Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Res Notes ; 16(1): 197, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679799

RESUMO

OBJECTIVES: Investigating protein-DNA interactions is imperative to understanding fundamental concepts such as cell growth, differentiation, and cell development in many systems. Sequencing techniques such as ChIP-seq can yield genome-wide DNA binding profiles of transcription factors; however this assay can be expensive, time-consuming, may not be informative for repetitive regions of the genome, and depend heavily upon antibody suitability. Combining DNA fluorescence in situ hybridization (FISH) with immunofluorescence (IF) is a quicker and inexpensive approach which has historically been used to investigate protein-DNA interactions in individual nuclei. However, these assays are sometimes incompatible due to the required denaturation step in DNA FISH that can alter protein epitopes, hindering primary antibody binding. Additionally, combining DNA FISH with IF may be challenging for less experienced trainees. Our goal was to develop an alternative technique to investigate protein-DNA interactions by combining RNA FISH with IF. RESULTS: We developed a hybrid RNA FISH-IF protocol for use on Drosophila melanogaster polytene chromosome spreads in order to visualize colocalization of proteins and DNA loci. We demonstrate that this assay is sensitive enough to determine if our protein of interest, Multi sex combs (Mxc), localizes to single-copy target transgenes carrying histone genes. Overall, this study provides an alternative, accessible method for investigating protein-DNA interactions at the single gene level in Drosophila melanogaster polytene chromosomes.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster/genética , RNA/genética , Cromossomos Politênicos/genética , Hibridização in Situ Fluorescente , Imunofluorescência , Proteínas Supressoras de Tumor , Proteínas de Drosophila/genética
2.
Dokl Biochem Biophys ; 490(1): 29-33, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32342309

RESUMO

Proteins Z4/putzig and Chriz/Chromator are involved in the chromatin organization on the promoters of the majority of Drosophila genes. It was shown that the Chriz protein region from aa 273 to 503 is required for the interaction with the Z4 protein. Deletion of this sequence leads to derepression of a number of STAT-dependent genes and development of melanotic tumors in flies. The results of this study suggest that the Chriz protein promotes the recruitment of the Z4 protein to chromatin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Sítios de Ligação , Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Deleção de Genes , Cromossomos Politênicos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição STAT/genética , Técnicas do Sistema de Duplo-Híbrido
3.
Genes (Basel) ; 11(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111003

RESUMO

Drosophila underreplicate the DNA of thoracic nuclei, stalling during S phase at a point that is proportional to the total genome size in each species. In polytene tissues, such as the Drosophila salivary glands, all of the nuclei initiate multiple rounds of DNA synthesis and underreplicate. Yet, only half of the nuclei isolated from the thorax stall; the other half do not initiate S phase. Our question was, why half? To address this question, we use flow cytometry to compare underreplication phenotypes between thoracic tissues. When individual thoracic tissues are dissected and the proportion of stalled DNA synthesis is scored in each tissue type, we find that underreplication occurs in the indirect flight muscle, with the majority of underreplicated nuclei in the dorsal longitudinal muscles (DLM). Half of the DNA in the DLM nuclei stall at S phase between the unreplicated G0 and fully replicated G1. The dorsal ventral flight muscle provides the other source of underreplication, and yet, there, the replication stall point is earlier (less DNA replicated), and the endocycle is initiated. The differences in underreplication and ploidy in the indirect flight muscles provide a new tool to study heterochromatin, underreplication and endocycle control.


Assuntos
Replicação do DNA/genética , DNA/genética , Músculo Esquelético/crescimento & desenvolvimento , Tórax/crescimento & desenvolvimento , Animais , Núcleo Celular/genética , DNA/biossíntese , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Voo Animal , Citometria de Fluxo , Fase G1/genética , Músculo Esquelético/metabolismo , Cromossomos Politênicos/genética , Fase de Repouso do Ciclo Celular/genética , Fase S/genética , Glândulas Salivares/crescimento & desenvolvimento , Glândulas Salivares/metabolismo , Tórax/metabolismo
5.
Genes (Basel) ; 10(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700014

RESUMO

Chromatin structure and its organization contributes to the proper regulation and timing of DNA replication. Yet, the precise mechanism by which chromatin contributes to DNA replication remains incompletely understood. This is particularly true for cell types that rely on polyploidization as a developmental strategy for growth and high biosynthetic capacity. During Drosophila larval development, cells of the salivary gland undergo endoreplication, repetitive rounds of DNA synthesis without intervening cell division, resulting in ploidy values of ~1350C. S phase of these endocycles displays a reproducible pattern of early and late replicating regions of the genome resulting from the activity of the same replication initiation factors that are used in diploid cells. However, unlike diploid cells, the latest replicating regions of polyploid salivary gland genomes, composed primarily of pericentric heterochromatic enriched in H3K9 methylation, are not replicated each endocycle, resulting in under-replicated domains with reduced ploidy. Here, we employ a histone gene replacement strategy in Drosophila to demonstrate that mutation of a histone residue important for heterochromatin organization and function (H3K9) but not mutation of a histone residue important for euchromatin function (H4K16), disrupts proper endoreplication in Drosophila salivary gland polyploid genomes thereby leading to DNA copy gain in pericentric heterochromatin. These findings reveal that H3K9 is necessary for normal levels of under-replication of pericentric heterochromatin and suggest that under-replication at pericentric heterochromatin is mediated through H3K9 methylation.


Assuntos
Replicação do DNA , Heterocromatina/genética , Histonas/metabolismo , Cromossomos Politênicos/genética , Animais , Centrômero/genética , Drosophila melanogaster , Metilação , Processamento de Proteína Pós-Traducional , Glândulas Salivares/metabolismo
6.
Chromosome Res ; 25(3-4): 201-214, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28779272

RESUMO

In this era of high-resolution mapping of chromosome territories, topological interactions, and chromatin states, it is increasingly appreciated that the positioning of chromosomes and their interactions within the nucleus is critical for cellular function. Due to their large size and distinctive structure, polytene chromosomes have contributed a wealth of knowledge regarding chromosome regulation. In this review, we discuss the diversity of polytene chromosomes in nature and in disease, examine the recurring structural features of polytene chromosomes in terms of what they reveal about chromosome biology, and discuss recent advances regarding how polytene chromosomes are assembled and disassembled. After over 130 years of study, these giant chromosomes are still powerful tools to understand chromosome biology.


Assuntos
Genética , Cromossomos Politênicos/genética , Pesquisa , Animais , Replicação do DNA , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interação Gene-Ambiente , Loci Gênicos , Poliploidia
7.
PLoS One ; 11(6): e0158272, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27348428

RESUMO

A macrogenomic investigation of a Holarctic clade of black flies-the Simulium cholodkovskii lineage-provided a platform to explore the implications of a unique, synapomorphic whole-arm interchange in the evolution of black flies. Nearly 60 structural rearrangements were discovered in the polytene complement of the lineage, including 15 common to all 138 analyzed individuals, relative to the central sequence for the entire subgenus Simulium. Three species were represented, of which two Palearctic entities (Simulium cholodkovskii and S. decimatum) were sympatric; an absence of hybrids confirmed their reproductive isolation. A third (Nearctic) entity had nonhomologous sex chromosomes, relative to the other species, and is considered a separate species, for which the name Simulium nigricoxum is revalidated. A cytophylogeny is inferred and indicates that the two Palearctic taxa are sister species and these, in turn, are the sister group of the Nearctic species. The rise of the S. cholodkovskii lineage encompassed complex chromosomal and genomic restructuring phenomena associated with speciation in black flies, viz. expression of one and the same rearrangement as polymorphic, fixed, or sex linked in different species; taxon-specific differentiation of sex chromosomes; and reciprocal translocation of chromosome arms. The translocation is hypothesized to have occurred early in male spermatogonia, with the translocated chromosomal complement being transmitted to the X- and Y-bearing sperm during spermatogenesis, resulting in alternate disjunction of viable F1 translocation heterozygotes and the eventual formation of more viable and selectable F2 translocation homozygous progeny. Of 11 or 12 independently derived whole-arm interchanges known in the family Simuliidae, at least six are associated with subsequent speciation events, suggesting a facilitating role of translocations in adaptive radiations. The findings are discussed in the context of potential structural and functional interactions for future genomic research.


Assuntos
Cromossomos de Insetos , Tolerância a Radiação/genética , Simuliidae/genética , Simuliidae/efeitos da radiação , Translocação Genética , Animais , Evolução Biológica , Mapeamento Cromossômico , Feminino , Ligação Genética , Masculino , Filogenia , Cromossomos Politênicos , Simuliidae/classificação
8.
Elife ; 52016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159240

RESUMO

Duplicating chromosomes once each cell cycle produces sister chromatid pairs, which separate accurately at anaphase. In contrast, reduplicating chromosomes without separation frequently produces polytene chromosomes, a barrier to accurate mitosis. Chromosome reduplication occurs in many contexts, including: polytene tissue development, polytene tumors, and following treatment with mitosis-blocking chemotherapeutics. However, mechanisms responding to or resolving polyteny during mitosis are poorly understood. Here, using Drosophila, we uncover two distinct reduplicated chromosome responses. First, when reduplicated polytene chromosomes persist into metaphase, an anaphase delay prevents tissue malformation and apoptosis. Second, reduplicated polytene chromosomes can also separate prior to metaphase through a spindle-independent mechanism termed Separation-Into-Recent-Sisters (SIRS). Both reduplication responses require the spindle assembly checkpoint protein Mad2. While Mad2 delays anaphase separation of metaphase polytene chromosomes, Mad2's control of overall mitotic timing ensures efficient SIRS. Our results pinpoint mechanisms enabling continued proliferation after genome reduplication, a finding with implications for cancer progression and prevention.


Assuntos
Ciclo Celular , Proteínas de Drosophila/metabolismo , Proteínas Mad2/metabolismo , Cromossomos Politênicos/metabolismo , Animais , Drosophila , Endorreduplicação
9.
Mem. Inst. Oswaldo Cruz ; 111(5): 335-346, May 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-782048

RESUMO

Salivary gland polytene chromosomes of 4th instar Anopheles darlingi Root were examined from multiple locations in the Brazilian Amazon. Minor modifications were made to existing polytene photomaps. These included changes to the breakpoint positions of several previously described paracentric inversions and descriptions of four new paracentric inversions, two on the right arm of chromosome 3 and two on the left arm of chromosome 3 that were found in multiple locations. A total of 18 inversions on the X (n = 1) chromosome, chromosome 2 (n = 7) and 3 (n = 11) were scored for 83 individuals from Manaus, Macapá and Porto Velho municipalities. The frequency of 2Ra inversion karyotypes in Manaus shows significant deficiency of heterozygotes (p < 0.0009). No significant linkage disequilibrium was found between inversions on chromosome 2 and 3. We hypothesize that at least two sympatric subpopulations exist within the An. darlingi population at Manaus based on inversion frequencies.


Assuntos
Animais , Anopheles/genética , Inversão Cromossômica/genética , Insetos Vetores/genética , Cromossomos Politênicos/genética , Glândulas Salivares , Anopheles/classificação , Brasil , Mapeamento Cromossômico , Insetos Vetores/classificação
10.
Tsitologiia ; 58(4): 281-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30191695

RESUMO

Chromatin assembly is a fundamental process that is essential for chromosome duplication subsequent to DNA replication. In addition, histone removal and incorporation take place constantly throughout the cell cycle in the course of DNA-utilizing processes, such as transcription, damage repair or recombination. In vitro chromatin assembly requires the concerned action of histone chaperones and ATP-utilizing chromatin assembly factors. ATP-dependent chromatin assembly and remodeling factor CHD1 (Chromo-ATPase/Helicase-DNA-binding protein 1) is involved in multiple cellular processes, such as the replication independent assembly of nucleosomes containing the variant histone H3.3, regulation of transcription initiation, elongation and termination; determination of steam cell pluripotency and in cancer development. We have shown that mutations in Drosophila Chd1 gene induce a decondensation of the male X chromosome, similar to that induced by mutations in the iswi nucleosome remodeling factor. An effect of Chd1 null mutation can be increased by deficiency of one of the genes, encoding variant histone H3.3, His 3.3 B, suggesting that the role of CHD1 in the control of male X chromosome organization can be mediated by CHD1 activity in H3.3 histone deposition and exchange.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Mutação , Cromossomos Politênicos/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Histonas/genética , Masculino , Cromossomos Politênicos/genética , Fatores de Transcrição/genética , Cromossomo X/genética
11.
G3 (Bethesda) ; 5(5): 803-17, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25758823

RESUMO

The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15). Like Cap-H2, Mrg15 is required for interphase chromosome compaction and homolog pairing. However, the mechanism by which Mrg15 and Cap-H2 cooperate to maintain interphase chromatin organization remains unclear. Here, we show that Cap-H2 localizes to interband regions on polytene chromosomes and co-localizes with Mrg15 at regions of active transcription across the genome. We show that co-localization of Cap-H2 on polytene chromosomes is partially dependent on Mrg15. We have identified a binding motif within Cap-H2 that is essential for its interaction with Mrg15, and have found that mutation of this motif results in loss of localization of Cap-H2 on polytene chromosomes and results in partial suppression of Cap-H2-mediated compaction and homolog unpairing. Our data are consistent with a model in which Mrg15 acts as a loading factor to facilitate Cap-H2 binding to chromatin and mediate changes in chromatin organization.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Interfase/genética , Complexos Multiproteicos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Expressão Gênica , Genes Reporter , Genoma , Complexos Multiproteicos/química , Mutação , Cromossomos Politênicos , Ligação Proteica , Transporte Proteico , Transcrição Gênica , Ativação Transcricional
12.
Genes Dev ; 28(16): 1840-55, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128500

RESUMO

DNA replication remains unfinished in many Drosophila polyploid cells, which harbor disproportionately fewer copies of late-replicating chromosomal regions. By analyzing paired-end high-throughput sequence data from polytene larval salivary gland cells, we define 112 underreplicated (UR) euchromatic regions 60-480 kb in size. To determine the effects of underreplication on genome integrity, we analyzed anomalous read pairs and breakpoint reads throughout the euchromatic genome. Each UR euchromatic region contains many different deletions 10-500 kb in size, while very few deletions are present in fully replicated chromosome regions or UR zones from embryo DNA. Thus, during endocycles, stalled forks within UR regions break and undergo local repair instead of remaining stable and generating nested forks. As a result, each salivary gland cell contains hundreds of unique deletions that account for their copy number reductions. Similar UR regions and deletions were observed in ovarian DNA, suggesting that incomplete replication, fork breakage, and repair occur widely in polytene cells. UR regions are enriched in genes encoding immunoglobulin superfamily proteins and contain many neurally expressed and homeotic genes. We suggest that the extensive somatic DNA instability described here underlies position effect variegation, molds the structure of polytene chromosomes, and should be investigated for possible functions.


Assuntos
Replicação do DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cromossomos Politênicos/genética , Glândulas Salivares , Animais , DNA/genética , Quebras de DNA , Reparo do DNA , Feminino , Instabilidade Genômica , Imunoglobulinas/genética , Larva , Ovário , Deleção de Sequência/genética
13.
Mol Cell Biol ; 34(14): 2710-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24820420

RESUMO

Human MED26 was originally purified in the cofactor required for the Sp1 activation complex (CRSP) as a 70-kDa component named CRSP70. This polypeptide was specific to metazoans and the "small" form of the Mediator complex. We report here that a Drosophila melanogaster homologue of MED26 similarly interacts with other components of the core Drosophila Mediator complex but not with the kinase module and is recruited to genes upon activation. Using a null allele of Med26, we show that Med26 is required for organismal viability but not for cell proliferation or survival. Clones lacking Med26 in the wing disc lead to loss of the adult wing margin and reduced expression of genes involved in wing margin formation. Surprisingly, when polytene chromosomes from the salivary gland were examined using antibodies to Med26, it was apparent that a fraction of the protein was associated with the chromocenter, which contains pericentric heterochromatin. This staining colocalizes with heterochromatin protein 1 (HP1). Immunoprecipitation experiments show that Med26 interacts with HP1. The interaction is mediated through the chromoshadow domain of HP1 and through the conserved motif in the carboxy terminus of the Med26 protein. This work is the first characterization of the metazoan-specific Mediator subunit in an animal model.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Complexo Mediador/genética , Complexo Mediador/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular , Sequência Conservada , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Heterocromatina/metabolismo , Humanos , Cromossomos Politênicos , Glândulas Salivares/metabolismo , Asas de Animais/crescimento & desenvolvimento
14.
Cell ; 155(1): 148-59, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24055367

RESUMO

Insulators mediate inter- and intrachromosomal contacts to regulate enhancer-promoter interactions and establish chromosome domains. The mechanisms by which insulator activity can be regulated to orchestrate changes in the function and three-dimensional arrangement of the genome remain elusive. Here, we demonstrate that Drosophila insulator proteins are poly(ADP-ribosyl)ated and that mutation of the poly(ADP-ribose) polymerase (Parp) gene impairs their function. This modification is not essential for DNA occupancy of insulator DNA-binding proteins dCTCF and Su(Hw). However, poly(ADP-ribosyl)ation of K566 in CP190 promotes protein-protein interactions with other insulator proteins, association with the nuclear lamina, and insulator activity in vivo. Consistent with these findings, the nuclear clustering of CP190 complexes is disrupted in Parp mutant cells. Importantly, poly(ADP-ribosyl)ation facilitates intrachromosomal interactions between insulator sites measured by 4C. These data suggest that the role of insulators in organizing the three-dimensional architecture of the genome may be modulated by poly(ADP-ribosyl)ation.


Assuntos
Cromossomos de Insetos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Isolantes , Poli Adenosina Difosfato Ribose/metabolismo , Animais , Diferenciação Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Mutação , Matriz Nuclear/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Cromossomos Politênicos/metabolismo
15.
Genetics ; 195(1): 127-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821596

RESUMO

Dynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo activities of condensins are regulated and how functional interactors target condensins to chromatin are not well understood. To better understand how Drosophila melanogaster condensin is regulated, we performed a yeast two-hybrid screen and identified the chromo-barrel domain protein Mrg15 to interact with the Cap-H2 condensin subunit. Genetic interactions demonstrate that Mrg15 function is required for Cap-H2-mediated unpairing of polytene chromosomes in ovarian nurse cells and salivary gland cells. In diploid tissues, transvection assays demonstrate that Mrg15 inhibits transvection at Ubx and cooperates with Cap-H2 to antagonize transvection at yellow. In cultured cells, we show that levels of chromatin-bound Cap-H2 protein are partially dependent on Mrg15 and that Cap-H2-mediated homolog unpairing is suppressed by RNA interference depletion of Mrg15. Thus, maintenance of interphase chromosome compaction and homolog pairing status requires both Mrg15 and Cap-H2. We propose a model where the Mrg15 and Cap-H2 protein-protein interaction may serve to recruit Cap-H2 to chromatin and facilitates compaction of interphase chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Pareamento Cromossômico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complexos Multiproteicos/metabolismo , Cromossomos Politênicos/metabolismo , Adenosina Trifosfatases/genética , Animais , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Interfase , Complexos Multiproteicos/genética , Cromossomos Politênicos/química , Ligação Proteica , Fatores de Transcrição/genética
16.
PLoS Genet ; 8(10): e1003006, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071455

RESUMO

Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA-seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Complexo Repressor Polycomb 1/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Expressão Gênica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP70/genética , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Fenótipo , Cromossomos Politênicos/genética , Cromossomos Politênicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Transcrição Gênica , Transcriptoma
17.
PLoS Genet ; 8(8): e1002873, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956908

RESUMO

The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase.


Assuntos
Adenosina Trifosfatases/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Heterocromatina/genética , Complexos Multiproteicos/genética , Cromossomos Politênicos/genética , Animais , Compartimento Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrômero/genética , Interfase/genética , Mitose , Cromossomos Politênicos/metabolismo
19.
Development ; 139(20): 3817-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22991446

RESUMO

Endopolyploidy is a widespread process that corresponds to the amplification of the genome in the absence of mitosis. In tomato, very high ploidy levels (up to 256C) are reached during fruit development, concomitant with very large cell sizes. Using cellular approaches (fluorescence and electron microscopy) we provide a structural analysis of endoreduplicated nuclei at the level of chromatin and nucleolar organisation, nuclear shape and relationship with other cellular organelles such as mitochondria. We demonstrate that endopolyploidy in pericarp leads to the formation of polytene chromosomes and markedly affects nuclear structure. Nuclei manifest a complex shape, with numerous deep grooves that are filled with mitochondria, affording a fairly constant ratio between nuclear surface and nuclear volume. We provide the first direct evidence that endopolyploidy plays a role in increased transcription of rRNA and mRNA on a per-nucleus basis. Overall, our results provide quantitative evidence in favour of the karyoplasmic theory and show that endoreduplication is associated with complex cellular organisation during tomato fruit development.


Assuntos
Núcleo Celular/ultraestrutura , Endorreduplicação , Poliploidia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Transcrição Gênica , Núcleo Celular/genética , Tamanho Celular , Cromatina/ultraestrutura , Frutas/crescimento & desenvolvimento , Amplificação de Genes , Homeostase , Hibridização in Situ Fluorescente , Solanum lycopersicum/ultraestrutura , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Mitose , Região Organizadora do Nucléolo/ultraestrutura , Cromossomos Politênicos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Ribossômico/biossíntese , Ativação Transcricional
20.
Genetics ; 192(3): 843-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923380

RESUMO

Type II topoisomerases are essential ATP-dependent homodimeric enzymes required for transcription, replication, and chromosome segregation. These proteins alter DNA topology by generating transient enzyme-linked double-strand breaks for passage of one DNA strand through another. The central role of type II topoisomerases in DNA metabolism has made these enzymes targets for anticancer drugs. Here, we describe a genetic screen that generated novel alleles of Drosophila Topoisomerase 2 (Top2). Fifteen alleles were obtained, resulting from nonsense and missense mutations. Among these, 14 demonstrated recessive lethality, with one displaying temperature-sensitive lethality. Several newly generated missense alleles carry amino acid substitutions in conserved residues within the ATPase, Topoisomerase/Primase, and Winged helix domains, including four that encode proteins with alterations in residues associated with resistance to cancer chemotherapeutics. Animals lacking zygotic Top2 function can survive to pupation and display reduced cell division and altered polytene chromosome structure. Inter se crosses between six strains carrying Top2 missense alleles generated morphologically normal trans-heterozygous adults, which showed delayed development and were female sterile. Complementation occurred between alleles encoding Top2 proteins with amino acid substitutions in the same functional domain and between alleles encoding proteins with substitutions in different functional domains. Two complementing alleles encode proteins with amino acid substitutions associated with drug resistance. These observations suggest that dimerization of mutant Top2 monomers can restore enzymatic function. Our studies establish the first series of Top2 alleles in a multicellular organism. Future analyses of these alleles will enhance our knowledge about the contributions made by type II topoisomerases to development.


Assuntos
DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Drosophila/genética , Drosophila/metabolismo , Alelos , Substituição de Aminoácidos , Animais , DNA Topoisomerases Tipo II/química , Feminino , Fertilidade/genética , Ordem dos Genes , Masculino , Mutagênese , Mutação , Fenótipo , Cromossomos Politênicos , Domínios e Motivos de Interação entre Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA