Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 529(11): 2865-2882, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33660861

RESUMO

Box jellyfish have an elaborate visual system and perform advanced visually guided behaviors. However, the rhopalial nervous system (RNS), believed to be the main visual processing center, only has 1000 neurons in each of the four eye carrying rhopalia. We have examined the detailed structure of the RNS of the box jellyfish Tripedalia cystophora, using immunolabeling with antibodies raised against four putative neuropeptides (T. cystophora RFamide, VWamide, RAamide, and FRamide). In the RNS, T. cystophora RF-, VW-, and RAamide antibodies stain sensory neurons, the pit eyes, the neuropil, and peptide-specific subpopulations of stalk-associated neurons and giant neurons. Furthermore, RFamide ir+ neurites are seen in the epidermal stalk nerve, whereas VWamide antibodies stain the gastrodermal stalk nerve. RFamide has the most widespread expression including in the ring and radial nerves, the pedalium nerve plexus, and the tentacular nerve net. RAamide is the putative neurotransmitter in the motor neurons of the subumbrellar nerve net, and VWamide is a potential marker for neuronal differentiation as it is found in subpopulations of undifferentiated cells both in the rhopalia and in the bell. The results from the FRamide antibodies were not included as only few cells were stained, and in an unreproducible way. Our studies show hitherto-unseen details of the nervous system of T. cystophora and allowed us to identify specific functional groups of neurons. This identification is important for understanding visual processing in the RNS and enables experimental work, directly addressing the role of the different neuropeptides in vision.


Assuntos
Cubomedusas/metabolismo , Rede Nervosa/metabolismo , Neuropeptídeos/biossíntese , Neurópilo/metabolismo , Vias Visuais/metabolismo , Fatores Etários , Animais , Cubomedusas/química , Cubomedusas/genética , Expressão Gênica , Rede Nervosa/química , Sistema Nervoso/química , Sistema Nervoso/metabolismo , Neuritos/química , Neuritos/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/genética , Neurópilo/química , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/metabolismo , Vias Visuais/química
2.
Sci Rep ; 5: 11885, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154478

RESUMO

Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.


Assuntos
Evolução Biológica , Cubomedusas/genética , Genoma , Opsinas/genética , Células Fotorreceptoras/metabolismo , Animais , Mapeamento Cromossômico , Cubomedusas/metabolismo , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Genômica/métodos , Família Multigênica , Opsinas/metabolismo , Filogenia , RNA Mensageiro/genética , Transdução de Sinais
3.
J Comp Neurol ; 516(3): 157-65, 2009 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-19598151

RESUMO

The four visual sensory structures of a cubomedusa, the rhopalia, display a surprisingly elaborate organization by containing two lens eyes and four bilaterally paired pigment cup eyes. Peptides containing the peptide sequence Arg-Phe-NH2 (RFamide) occur in close association with visual structures of cnidarians, including the rhopalia and rhopalial stalk of cubomedusae, suggesting that RFamide functions as a neuronal marker for certain parts of the visual system of medusae. Using immunofluorescence we give a detailed description of the organization of the RFamide-immunoreactive (ir) nervous system in the rhopalia and rhopalial stalk of the cubomedusae Tripedalia cystophora and Carybdea marsupialis. The bilaterally symmetric RFamide-ir nervous system contains four cell groups and three morphologically different cell types. Neurites spread throughout the rhopalia and occur in close vicinity of the pigment cup eyes and the lower lens eye. Two commissures connect the two sides of the system and neurites of one rhopalial cell group extend into the rhopalial stalk. The RFamide-ir nervous system in the rhopalia of cubomedusae is more widespread and comprises more cells than earlier discerned. We suggest that the system might not only integrate visual input but also signals from other senses. One of the RFamide-ir cell groups is favorably situated to represent pacemaker neurons that set the swimming rhythm of the medusa.


Assuntos
Cubomedusas/citologia , Cubomedusas/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Imunofluorescência , Microscopia Confocal , Microscopia de Fluorescência
4.
Proc Natl Acad Sci U S A ; 105(40): 15576-80, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18832159

RESUMO

Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. Here, we investigated the phototransduction cascade of a prebilaterian box jellyfish, the most basal animal having eyes containing lens and ciliary-type visual cells similar to vertebrate eyes, to examine the similarity at the molecular level and to obtain an implication of the origin of the vertebrate phototransduction cascade. We showed that the opsin-based pigment functions as a green-sensitive visual pigment and triggers the G(s)-type G protein-mediated phototransduction cascade in the ciliary-type visual cells of the box jellyfish lens eyes. We also demonstrated the light-dependent cAMP increase in the jellyfish visual cells and HEK293S cells expressing the jellyfish opsin. The first identified prebilaterian cascade was distinct from known phototransduction cascades but exhibited significant partial similarity with those in vertebrate and molluscan ciliary-type visual cells, because all involved cyclic nucleotide signaling. These similarities imply a monophyletic origin of ciliary phototransduction cascades distributed from prebilaterian to vertebrate.


Assuntos
Cubomedusas/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinal Luminoso , Opsinas/metabolismo , Animais , Células Cultivadas , Evolução Molecular , Humanos , Dados de Sequência Molecular , Opsinas/genética , Filogenia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
5.
Evol Dev ; 10(1): 52-61, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18184357

RESUMO

Cnidaria is the earliest-branching metazoan phylum containing a well-developed, lens-containing visual system located on specialized sensory structures called rhopalia. Each rhopalium in a cubozoan jellyfish Tripedalia cystophora has a large and a small complex, camera-type eye with a cellular lens containing distinct families of crystallins. Here, we have characterized J2-crystallin and its gene in T. cystophora. The J2-crystallin gene is composed of a single exon and encodes a 157-amino acid cytoplasmic protein with no apparent homology to known proteins from other species. The non-lens expression of J2-crystallin suggests nonoptical as well as crystallin functions consistent with the gene-sharing strategy that has been used during evolution of lens crystallins in other invertebrates and vertebrates. Although nonfunctional in transfected mammalian lens cells, the J2-crystallin promoter is activated by the jellyfish paired domain transcription factor PaxB in co-transfection tests via binding to three paired domain sites. PaxB paired domain-binding sites were also identified in the PaxB-regulated promoters of the J1A- and J1B-crystallin genes, which are not homologous to the J2-crystallin gene. Taken together with previous studies on the regulation of the diverse crystallin genes, the present report strongly supports the idea that crystallin recruitment of multifunctional proteins was driven by convergent changes involving Pax (as well as other transcription factors) in the promoters of nonhomologous genes within and between species as well as within gene families.


Assuntos
Cristalinas/metabolismo , Cubomedusas/metabolismo , Evolução Molecular , Fatores de Transcrição Box Pareados/metabolismo , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Cristalinas/química , Cristalinas/genética , Cubomedusas/genética , Citoplasma/metabolismo , Éxons , Regulação da Expressão Gênica , Humanos , Cristalino/metabolismo , Dados de Sequência Molecular , Fatores de Transcrição Box Pareados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA