Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 358: 124503, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38977122

RESUMO

Pot experiments were conducted using Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Phoebe bournei (Hemsl.) Yang) to investigate whether soil microplastics adversely affect the nurturing and renewal of plantations. Microplastics composed of polyethylene and polypropylene with a size of 48 µm were used. The treatments included a control group (without microplastics) and groups treated with microplastic concentrations of 1% and 2% (w/w). The effects of microplastics on the growth, photosynthetic pigments in leaves, antioxidant systems, and osmotic regulation substances of the seedlings were analysed by measuring the seedling height, ground-line diameter growth, chlorophyll (chlorophyll a, chlorophyll b, and total chlorophyll) contents, antioxidant enzyme (superoxide dismutase, peroxidase, catalase) activities, and malondialdehyde, soluble sugar, and soluble protein levels. The results indicated that treatment with 1% polyethylene microplastics increased the chlorophyll a, total chlorophyll, and soluble protein contents in the leaves of both types of seedlings while inhibiting superoxide dismutase and peroxidase activities in P. bournei seedlings. Treatment with 2% polyethylene or polypropylene microplastics suppressed the chlorophyll a, chlorophyll b, and total chlorophyll contents; superoxide dismutase, peroxidase, and catalase activities; and soluble sugar and soluble protein levels in the leaves of both types of seedlings, resulting in reduced growth in terms of height and ground-line diameter. The physiological effects of polyethylene microplastics were more evident than those of polypropylene at the same concentration. The results demonstrated that microplastics can affect photosynthesis, the antioxidant system, and osmotic regulation in Chinese fir and P. bournei seedlings, thereby inhibiting their normal growth and development. Exposure to 1% (w/w) microplastics triggered stress responses in seedlings, whereas 2% (w/w) microplastics impeded seedling growth.


Assuntos
Clorofila , Microplásticos , Plântula , Poluentes do Solo , Superóxido Dismutase , Poluentes do Solo/toxicidade , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Clorofila/metabolismo , Superóxido Dismutase/metabolismo , Microplásticos/toxicidade , Cunninghamia/efeitos dos fármacos , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Solo/química , Catalase/metabolismo , Clorofila A/metabolismo , Fotossíntese/efeitos dos fármacos , Peroxidase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Malondialdeído/metabolismo
2.
J Environ Manage ; 359: 121055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701585

RESUMO

Globally, forest soils are considered as important sources and sinks of greenhouse gases (GHGs). However, most studies on forest soil GHG fluxes are confined to the topsoils (above 20 cm soil depths), with only very limited information being available regarding these fluxes in the subsoils (below 20 cm soil depths), especially in managed forests. This limits deeper understanding of the relative contributions of different soil depths to GHG fluxes and global warming potential (GWP). Here, we used a concentration gradient-based method to comprehensively investigate the effects of thinning intensity (15% vs. 35%) and nutrient addition (no fertilizer vs. NPK fertilizers) on soil GHG fluxes from the 0-40 cm soil layers at 10 cm depth intervals in a Chinese fir (Cunninghamia lanceolata) plantation. Results showed that forest soils were the sources of CO2 and N2O, but the sinks of CH4. Soil GHG fluxes decreased with increasing soil depth, with the 0-20 cm soil layers identified as the dominant producers of CO2 and N2O and consumers of CH4. Thinning intensity did not significantly affect soil GHG fluxes. However, fertilization significantly increased CO2 and N2O emissions and CH4 uptake at 0-20 cm soil layers, but decreased them at 20-40 cm soil layers. This is because fertilization alleviated microbial N limitation and decreased water filled pore space (WFPS) in topsoils, while it increased WFPS in subsoils, ultimately suggesting that soil WFPS and N availability (especially NH4+-N) were the predominant regulators of GHG fluxes along soil profiles. Generally, there were positive interactive effects of thinning and fertilization on soil GHG fluxes. Moreover, the 35% thinning intensity without fertilization had the lowest GWP among all treatments. Overall, our results suggest that fertilization may not only cause depth-dependent effects on GHG fluxes within soil profiles, but also impede efforts to mitigate climate change by promoting GHG emissions in managed forest plantations.


Assuntos
Fertilizantes , Gases de Efeito Estufa , Solo , Gases de Efeito Estufa/análise , Solo/química , Florestas , Metano/análise , Dióxido de Carbono/análise , Cunninghamia/crescimento & desenvolvimento , Aquecimento Global , Óxido Nitroso/análise , China
3.
Sci Rep ; 12(1): 258, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997161

RESUMO

The radial change (RC) of tree stem is the process of heartwood formation involved in complex molecular mechanism. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), an evergreen species, is an important fast-growing timber tree in southern China. In this study, the top four stable genes (IDH, UBC2, RCA and H2B) were selected in RC tissues of 15 years old Chinese fir stem (RC15) and the genes (H2B, 18S, TIP41 and GAPDH) were selected in RC tissues of 30 years old Chinese fir stem (RC30). The stability of the reference genes is higher in RC30 than in RC15. Sixty-one MYB transcripts were obtained on the PacBio Sequel platform from woody tissues of one 30 years old Chinese fir stem. Based on the number of MYB DNA-binding domain and phylogenetic relationships, the ClMYB transcripts contained 21 transcripts of MYB-related proteins (1R-MYB), 39 transcripts of R2R3-MYB proteins (2R-MYB), one transcript of R1R2R3-MYB protein (3R-MYB) belonged to 18 function-annotated clades and two function-unknown clades. In RC woody tissues of 30 years old Chinese fir stem, ClMYB22 was the transcript with the greatest fold change detected by both RNA-seq and qRT-PCR. Reference genes selected in this study will be helpful for further verification of transcript abundance patterns during the heartwood formation of Chinese fir.


Assuntos
Cunninghamia/genética , Genes de Plantas , Genes myb , Proteínas Proto-Oncogênicas c-myb/genética , Transcriptoma , Xilema/genética , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas Proto-Oncogênicas c-myb/metabolismo , RNA-Seq , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
4.
BMC Plant Biol ; 21(1): 581, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879821

RESUMO

BACKGROUND: R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. RESULTS: The evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggest that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnosperm lineage, suggesting divergence of the regulatory process compared to the angiosperms. CONCLUSIONS: This work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.


Assuntos
Parede Celular/fisiologia , Cunninghamia/crescimento & desenvolvimento , Genes myb , Proteínas de Plantas/genética , Fatores de Transcrição/genética , China , Cunninghamia/genética , Genes de Plantas , Família Multigênica , Fases de Leitura Aberta , Proteínas de Plantas/fisiologia , Domínios Proteicos , RNA-Seq , Fatores de Transcrição/fisiologia , Transcrição Gênica , Transcriptoma , Madeira
5.
PLoS One ; 11(6): e0156832, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27270726

RESUMO

Chinese fir is a tall, fast-growing species that is unique to southern China. In Chinese fir plantations, successive plantings have led to a decline in soil fertility, and aluminum toxicity is thought to be one of the main reasons for this decline. In this study, Non-invasive Micro-test Technology was used to study the effect of aluminum stress on the absorption of 4 different ions in the roots of the Chinese fir clone FS01. The results are as follows: with increased aluminum concentration and longer periods of aluminum stress, the H+ ion flow gradually changed from influx into efflux; there was a large variation in the K+ efflux, which gradually decreased with increasing duration of aluminum stress; and 1 h of aluminum stress uniformly resulted in Ca2+ influx, but it changed from influx to efflux after a longer period of aluminum stress. Changes in the different concentrations of aluminum had the largest influence on Mg2+.


Assuntos
Alumínio/toxicidade , Cunninghamia/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Cátions/metabolismo , Cunninghamia/efeitos dos fármacos , Cunninghamia/crescimento & desenvolvimento , Hidrogênio/metabolismo , Transporte de Íons/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Potássio/metabolismo , Solo/química
6.
J Exp Bot ; 66(11): 3041-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25795740

RESUMO

MicroRNAs (miRNAs) are small noncoding regulatory RNAs that play key roles in the process of plant development. To date, extensive studies of miRNAs have been performed in a few model plants, but few efforts have focused on small RNAs (sRNAs) in conifers because of the lack of reference sequences for their enormous genomes. In this study, Solexa sequencing of three sRNA libraries obtained from dormant, reactivating, and active vascular cambium in Chinese fir (Cunninghamia lanceolata) using tangential cryosectioning identified 20 known miRNA families and 18 novel potential miRNAs, of which nine novel miRNA precursors were validated by RT-PCR and sequencing. More than half of these novel miRNAs displayed stage-specific expression patterns in the vascular cambium. Furthermore, analysing the 103 miRNAs and their predicted targets indicated that about 70% appeared to negatively regulate their targets, of which two target genes involved in the regulation of cambial cell division were validated via RNA ligase-mediated rapid amplification of 5'-cDNA ends (RLM 5'-RACE) and transient co-expression in Nicotiana benthamiana leaves. Interestingly, miRNA156 and miRNA172 may regulate the phase transition in vascular cambium from dormancy to active growth. These results provide new insights into the important regulatory functions of miRNAs in vascular cambium development and wood formation in conifers.


Assuntos
Cunninghamia/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Sequência de Bases , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Cunninghamia/crescimento & desenvolvimento , Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , RNA de Plantas/química , RNA de Plantas/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
7.
Ying Yong Sheng Tai Xue Bao ; 22(4): 845-50, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21774302

RESUMO

A litterbag experiment was conducted to study the decomposition of Cunninghamia lanceolata leaf litter under ambient and reduced UV-B radiation (22.1% below ambient). Comparing with ambient treatment, the reduced treatment decreased the decomposition rate of C. lanceolata leaf litter by 69.6% (P<0.001), making the relative contents of nitrogen (N), phosphorus (P), and lignin in the litter increased by 150%, 83.3%, and 13.8%, respectively, and the release of potassium (K) and carbon (C) slowed down. In the process of litter decomposition, photo-degradation of lignin didn't play crucial role. The results suggested that UV-B radiation could accelerate the decomposition rate of C. lanceolata leaf litter, promote the release of N, P, K, and C from it, and increase the nutrients turnover rate in litter layer as well as the carbon flux on the ground, giving potential effects on the function of C. lanceolata forest as a carbon source or sink in humid subtropical China.


Assuntos
Cunninghamia/química , Cunninghamia/crescimento & desenvolvimento , Lignina/metabolismo , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Biodegradação Ambiental , Carbono/metabolismo , Lignina/efeitos da radiação , Folhas de Planta/química
8.
Ying Yong Sheng Tai Xue Bao ; 16(8): 1411-6, 2005 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-16262050

RESUMO

This paper studied the effects of replacing natural secondary broad-leaved forest with Cunninghamia lanceolata plantation in the south, central and upstate areas of subtropical China on the changes of soil chemical and biological properties. The results showed that after replacing with Cunninghamia lanceolata plantation, the total organic carbon (TOC) content in surface soil decreased by 31.51% - 58.24%, and the contents of soil total N and P, pH value, C/N and C/P also decreased to different degree. Soil microbial amount was less than that under natural secondary broad-leaved forest, soil urease, invertase, catalase and dehydrogenase activities decreased, while soil polyphenol oxidase activity increased by 8% - 40%. The respiration rate of Cunninghamia lanceolata soil was 51.15% - 54.48% lower than that of natural secondary broad-leaved forest soil. The correlation between soil TOC and polyphenol oxidase activity was negative (R = - 0.723, n = 18), while those between soil TOC, N, P and other enzyme activities were positive. It could be concluded that replacing natural secondary broad-leaved forest with Cunninghamia lanceolata plantation worsened soil quality, and the loss of soil organic matter in Cunninghamia lanceolata plantation ecosystem might be one of the important factors resulted in the decrease of soil nutrients and enzyme activities.


Assuntos
Catecol Oxidase/metabolismo , Cunninghamia/crescimento & desenvolvimento , Solo/análise , Árvores/crescimento & desenvolvimento , Carbono/análise , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA