus of those humanized mice. These findings demonstrate the potential of those HLA-DPA1/DPB1 transgenic humanized mice for developing animal models of infectious diseases and MHC-associated immunological diseases.


Assuntos
Antígenos HLA-DP , Antígenos HLA-DQ , Animais , Cromossomos Artificiais Bacterianos/genética , Antígenos HLA-DP/genética , Antígenos HLA-DQ/genética , Haplótipos , Camundongos , Camundongos Endogâmicos C57BL
6.
Cancer Sci ; 112(8): 3293-3301, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34036669

RESUMO

Oncolytic virus therapy has emerged as a promising treatment option against cancer. To date, oncolytic viruses have been developed for malignant tumors, but the need for this new therapeutic modality also exists for benign and slow-growing tumors. G47∆ is an oncolytic herpes simplex virus type 1 (HSV-1) with an enhanced replication capability highly selective to tumor cells due to genetically engineered, triple mutations in the γ34.5, ICP6 and α47 genes. To create a powerful, but safe oncolytic HSV-1 that replicates efficiently in tumors regardless of growth speed, we used a bacterial artificial chromosome system that allows a desired promoter to regulate the expression of the ICP6 gene in the G47∆ backbone. Restoration of the ICP6 function in a tumor-specific manner using the hTERT promoter led to a highly capable oncolytic HSV-1. T-hTERT was more efficacious in the slow-growing OS-RC-2 and DU145 tumors than the control viruses, while retaining a high efficacy in the fast-growing U87MG tumors. The safety features are also retained, as T-hTERT proved safe when inoculated into the brain of HSV-1 sensitive A/J mice. This new technology should facilitate the use of oncolytic HSV-1 for all tumors irrespective of growth speed.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Telomerase/genética , Proteínas Virais/genética , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/genética , Feminino , Glioblastoma/genética , Humanos , Camundongos , Mutação , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Regiões Promotoras Genéticas , Células Vero , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Vis Exp ; (169)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749670

RESUMO

The genome is associated with several structures inside cell nuclei, in order to regulate its activity and anchor it in specific locations. These structures are collectively known as the nucleoskeleton and include the nuclear lamina, the nucleoli, and nuclear bodies. Although many variants of fluorescence in situ hybridization (FISH) exist to study the genome and its organization, these are often limited by resolution and provide insufficient information on the genome's association with nuclear structures. The DNA halo method uses high salt concentrations and nonionic detergents to generate DNA loops that remain anchored to structures within nuclei through attachment regions within the genome. Here, soluble nuclear proteins, such as histones, lipids, and DNA not tightly bound to the nuclear matrix, are extracted. This leads to the formation of a halo of unattached DNA surrounding a residual nucleus which itself contains DNA closely associated with internal nuclear structures and extraction-resistant proteins. These extended DNA strands enable increased resolution and can facilitate physical mapping. In combination with FISH, this method has the added advantage of studying genomic interactions with all the structures that the genome is anchored by. This technique, termed HALO-FISH, is highly versatile whereby DNA halos can be coupled with nucleic acid probes to reveal gene loci, whole chromosomes, alpha satellite, telomeres and even RNA. This technique provides an insight into nuclear organization and function in normal cells and in disease progression such as with cancer.


Assuntos
Cromossomos/metabolismo , DNA/metabolismo , Loci Gênicos , Hibridização in Situ Fluorescente , Telômero/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Cromossomos Artificiais Bacterianos/metabolismo , Derme/citologia , Fibroblastos/metabolismo , Humanos , Processamento de Imagem Assistida por Computador
8.
Methods Mol Biol ; 2244: 213-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33555589

RESUMO

Human cytomegalovirus (HCMV) is a large double-stranded DNA virus and member of the ß-herpesvirus family. HCMV is ubiquitous in the human population and causes lifelong infections. HCMV infection is associated with high morbidity and mortality in immunocompromised individuals and the virus is a major cause of virus-mediated congenital disease. There have been a number of HCMV entry receptors identified that use one of two viral receptor binding complexes, including the gH/gL/gO complex and the pentamer made up of gH/gL/UL128/UL130/UL131a. Cytomegaloviruses (CMVs) are typically host-restricted requiring the use of species-specific modeling and culture conditions. We use rat CMV (RCMV) to study CMV-accelerated vascular disease and chronic allograft rejection. RCMV encodes homologous versions of the entry complex proteins but their incorporation and copy number per virion are still unknown. In this methods article, we describe a novel approach of HiBiT tagging viral proteins in order to detect and quantify protein incorporation into particles. This method is independent of protein-specific antibodies and can be standardized using a commercially available HiBiT protein standard. Using bacterial artificial chromosome (BAC) recombineering, we have constructed two individual viruses containing a HiBiT tag fused to the C'-terminus of either the UL128 homolog (R129) or the UL130 homolog (R131). Viruses containing these mutations were rescued, purified and analyzed. Our data demonstrate that R129 and R131 are both incorporated into RCMV virions at equimolar ratios relative to genome copy number, supporting this antibody-free approach for quantifying viral protein incorporation and its application toward the identification of domains required for incorporation.


Assuntos
Medições Luminescentes/métodos , Proteínas Luminescentes/síntese química , Animais , Cromossomos Artificiais Bacterianos/genética , Citomegalovirus/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/genética , Ligação Proteica , Ratos , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Vírion/metabolismo , Internalização do Vírus
9.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33433312

RESUMO

Epstein-Barr virus (EBV) establishes lifelong latent infection in the majority of healthy individuals, while it is a causative agent for various diseases, including some malignancies. Recent high-throughput sequencing results indicate that there are substantial levels of viral genome heterogeneity among different EBV strains. However, the extent of EBV strain variation among asymptomatically infected individuals remains elusive. Here, we present a streamlined experimental strategy to clone and sequence EBV genomes derived from human tonsillar tissues, which are the reservoirs of asymptomatic EBV infection. Complete EBV genome sequences, including those of repetitive regions, were determined for seven tonsil-derived EBV strains. Phylogenetic analyses based on the whole viral genome sequences of worldwide non-tumour-derived EBV strains revealed that Asian EBV strains could be divided into several distinct subgroups. EBV strains derived from nasopharyngeal carcinoma-endemic areas constitute different subgroups from a subgroup of EBV strains from non-endemic areas, including Japan. The results could be consistent with biased regional distribution of EBV-associated diseases depending on the different EBV strains colonizing different regions in Asian countries.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Genoma Viral , Herpesvirus Humano 4/genética , Linfócitos/virologia , Tonsila Palatina/virologia , Infecções Assintomáticas , Linhagem Celular , Cromossomos Artificiais Bacterianos , Clonagem Molecular , DNA Viral/genética , Genes Virais , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão , Filogenia , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/genética , Latência Viral/genética , Sequenciamento Completo do Genoma
10.
Genesis ; 59(3): e23409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484096

RESUMO

Mutations in the osteopetrotic transmembrane protein 1 (Ostm1) gene are responsible for the most severe form of autosomal recessive osteopetrosis both in humans and in the gray lethal (gl/gl) mouse. This defect leads to increased bone mass with bone marrow occlusion and hematopoietic defects. To establish the expression profile of the mouse Ostm1 protein in vivo, homologous recombination in bacteria was designed to generate a V5-Ostm1 bacterial artificial chromosome (BAC) that was subsequently integrated in the mouse genome. Tissue expression of the transgene V5-Ostm1 RNA and protein in transgenic mice follow the endogenous expression profile. Immunohistochemistry analysis demonstrated expression in neuronal populations from central and peripheral nervous system and defined a unique cellular expression pattern. Importantly, together with appropriate protein post-translational modification, in vivo rescue of the osteopetrotic bone gl/gl phenotype in BAC V5-Ostm1 gl/gl mice is consistent with the expression of a fully functional and active protein. These mice represent a unique tool to unravel novel Ostm1 functions in individual tissue and neuronal cell populations and the V5-Ostm1 transgene represents an easy visual marker to monitor the expression of Ostm1 in vitro and in vivo.


Assuntos
Cromossomos Artificiais Bacterianos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Histol Histopathol ; 36(1): 77-89, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112410

RESUMO

Programmed death-ligand 1 (PD-L1) is an inhibitory transmembrane protein that can prevent autoimmune response. Upregulated PD-L1 serves as a predictive biomarker for patients who may respond well to immune checkpoint therapies. However, variable associations of PD-L1 level with prognoses have been reported. In this study, a short peptide sequence corresponding to PD-L1 amino acids 172-187 (from the extracellular Ig-like C-type domain, and with high predicted antigenicity and hydrophilicity) was used to generate a monoclonal antibody (mAb). The resultant PD-L1 mAb, clone HC16, was examined for binding specificity and reactivity in cancer cell-lines, as assessed by immunocytochemical, immunoblotting, and co-immunoprecipitation. The potential diagnostic and clinical applicability of clone HC16 was further tested using malignant tissue arrays derived from various cancer types analyzed with an automated immunohistochemical (IHC) staining platform. Additionally, tumor samples from patients diagnosed with non-small cell lung cancer (NSCLC) were analyzed by western blotting. Clone HC16 showed obvious staining activity in lung and breast cancer tissues. Interestingly, we observed that PD-L1 level was negatively associated with clinical stage in NSCLC. Strong PD-L1 expression tended to be found in patients diagnosed with bronchioloalveolar carcinoma (BAC). These results demonstrate that clone HC16 harbors good target specificity and is suitable for further development in diagnostic tools to assess PD-L1 expression in human tissues. In addition, our findings also suggest a role for PD-L1 in a non-invasive subtype of lung cancer.


Assuntos
Anticorpos Monoclonais/química , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Regulação para Cima , Células A549 , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cromossomos Artificiais Bacterianos , Epitopos/química , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Peptídeos/química , Reprodutibilidade dos Testes
13.
Plant J ; 105(3): 721-735, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33145857

RESUMO

The prevalence and recurrence of whole-genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy. In this study, through screening BAC libraries and sequencing and annotating the targeted BAC clones, we generated orthologous genomic sequences surrounding the DEP1 locus, a major grain yield QTL in cultivated rice, from four Oryza polyploids of various ages and their likely diploid genome donors or close relatives. Based on sequenced DEP1 region and published data from three other genomic regions, we investigated the temporal evolutionary dynamics of four polyploid genomes at both genetic and expression levels. In the recently formed BBCC polyploid, Oryza minuta, genome dominance was not observed and its short-term responses to allopolyploidy are mainly manifested as a high proportion of homoeologous gene pairs showing unequal expression. This could partly be explained by parental legacy, rewiring of divergent regulatory networks and epigenetic modulation. Moreover, we detected an ongoing diploidization process in this genus, and suggest that the expression divergence driven by changes of selective constraint probably plays a big role in the long-term diploidization. These findings add novel insights into our understanding of genome evolution after allopolyploidy, and could facilitate crop improvements through hybridization and polyploidization.


Assuntos
Genoma de Planta , Oryza/genética , Poliploidia , Cromossomos Artificiais Bacterianos , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Anotação de Sequência Molecular
14.
Antiviral Res ; 185: 104974, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217430

RESUMO

Vaccines and antiviral agents are in urgent need to stop the COVID-19 pandemic. To facilitate antiviral screening against SARS-CoV-2 without requirement for high biosafety level facility, we developed a bacterial artificial chromosome (BAC)-vectored replicon of SARS-CoV-2, nCoV-SH01 strain, in which secreted Gaussia luciferase (sGluc) was encoded in viral subgenomic mRNA as a reporter gene. The replicon was devoid of structural genes spike (S), membrane (M), and envelope (E). Upon transfection, the replicon RNA replicated in various cell lines, and was sensitive to interferon alpha (IFN-α), remdesivir, but was resistant to hepatitis C virus inhibitors daclatasvir and sofosbuvir. Replication of the replicon was also sensitive overexpression to zinc-finger antiviral protein (ZAP). We also constructed a four-plasmid in-vitro ligation system that is compatible with the BAC system, which makes it easy to introduce desired mutations into the assembly plasmids for in-vitro ligation. This replicon system would be helpful for performing antiviral screening and dissecting virus-host interactions.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , Cromossomos Artificiais Bacterianos , Replicon/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Interferon-alfa/farmacologia , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Sofosbuvir/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
15.
Genes (Basel) ; 11(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322080

RESUMO

Old World lupins constitute an interesting model for evolutionary research due to diversity in genome size and chromosome number, indicating evolutionary genome reorganization. It has been hypothesized that the polyploidization event which occurred in the common ancestor of the Fabaceae family was followed by a lineage-specific whole genome triplication (WGT) in the lupin clade, driving chromosome rearrangements. In this study, chromosome-specific markers were used as probes for heterologous fluorescence in situ hybridization (FISH) to identify and characterize structural chromosome changes among the smooth-seeded (Lupinus angustifolius L., Lupinus cryptanthus Shuttlew., Lupinus micranthus Guss.) and rough-seeded (Lupinus cosentinii Guss. and Lupinus pilosus Murr.) lupin species. Comparative cytogenetic mapping was done using FISH with oligonucleotide probes and previously published chromosome-specific bacterial artificial chromosome (BAC) clones. Oligonucleotide probes were designed to cover both arms of chromosome Lang06 of the L. angustifolius reference genome separately. The chromosome was chosen for the in-depth study due to observed structural variability among wild lupin species revealed by BAC-FISH and supplemented by in silico mapping of recently released lupin genome assemblies. The results highlighted changes in synteny within the Lang06 region between the lupin species, including putative translocations, inversions, and/or non-allelic homologous recombination, which would have accompanied the evolution and speciation.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genoma de Planta , Lupinus/genética , Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente
16.
Poult Sci ; 99(12): 6647-6652, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248580

RESUMO

To determine the role of glycoprotein I (gI) in duck plague virus (DPV), a gI-deleted mutant (BAC-CHv-ΔgI) and a gI-revertant virus (BAC-CHv-ΔgI Rev) were constructed by using a markerless two-step Red recombination system implemented on the DPV genome cloned into a bacterial artificial chromosome (BAC). Mutants were characterized on duck embryo fibroblast (DEF) cells compared with wild-type virus. BAC-CHv-ΔgI produced viral plaques on DEF cells that were on average approximately 57.2% smaller than those produced by BAC-CHv-ΔgI Rev and wild-type virus. Electron microscopy confirmed that deleting of gI resulted in nucleocapsids accumulated around the cytoplasm vesicles and few of them could complete the final envelopment process. These results clearly indicated that DPV gI plays significant roles in viral cell-cell spread and viral final envelopment process.


Assuntos
Patos , Glicoproteínas , Mardivirus , Doença de Marek , Animais , Células Cultivadas , Cromossomos Artificiais Bacterianos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Mardivirus/genética , Mardivirus/patogenicidade , Doença de Marek/transmissão , Doença de Marek/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
17.
Viruses ; 12(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708703

RESUMO

Canine adenoviruses (CAdVs) are divided into pathotypes CAdV1 and CAdV2, which cause infectious hepatitis and laryngotracheitis in canid animals, respectively. They can be the backbones of viral vectors that could be applied in recombinant vaccines or for gene transfer in dogs and in serologically naïve humans. Although conventional plasmid-based reverse genetics systems can be used to construct CAdV vectors, their large genome size creates technical difficulties in gene cloning and manipulation. In this study, we established an improved reverse genetics system for CAdVs using bacterial artificial chromosomes (BACs), in which genetic modifications can be efficiently and simply made through BAC recombineering. To validate the utility of this system, we used it to generate CAdV2 with the early region 1 gene deleted. This mutant was robustly generated and attenuated in cell culture. The results suggest that our established BAC-based reverse genetics system for CAdVs would be a useful and powerful tool for basic and advanced practical studies with these viruses.


Assuntos
Adenovirus Caninos/genética , Cromossomos Artificiais Bacterianos/genética , Genética Reversa/métodos , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Animais , Clonagem Molecular , Cães , Genoma Viral/genética , Hepatite Infecciosa Canina/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Células Madin Darby de Rim Canino/virologia
18.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G175-G188, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32538140

RESUMO

Gastrokines (GKNs) are anti-inflammatory proteins secreted by gastric epithelial (surface mucous and pit) cells, with their aberrant loss of expression causally linked to premalignant inflammation and gastric cancer (GC). Transcriptional mechanisms accounting for GKN expression loss have not been elucidated. Using human clinical cohorts, mouse transgenics, bioinformatics, and transfection/reporter assays, we report a novel mechanism of GKN gene transcriptional regulation and its impairment in GC. GKN1/GKN2 loss is highly coordinated, with both genes showing parallel downregulation during human and mouse GC development, suggesting joint transcriptional control. In BAC transgenic studies, we defined a 152-kb genomic region surrounding the human GKN1/GKN2 genes sufficient to direct their tissue- and lineage-restricted expression. A screen of the 152-kb region for candidate regulatory elements identified a DNase I hypersensitive site (CR2) located 4 kb upstream of the GKN1 gene. CR2 showed overlapping enrichment of enhancer-related histone marks (H3K27Ac), a consensus binding site (GRE) for the glucocorticoid receptor (GR), strong GR occupancy in ChIP-seq data sets and, critically, exhibited dexamethasone-sensitive enhancer activity in reporter assays. Strikingly, GR showed progressive expression loss, paralleling that of GKN1/2, in human and mouse GC, suggesting desensitized glucocorticoid signaling as a mechanism underlying GKN loss. Finally, mouse adrenalectomy studies revealed a critical role for endogenous glucocorticoids in sustaining correct expression (and anti-inflammatory restraint) of GKNs in vivo. Together, these data link the coordinate expression of GKNs to a glucocorticoid-responsive and likely shared transcriptional enhancer mechanism, with its compromised activation contributing to dual GKN loss during GC progression.NEW & NOTEWORTHY Gastrokine 2 (GKN2) is an anti-inflammatory protein produced by the gastric epithelium. GKN2 expression is progressively lost during gastric cancer (GC), which is believed to play a casual role in GC development. Here, we use bacterial artificial chromosome transgenic studies to identify a glucocorticoid-responsive enhancer element that likely governs expression of GKN1/GKN2, which, via parallel expression loss of the anti-inflammatory glucocorticoid receptor, reveals a novel mechanism to explain the loss of GKN2 during GC pathogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Glucocorticoides/farmacologia , Hormônios Peptídicos/metabolismo , Neoplasias Gástricas/metabolismo , Células A549 , Animais , Proteínas de Transporte/genética , Cromossomos Artificiais Bacterianos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Família Multigênica , Hormônios Peptídicos/genética
19.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321807

RESUMO

It is widely held that clinical isolates of human cytomegalovirus (HCMV) are highly cell associated, and mutations affecting the UL128-131 and RL13 loci that arise in culture lead to the appearance of a cell-free spread phenotype. The bacterial artificial chromosome (BAC) clone Merlin (ME) expresses abundant UL128-131, is RL13 impaired, and produces low infectivity virions in fibroblasts, whereas TB40/e (TB) and TR are low in UL128-131, are RL13 intact, and produce virions of much higher infectivity. Despite these differences, quantification of spread by flow cytometry revealed remarkably similar spread efficiencies in fibroblasts. In epithelial cells, ME spread more efficiently, consistent with robust UL128-131 expression. Strikingly, ME spread far better than did TB or TR in the presence of neutralizing antibodies on both cell types, indicating that ME is not simply deficient at cell-free spread but is particularly efficient at cell-to-cell spread, whereas TB and TR cell-to-cell spread is poor. Sonically disrupted ME-infected cells contained scant infectivity, suggesting that the efficient cell-to-cell spread mechanism of ME depends on features of the intact cells such as junctions or intracellular trafficking processes. Even when UL128-131 was transcriptionally repressed, cell-to-cell spread of ME was still more efficient than that of TB or TR. Moreover, RL13 expression comparably reduced both cell-free and cell-to-cell spread of all three strains, suggesting that it acts at a stage of assembly and/or egress common to both routes of spread. Thus, HCMV strains can be highly specialized for either for cell-free or cell-to-cell spread, and these phenotypes are determined by factors beyond the UL128-131 or RL13 loci.IMPORTANCE Both cell-free and cell-to-cell spread are likely important for the natural biology of HCMV. In culture, strains clearly differ in their capacity for cell-free spread as a result of differences in the quantity and infectivity of extracellular released progeny. However, it has been unclear whether "cell-associated" phenotypes are simply the result of poor cell-free spread or are indicative of particularly efficient cell-to-cell spread mechanisms. By measuring the kinetics of spread at early time points, we were able to show that HCMV strains can be highly specialized to either cell-free or cell-to-cell mechanisms, and this was not strictly linked the efficiency of cell-free spread. Our results provide a conceptual approach to evaluating intervention strategies for their ability to limit cell-free or cell-to-cell spread as independent processes.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas do Envelope Viral/genética , Replicação Viral/genética , Linhagem Celular , Células Cultivadas , Cromossomos Artificiais Bacterianos , Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Células Epiteliais/virologia , Fibroblastos/virologia , Citometria de Fluxo/métodos , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Replicação Viral/fisiologia
20.
Genes (Basel) ; 11(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244767

RESUMO

The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.


Assuntos
Cromossomos Humanos Par 13/genética , Evolução Molecular , Rearranjo Gênico , Mamíferos/genética , Neoplasias/genética , Neoplasias/patologia , Sintenia , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA