Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 25(5): 625-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22352720

RESUMO

Colletotrichum orbiculare, the causal agent of cucumber anthracnose, infects Nicotiana benthamiana. Functional screening of C. orbiculare cDNAs in a virus vector-based plant expression system identified a novel secreted protein gene, NIS1, whose product induces cell death in N. benthamiana. Putative homologues of NIS1 are present in selected members of fungi belonging to class Sordariomycetes, Dothideomycetes, or Orbiliomycetes. Green fluorescent protein-based expression studies suggested that NIS1 is preferentially expressed in biotrophic invasive hyphae. NIS1 lacking signal peptide did not induce NIS1-triggered cell death (NCD), suggesting apoplastic recognition of NIS1. NCD was prevented by virus-induced gene silencing of SGT1 and HSP90, indicating the dependency of NCD on SGT1 and HSP90. Deletion of NIS1 had little effect on the virulence of C. orbiculare against N. benthamiana, suggesting possible suppression of NCD by C. orbiculare at the postinvasive stage. The CgDN3 gene of C. gloeosporioides was previously identified as a secreted protein gene involved in suppression of hypersensitive-like response in Stylosanthes guianensis. Notably, we found that NCD was suppressed by the expression of a CgDN3 homologue of C. orbiculare. Our findings indicate that C. orbiculare expresses NIS1 at the postinvasive stage and suggest that NCD could be repressed via other effectors, including the CgDN3 homologue.


Assuntos
Colletotrichum/patogenicidade , Proteínas Fúngicas/metabolismo , Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Morte Celular/fisiologia , Colletotrichum/genética , Colletotrichum/metabolismo , Colletotrichum/ultraestrutura , Cucumis/microbiologia , DNA Complementar/genética , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Inativação Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Hifas/genética , Hifas/metabolismo , Dados de Sequência Molecular , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia , Virulência/genética
2.
J Food Sci ; 73(9): M405-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19021810

RESUMO

Chlorine is commonly used to reduce microbial load in fresh-cut vegetables. However, the production of chlorinated organic compounds, such as trihalomethanes, which are potential carcinogens, has created the need to investigate the efficiency of nontraditional sanitizers and alternative techniques. The effects of 4 novel sanitizers were tested in fresh-cut "Galia" melon: chlorine dioxide (ClO(2)) at 3 mg/L, peracetic acid (PAA) at 80 mg/L, hydrogen peroxide (H(2)O(2)) at 50 mg/L, and nisin at 250 mg/L plus EDTA 100 mg/L (nisin + EDTA). A chlorine treatment (NaOCl at 150 mg/L) was used as a control. Pieces of melon were packed in polypropylene trays under passive modified atmosphere (3 to 4 kPa of O(2) and 10 to 11 kPa of CO(2)) and stored up to 10 d at 5 degrees C. Microbial growth, firmness, respiration rate, gas composition, sensory evaluation, color, total soluble solids (TSS), and tritable acidity (TA) were evaluated at days 0, 7, and 10. The novel sanitizers PAA, H(2)O(2), and nisin + EDTA, in the studied concentrations, reduced the microbial growth to a more efficient range than chlorine and ClO(2). In addition, those sanitizers delayed softness, did not affect the respiration rate, SST, or AT. The sensorial parameters were kept above the upper limit of marketability and they did not impart an "off flavor." These sanitizers maintained quality and shelf life of fresh-cut Galia melon for 10 d of storage at 5 degrees C. Nevertheless, other concentrations, in particular for ClO(2,) could be tested to study an extended shelf life in melon pieces.


Assuntos
Cloro/farmacologia , Cucumis/química , Cucurbitaceae/química , Saneamento/métodos , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Parede Celular/efeitos dos fármacos , Compostos Clorados/farmacologia , Cucumis/efeitos dos fármacos , Cucumis/crescimento & desenvolvimento , Cucumis/microbiologia , Cucurbitaceae/efeitos dos fármacos , Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/microbiologia , Desinfetantes/farmacologia , Ácido Edético/farmacologia , Conservação de Alimentos/métodos , Peróxido de Hidrogênio/farmacologia , Óxidos/farmacologia , Ácido Peracético/farmacologia , Espanha
3.
ISME J ; 2(3): 321-34, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18185595

RESUMO

Pseudomonas syringae is a plant pathogen well known for its capacity to grow epiphytically on diverse plants and for its ice-nucleation activity. The ensemble of its known biology and ecology led us to postulate that this bacterium is also present in non-agricultural habitats, particularly those associated with water. Here, we report the abundance of P. syringae in rain, snow, alpine streams and lakes and in wild plants, in addition to the previously reported abundance in epilithic biofilms. Each of these substrates harbored strains that corresponded to P. syringae in terms of biochemical traits, pathogenicity and pathogenicity-related factors and that were ice-nucleation active. Phylogenetic comparisons of sequences of four housekeeping genes of the non-agricultural strains with strains of P. syringae from disease epidemics confirmed their identity as P. syringae. Moreover, strains belonging to the same clonal lineage were isolated from snow, irrigation water and a diseased crop plant. Our data suggest that the different substrates harboring P. syringae modify the structure of the associated populations. Here, we propose a comprehensive life cycle for P. syringae--in agricultural and non-agricultural habitats--driven by the environmental cycle of water. This cycle opens the opportunity to evaluate the importance of non-agricultural habitats in the evolution of a plant pathogen and the emergence of virulence. The ice-nucleation activity of all strains from snow, unlike from other substrates, strongly suggests that P. syringae plays an active role in the water cycle as an ice nucleus in clouds.


Assuntos
Doenças das Plantas/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Chuva/microbiologia , Rios/microbiologia , Neve/microbiologia , Proteínas de Bactérias/genética , Beta vulgaris/microbiologia , Cucumis/microbiologia , Ecossistema , Genótipo , Gelo , Lactuca/microbiologia , Filogenia , Pseudomonas syringae/classificação , Pseudomonas syringae/genética , Pseudomonas syringae/isolamento & purificação , Nicotiana/microbiologia
4.
J Agric Food Chem ; 55(26): 10622-7, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18052243

RESUMO

The structure of a germination inhibitor, hypnosin, isolated from phytopathogenic Streptomyces sp. causing root tumor of melon was determined to be 3-acetylaminopyrazine-2-carboxylic acid (1) by mass spectrometry, computational chemical prediction of UV spectrum, and synthesis of candidates. The structure-activity relationship of hypnosin and anthranilic acid was examined, and it was concluded that pyrazinecarboxylic acid or pyridine-2-carboxylic acid was the fundamental structure with activity, that methylation of the carboxyl group or decarboxylation destroyed activity, and that the presence of an amino group was inhibitory to the activity, whereas acetylation or deletion of an amino group enhanced activity. Hypnosin inhibited spore germination of some Streptomyces spp. in addition to the species with which it was isolated.


Assuntos
Cucumis/microbiologia , Doenças das Plantas/microbiologia , Pirazinas/química , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/crescimento & desenvolvimento , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Temperatura Alta , Pirazinas/farmacologia , Piridinas/química , Streptomyces/química , Streptomyces/efeitos dos fármacos , Relação Estrutura-Atividade
5.
J Plant Physiol ; 161(5): 621-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15202719

RESUMO

The PR-2d promoter/uidA (GUS) gene construct was introduced into the cucumber (Cucumis sativus L.) genome and several transgenic lines were produced. Activation of the PR-2d promoter was investigated in these plants in response to inoculation with fungal pathogens and after salicylic acid (SA) or cold treatments. Treatment with exogenous SA increased GUS activity 2 to 11 fold over that of the control. Endogenous SA and its conjugate salicylic acid glucoside (SAG) rose in parallel after inoculation with the fungal pathogen Pseudoperonospora cubensis, with SAG becoming the predominant form. The free SA levels increased 15 fold above the basal level at 5 dpi and preceded the induction of the PR-2d promoter by five days, which occurred at 10 dpi with a 12 fold increase over the control. Inoculation with another fungal pathogen, Erysiphe polyphage, increased GUS activity 4 to 44 fold over that of the control. During normal development of flowers in the cucumber, the PR-2d/uidA gene expressed in the floral organs was similar to that of the primary host. In addition, we present the first evidence that the PR-2d promoter was induced (624 fold) under cold stress. We demonstrate that in the heterologous state the gene construct was expressed according to the signalling pattern of the native species and was stably transmitted to progeny over four generations.


Assuntos
Cucumis/genética , Nicotiana/genética , Temperatura Baixa , Cucumis/efeitos dos fármacos , Cucumis/microbiologia , Flores/genética , Flores/metabolismo , Fungos/genética , Genes Reporter , Glucosídeos/farmacologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Salicilatos/farmacologia , Ácido Salicílico/farmacologia , Transformação Genética , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA