Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 122, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164793

RESUMO

Gliomas, particularly glioblastomas (GBMs), pose significant challenges due to their aggressiveness and poor prognosis. Early detection through biomarkers is critical for improving outcomes. This study aimed to identify novel biomarkers for gliomas, particularly GBMs, using chiral amino acid profiling. We used chiral amino acid analysis to measure amino acid L- and D-isomer levels in resected tissues (tumor and non-tumor), blood, and urine from 33 patients with primary gliomas and 24 healthy volunteers. The levels of D-amino acid oxidase (DAO), a D-amino acid-degrading enzyme, were evaluated to investigate the D-amino acid metabolism in brain tissue. The GBM mouse model was created by transplanting GBM cells into the brain to confirm whether gliomas affect blood and urine chiral amino acid profiles. We also assessed whether D-amino acids produced by GBM cells are involved in cell proliferation. D-asparagine (D-Asn) levels were higher and DAO expression was lower in glioma than in non-glioma tissues. Blood and urinary D-Asn levels were lower in patients with GBM than in healthy volunteers (p < 0.001), increasing after GBM removal (p < 0.05). Urinary D-Asn levels differentiated between healthy volunteers and patients with GBM (area under the curve: 0.93, sensitivity: 0.88, specificity: 0.92). GBM mouse model validated the decrease of urinary D-Asn in GBM. GBM cells used D-Asn for cell proliferation. Gliomas induce alterations in chiral amino acid profiles, affecting blood and urine levels. Urinary D-Asn emerges as a promising diagnostic biomarker for gliomas, reflecting tumor presence and severity.


Assuntos
Asparagina , Neoplasias Encefálicas , D-Aminoácido Oxidase , Glioblastoma , Humanos , Glioblastoma/metabolismo , Glioblastoma/urina , Glioblastoma/patologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/urina , Neoplasias Encefálicas/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Asparagina/urina , Asparagina/metabolismo , Adulto , D-Aminoácido Oxidase/metabolismo , D-Aminoácido Oxidase/genética , Camundongos , Idoso , Biomarcadores Tumorais/urina , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proliferação de Células
2.
Nanomedicine ; 36: 102424, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174417

RESUMO

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Citotoxinas , D-Aminoácido Oxidase , Fibronectinas , Proteínas de Neoplasias , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citotoxinas/química , Citotoxinas/farmacologia , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/farmacologia , Fibronectinas/antagonistas & inibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia
3.
Tuberculosis (Edinb) ; 128: 102079, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812176

RESUMO

Mycobacterium tuberculosis H37Ra (Mtb-Ra) ORF MRA_1916 is annotated as a D-amino acid oxidase (DAO). These enzymes perform conversion of d-amino acids to corresponding imino acids followed by conversion into α-keto-acids. In the present study Mtb-Ra recombinants with DAO knockout (KO) and knockout complemented with DAO over-expressing plasmid (KOC) were constructed. The growth studies showed loss of growth of KO in medium containing glycerol as a primary carbon source. Substituting glycerol with acetate or with FBS addition, restored the growth. Growth was also restored in complemented strain (KOC). KO showed increased permeability to hydrophilic dye EtBr and reduced biofilm formation. Also, its survival in macrophages was low. Phagosome maturation studies suggested enhanced colocalization of KO, compared to WT, with lysosomal marker cathepsin D. Also, an increased intensity of Rab5 and iNOS was observed in macrophages infected with KO, compared to WT and KOC. The in vivo survival studies showed no increase in CFU of KO. This is the first study to show functional relevance of DAO encoded by MRA_1916 for Mtb-Ra growth on glycerol, its permeability and biofilm formation. Also, this study clearly demonstrates that DAO deletion leads to Mtb-Ra failing to grow in macrophages and in mice.


Assuntos
Biofilmes/crescimento & desenvolvimento , D-Aminoácido Oxidase/genética , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Animais , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/crescimento & desenvolvimento
4.
Diabetologia ; 64(3): 693-706, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33319325

RESUMO

AIMS/HYPOTHESIS: Diabetic retinopathy is characterised by retinal neurodegeneration and retinal vascular abnormalities, affecting one third of diabetic patients with disease duration of more than 10 years. Accumulated evidence suggests that serine racemase (SR) and D-serine are correlated with the pathogenesis of diabetic retinopathy and the deletion of the Srr gene reverses neurovascular pathologies in diabetic mice. Since D-serine content is balanced by SR synthesis and D-amino acid oxidase (DAAO) degradation, we examined the roles of DAAO in diabetic retinopathy and further explored relevant therapy. METHODS: Rats were used as a model of diabetes by i.p. injection of streptozotocin at the age of 2 months and blood glucose was monitored with a glucometer. Quantitative real-time PCR was used to examine Dao mRNA and western blotting to examine targeted proteins in the retinas. Bisulphite sequencing was used to examine the methylation of Dao mRNA promoter in the retinas. Intravitreal injection of DAAO-expressing adenovirus (AAV8-DAAO) was conducted one week before streptozotocin administration. Brain specific homeobox/POU domain protein 3a (Brn3a) immunofluorescence was conducted to indicate retinal ganglion cells at 3 months after virus injection. The permeability of the blood-retinal barrier was examined by Evans blue leakage from retinal capillaries. Periodic acid-Schiff staining and haematoxylin counterstaining were used to indicate retinal vasculature, which was further examined with double immunostaining at 7 months after virus injection. RESULTS: At the age of 12 months, DAAO mRNA and protein levels in retinas from diabetic animals were reduced to 66.2% and 70.4% of those from normal (control) animals, respectively. The Dao proximal promoter contained higher levels of methylation in diabetic than in normal retinas. Consistent with the observation, DNA methyltransferase 1 was increased in diabetic retinas. Injection of DAAO-expressing virus completely prevented the loss of retinal ganglion cells and the disruption of blood-retinal barrier in diabetic rats. Diabetic retinas contained retinal ganglion cells at a density of 54 ± 4/mm2, which was restored to 68 ± 9/mm2 by DAAO overexpression, similar to the levels in normal retinas. The ratio between the number of endothelial cells and pericytes in diabetic retinas was 6.06 ± 1.93/mm2, which was reduced to 3.42 ± 0.55/mm2 by DAAO overexpression; the number of acellular capillaries in diabetic retinas was 10 ± 5/mm2, which was restored to 6 ± 2/mm2 by DAAO overexpression, similar to the levels in normal retinas. Injection of the DAAO-expressing virus increased the expression of occludin and reduced gliosis, which were examined to probe the mechanism by which the disrupted blood-retinal barrier in diabetic rats was rescued and retinal neurodegeneration was prevented. CONCLUSIONS/INTERPRETATION: Altogether, overexpression of DAAO before the onset of diabetes protects against neurovascular abnormalities in retinas from diabetic rats, which suggests a novel strategy for preventing diabetic retinopathy. Graphical abstract.


Assuntos
Barreira Hematorretiniana/enzimologia , D-Aminoácido Oxidase/biossíntese , Retinopatia Diabética/prevenção & controle , Células Ganglionares da Retina/enzimologia , Animais , Barreira Hematorretiniana/patologia , Permeabilidade Capilar , D-Aminoácido Oxidase/genética , Metilação de DNA , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/enzimologia , Retinopatia Diabética/enzimologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Indução Enzimática , Masculino , Degeneração Neural , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Células Ganglionares da Retina/patologia , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3A/metabolismo
5.
Arch Toxicol ; 94(1): 77-87, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712840

RESUMO

The main purpose of this study was to verify the hypothesis that cognitive dysfunctions induced by arsenic exposure were related to the changes of D-serine metabolism in the hippocampus of offspring mice. Mother mice and their offsprings were exposed to 0, 15, 30 or 60 mg/L sodium arsenite (NaAsO2) through drinking water from the first day of gestation until the end of lactation. D-serine levels in the hippocampus of mice of postnatal day (PND) 10, 20 and 40 were examined by high-performance liquid chromatography. Expressions of serine racemase (SR), D-amino acid oxidase (DAAO), alanine-serine-cysteine transporter-1 (asc-1) and subunits of N-methyl-D-aspartate receptors (NMDARs) in the hippocampus of mice were measured by Western blot and Real-time RT-PCR. Results showed that arsenic exposure significantly decreased D-serine levels of mice exposed to 60 mg/L NaAsO2. Exposure to 60 mg/L NaAsO2 could inhibit both mRNA and protein expression of SR, whereas increase in the protein expression of DAAO, only enhances the mRNA levels of DAAO of PND 20 mice. In addition, arsenic exposure could upregulate protein expression of asc-1. The mRNA and protein levels of NR1, NR2A and NR2B in the hippocampus of mice were down-regulated by arsenic. Findings from this study suggested that SR might play an important role in the reduction of D-serine levels caused by arsenic exposure, which might further influence the levels of NMDAR subunits especially on PND20, and then might disturb the function of NMDARs and cause the deficits of learning and memory ability of offspring mice.


Assuntos
Arsênio/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Serina/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Feminino , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Teste do Labirinto Aquático de Morris , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Nanomedicine ; 24: 102122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31706037

RESUMO

The flavoenzyme D-amino acid oxidase (DAAO) represents a potentially good option for cancer enzyme prodrug therapy as it produces H2O2 using D-amino acids as substrates, compounds present at low concentration in vivo and that can be safely administered to regulate H2O2 production. We optimized the cytotoxicity of the treatment by: i) using an efficient enzyme variant active at low O2 and D-alanine concentrations (mDAAO); ii) improving the stability and half-life of mDAAO and the enhanced permeability and retention effect by PEGylation; and iii) inhibiting the antioxidant cellular system by a heme oxygenase-1 inhibitor (ZnPP). A very low amount of PEG-mDAAO (10 mU, 50 ng of enzyme) induces cytotoxicity on various tumor cell lines. Notably, PEG-mDAAO seems well suited for in vivo evaluation as it shows the same cytotoxicity at air saturation (21%) and 2.5% O2, a condition resembling the microenvironment found in the central part of tumors.


Assuntos
Basidiomycota/enzimologia , D-Aminoácido Oxidase , Proteínas Fúngicas , Polietilenoglicóis , Engenharia de Proteínas , Animais , Basidiomycota/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
7.
J Ind Microbiol Biotechnol ; 46(11): 1461-1467, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31289973

RESUMO

Enzyme immobilization is widely used for large-scale industrial applications. However, the weak absorption through physical methods limits the recovery ability. Here, affinity-binding immobilization of enzymes was explored using a silica-specific affinity peptide (SAP) as a fusion tag to intensify the binding force between the enzyme and mesoporous silica (MPS) carrier. D-amino acid oxidase (DAAO) of Rhodosporidium toruloides was used as a model enzyme. The optimal screened SAP (LPHWHPHSHLQP) was selected from a M13 phage display peptide library and fused to the C-terminal of DAAO to obtain fused DAAOs with one, two and three SAP tags, respectively. The activity of DAAO-SAP-MPS was superior comparing with DAAO-2SAP-MPS and DAAO-3SAP-MPS; meanwhile DAAO-SAP-MPS shows 36% higher activity than that of DAAO-MPS. Fusion with one SAP improved the thermal stability with a 10% activity increase for immobilized DAAO-SAP-MPS compared to that of DAAO-MPS at 50 °C for 3 h. Moreover, the activity recovery of immobilized DAAO-SAP-MPS was 25% higher in operation stability assessment after six-batch conversions of cephalosporin to glutaryl-7-amino cephalosporanic acid than that of DAAO-MPS.


Assuntos
Aminoácidos/metabolismo , D-Aminoácido Oxidase/metabolismo , Peptídeos/metabolismo , Cefalosporinas/metabolismo , D-Aminoácido Oxidase/genética , Dióxido de Silício/química
8.
Am J Physiol Heart Circ Physiol ; 317(3): H617-H626, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31298558

RESUMO

We previously described a novel "chemogenetic" animal model of heart failure that recapitulates a characteristic feature commonly found in human heart failure: chronic oxidative stress. This heart failure model uses a chemogenetic approach to activate a recombinant yeast d-amino acid oxidase in rat hearts in vivo to generate oxidative stress, which then rapidly leads to the development of a dilated cardiomyopathy. Here we apply this new model to drug testing by studying its response to treatment with the angiotensin II (ANG II) receptor blocker valsartan, administered either alone or with the neprilysin inhibitor sacubitril. Echocardiographic and [18F]fluorodeoxyglucose positron emission tomographic imaging revealed that valsartan in the presence or absence of sacubitril reverses the anatomical and metabolic remodeling induced by chronic oxidative stress. Markers of oxidative stress, mitochondrial function, and apoptosis, as well as classical heart failure biomarkers, also normalized following drug treatments despite the persistence of cardiac fibrosis. These findings provide evidence that chemogenetic heart failure is rapidly reversible by drug treatment, setting the stage for the study of novel heart failure therapeutics in this model. The ability of ANG II blockade and neprilysin inhibition to reverse heart failure induced by chronic oxidative stress identifies a central role for cardiac myocyte angiotensin receptors in the pathobiology of cardiac dysfunction caused by oxidative stress.NEW & NOTEWORTHY The chemogenetic approach allows us to distinguish cardiac myocyte-specific pathology from the pleiotropic changes that are characteristic of other "interventional" animal models of heart failure. These features of the chemogenetic heart failure model facilitate the analysis of drug effects on the progression and regression of ventricular remodeling, fibrosis, and dysfunctional signal transduction. Chemogenetic approaches will be highly informative in the study of the roles of redox stress in heart failure providing an opportunity for the identification of novel therapeutic targets.


Assuntos
Aminobutiratos/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Cardiomiopatia Dilatada/tratamento farmacológico , D-Aminoácido Oxidase/metabolismo , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Tetrazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , D-Aminoácido Oxidase/genética , Dependovirus/genética , Modelos Animais de Doenças , Combinação de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Proteínas Fúngicas/genética , Vetores Genéticos/administração & dosagem , Injeções Intravenosas , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neprilisina/antagonistas & inibidores , Regiões Promotoras Genéticas , Ratos Wistar , Troponina T/genética , Valsartana , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
9.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30659069

RESUMO

d-amino acid oxidase (DAO) is a flavin adenine dinucleotide (FAD)-dependent oxidase metabolizing neutral and polar d-amino acids. Unlike l-amino acids, the amounts of d-amino acids in mammalian tissues are extremely low, and therefore, little has been investigated regarding the physiological role of DAO. We have recently identified DAO to be up-regulated in cellular senescence, a permanent cell cycle arrest induced by various stresses, such as persistent DNA damage and oxidative stress. Because DAO produces reactive oxygen species (ROS) as byproducts of substrate oxidation and the accumulation of ROS mediates the senescence induction, we explored the relationship between DAO and senescence. We found that inhibition of DAO impaired senescence induced by DNA damage, and ectopic expression of wild-type DAO, but not enzymatically inactive mutant, enhanced it in an ROS-dependent manner. Furthermore, addition of d-amino acids and riboflavin, a metabolic precursor of FAD, to the medium potentiated the senescence-promoting effect of DAO. These results indicate that DAO promotes senescence through the enzymatic ROS generation, and its activity is regulated by the availability of its substrate and coenzyme.


Assuntos
Senescência Celular/fisiologia , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aminoácidos/metabolismo , Arginina/metabolismo , Senescência Celular/efeitos dos fármacos , Coenzimas/metabolismo , D-Aminoácido Oxidase/antagonistas & inibidores , Dano ao DNA/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Oxirredução , Interferência de RNA , Riboflavina/farmacologia , Serina/metabolismo , Transfecção
10.
Biotechnol Lett ; 40(1): 181-187, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29209893

RESUMO

OBJECTIVE: To design a fusion polypeptide combining functions of self-assembly and purification for immobilizing enzymes. RESULTS: A collagen-like polypeptide (CLP) was fused to an elastin-like polypeptide (ELP) through genetic engineering. CLP-ELP was separately fused to superoxide dismutase (SOD) and D-amino acid oxidase (DAAO). The recombinant enzymes were purified with using reversible phase transition. The interfering effect of H2O2 on the secondary structures of the recombinant enzymes was significantly reduced. The stability of the recombinant enzymes against denaturing by urea was improved. SOD-CLP-ELP exhibited a proteinaceous microporous network, and DAAO-CLP-ELP exhibited micro-clusters. The superoxide anion (•O2-) scavenging ability of SOD-CLP-ELP was 1.5 times that of SOD, and the catalytic efficiency of DAAO-CLP-ELP was 1.7 times that of DAAO. CONCLUSIONS: The advantages of the CLP-ELP-fused enzymes have been demonstrated and CLP-ELP can be used to immobilize other enzymes/proteins.


Assuntos
D-Aminoácido Oxidase/metabolismo , Enzimas Imobilizadas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase/metabolismo , Colágeno/genética , Colágeno/metabolismo , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , Elastina/genética , Elastina/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Peróxido de Hidrogênio/metabolismo , Ligação Proteica , Desnaturação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Superóxido Dismutase/química , Superóxido Dismutase/genética , Ureia/metabolismo
11.
Biotechnol Lett ; 38(3): 489-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26601980

RESUMO

OBJECTIVES: An easy-to-operate method of using R-ω-transaminase has been developed by fusing it to an elastin-like polypeptide and forming a complex with D-amino acid oxidase. RESULTS: R-ω-Transaminase (R-ω-TA) was fused to an elastin-like polypeptide (ELP) through genetic engineering of the enzyme. The enzyme was purified through reversible phase transition. For the single-enzyme system, in the reaction media, ELP-R-ω-TA self-assembled and formed enzyme clusters of micrometer size, and the substrate, (R)-1-phenylethylamine, also formed droplets of micrometer size. Intimate contact of the enzyme clusters and the substrate droplets provided a microenvironment of high substrate concentration close to the enzyme, facilitating the diffusion of substrate molecules into the active sites. For the two-enzyme system, ELP-R-ω-TA and ELP-fusion D-amino acid oxidase assembled to form two-enzyme complexes, forming clusters with a size much larger size than that of single enzymes. The efficiency of the combined enzymes for producing the product was 99.6 %. CONCLUSIONS: The two-enzyme complexes significantly improved the catalytic efficiency. Potentially, the two enzymes forming complex clusters can facilitate the immobilization of the two enzymes together through non covalent methods by entrapping in porous supports.


Assuntos
Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transaminases/genética , Transaminases/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Elastina/genética , Elastina/metabolismo , Substâncias Macromoleculares , Multimerização Proteica , Proteínas Recombinantes de Fusão/isolamento & purificação , Transaminases/isolamento & purificação
12.
J Biotechnol ; 212: 50-5, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26216181

RESUMO

An elastin-like polypeptide (ELP) was fused to D-amino acid oxidases (DAAO). ELP-DAAO exhibited a better solubility in aqueous solutions than DAAO, and its enzymatic activity is about 1.6 times that of DAAO. The stability of the proteins was investigated by interacting with urea at various concentrations. The circular dichroism and fluorescence spectra were measured. The results demonstrated that that ELP-DAAO exhibited a much better stability than DAAO, and ELP-DAAO has retained the α-helix content with a high percentage even at a high urea concentration. The results of this work have demonstrated that the ELP tag can be utilized to purify DAAO, in the meantime the solubility and stability of the enzyme are improved.


Assuntos
D-Aminoácido Oxidase , Elastina , Peptídeos , Dicroísmo Circular , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Espectrometria de Fluorescência , Ureia/química
13.
J Pharm Biomed Anal ; 116: 94-100, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25749303

RESUMO

D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression.


Assuntos
D-Aminoácido Oxidase/análise , D-Aminoácido Oxidase/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel Bidimensional/métodos , Animais , D-Aminoácido Oxidase/genética , Humanos , Células LLC-PK1 , Espectrometria de Massas/métodos , Ligação Proteica/fisiologia , Suínos
14.
Biochim Biophys Acta ; 1854(9): 1150-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25701391

RESUMO

In the brain, d-amino acid oxidase plays a key role in modulating the N-methyl-d-aspartate receptor (NMDAR) activation state, catalyzing the stereospecific degradation of the coagonist d-serine. A relationship between d-serine signaling deregulation, NMDAR dysfunction, and CNS diseases is presumed. Notably, the R199W substitution in human DAAO (hDAAO) was associated with familial amyotrophic lateral sclerosis (ALS), and further coding substitutions, i.e., R199Q and W209R, were also deposited in the single nucleotide polymorphism database. Here, we investigated the biochemical properties of these different hDAAO variants. The W209R hDAAO variant shows an improved d-serine degradation ability (higher activity and affinity for the cofactor FAD) and produces a greater decrease in cellular d/(d+l) serine ratio than the wild-type counterpart when expressed in U87 cells. The production of H2O2 as result of excessive d-serine degradation by this hDAAO variant may represent the factor affecting cell viability after stable transfection. The R199W/Q substitution in hDAAO altered the protein conformation and enzymatic activity was lost under conditions resembling the cellular ones: this resulted in an abnormal increase in cellular d-serine levels. Altogether, these results indicate that substitutions that affect hDAAO functionality directly impact on d-serine cellular levels (at least in the model cell system used). The pathological effect of the expression of the R199W hDAAO, as observed in familial ALS, originates from both protein instability and a decrease in kinetic efficiency: the increase in synaptic d-serine may be mainly responsible for the neurotoxic effect. This information is expected to drive future targeted treatments.


Assuntos
D-Aminoácido Oxidase/química , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Ligantes , Conformação Proteica , Relação Estrutura-Atividade , Transfecção
15.
Toxicology ; 325: 189-99, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25242007

RESUMO

The aim of this study was to explore the mechanisms of lead neurotoxicity by focusing on the alteration of D-serine metabolism in the hippocampus of mice at the early life. Mother mice and their offspring were exposed to 0, 0.5, 1.0 and 2.0 g/L lead in lead acetate via drinking water from the first day of gestation until the postnatal day (PND) 40. Morris water maze was used to measure the spatial learning and memory ability of PND 40 mice. Expressions of serine racemase (SR), D-amino acid oxidase (DAAO), alanine-serine- cysteine transporter-1 (asc-1) and subunits of N-methyl-D-aspartate receptor (NMDAR) in the hippocampus of PND 10, 20 and 40 mice were examined by western blot and real time RT-PCR. Findings from this study disclosed that the spatial learning ability of mice tested by place trial could be significantly impaired by 0.5 g/L lead exposure, and the spatial memory ability tested by probe trail could be impaired by 1.0 g/L lead exposure. Exposure to 2.0 g/L lead in the water could significantly inhibit the protein and mRNA expression of SR; conversely enhance the expression of DAAO protein and mRNA in the hippocampus during the early developmental stages. However, the protein expressions of DAAO and asc-1 in the hippocampus were significantly enhanced by 0.5 g/L lead exposure at different developmental stages. On the other hand, the protein and mRNA expressions of both NR1 and NR2A were inhibited significantly by 1.0 g/L lead exposure since PND 10, and by 0.5 g/L lead exposure since PND 20. Noteworthy, the protein expression of NR2B was inhibited significantly by 0.5 g/L lead exposure in PND 10 mice, and by 1.0 g/L lead exposure in PND 20 mice, but there was no significant group difference in PND 40 mice. Meanwhile, expressions of asc-1 and NR2B mRNA were not affected obviously by lead exposure. In conclusion, chronic lead exposure during brain development might affect D-serine metabolism by enhancing its degradation, which might be related to the inhibited expression of NMDAR subunits, and furthermore contribute to deficits in learning and memory ability in mice.


Assuntos
Hipocampo/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Chumbo na Infância/etiologia , Compostos Organometálicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Serina/metabolismo , Fatores Etários , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Relação Dose-Resposta a Droga , Feminino , Idade Gestacional , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Intoxicação do Sistema Nervoso por Chumbo na Infância/genética , Intoxicação do Sistema Nervoso por Chumbo na Infância/metabolismo , Intoxicação do Sistema Nervoso por Chumbo na Infância/fisiopatologia , Memória/efeitos dos fármacos , Camundongos , Gravidez , RNA Mensageiro/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Aprendizagem Espacial/efeitos dos fármacos
16.
FEBS J ; 281(3): 708-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24237903

RESUMO

Human D-amino acid oxidase (EC 1.4.3.3; hDAAO) is a peroxisomal flavoenzyme significantly enriched in the mammalian brain. hDAAO has been proposed to play (with serine racemase; EC 5.1.1.18) an essential role in the catabolism of D-serine, an 'atypical' key signalling molecule that acts as allosteric activator of the N-methyl-D-aspartate-type glutamate receptor (NMDAr). hDAAO and its interacting partner pLG72 have been related to schizophrenia, a highly disabling psychiatric disorder in which a dysfunction of NMDA-mediated neurotransmission is widely assumed to occur. We previously demonstrated that the D-serine cellular concentration depends on hDAAO and pLG72 expression levels and that newly-synthesized hDAAO interacts with its modulator in the cytosol, being progressively destabilized and inactivated. To obtain insight into the mechanisms regulating cellular D-serine levels, we investigated the degradation pathways of hDAAO and pLG72 in U87 glioblastoma cells stably expressing enhanced yellow fluorescent protein-hDAAO (peroxisomal), hDAAO-enhanced yellow fluorescent protein (cytosolic) or pLG72-enhanced cyan fluorescent protein (mitochondrial) proteins. hDAAO is a long-lived protein: the peroxisomal fraction of this flavoprotein is degraded via the lysosomal/endosomal pathway (and blocking this pathway increases the cellular hDAAO activity and decreases D-serine levels), whereas the cytosolic portion is ubiquitinated and targeted to the proteasome. By contrast, pLG72 shows a rapid turnover (t(1/2) ≈ 25-40 min) and is degraded via the proteasome system, albeit not ubiquitinated. Overexpression of pLG72 increases the turnover of hDAAO, in turn playing a protective role against excessive D-serine depletion.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , D-Aminoácido Oxidase/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Citosol/enzimologia , Citosol/metabolismo , D-Aminoácido Oxidase/genética , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Endossomos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Inibidores de Proteases/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão , Ubiquitinação/efeitos dos fármacos
17.
PLoS One ; 8(11): e80612, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260435

RESUMO

We examined the influence of dietary fermentable protein (fCP) and fermentable carbohydrates (fCHO) on the colonic epithelial response to histamine in pigs. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP/low fCHO, low fCP/high fCHO, high fCP/low fCHO and high fCP/high fCHO. After 21-23 days, the pigs were killed and tissue from the proximal colon was stimulated with carbachol, histamine, PGE2 or sodium hydrogen sulphide in Ussing chambers. Changes in short-circuit current and tissue conductance were measured. Diamine oxidase, histamine N-methyltransferase, stem cell growth factor receptor, Fc-epsilon receptor I and cystic fibrosis transmembrane conductance regulator gene expression was determined. Activities of diamine oxidase and histamine N-methyltransferase and numbers of colonic mast cells were measured. The change in the short-circuit current in response to histamine was lower (P = 0.002) and tended to be lower for PGE2 (P = 0.053) in high fCP groups compared to low fCP groups, irrespective of fCHO. Additionally, the change in tissue conductance after the application of histamine was lower (P = 0.005) in the high fCP groups. The expression of histamine N-methyltransferase mRNA (P = 0.033) and the activities of diamine oxidase (P = 0.001) and histamine N-methyltransferase (P = 0.006) were higher with high fCP in comparison with low fCP. The expression of mast cell markers, stem cell growth factor receptor (P = 0.005) and Fc-epsilon receptor I (P = 0.049) was higher with high fCP diets compared to diets low in fCP, whereas the mast cell count did not differ between groups. The expression of the cystic fibrosis transmembrane conductance regulator was reduced (P = 0.001) with high fCP diets compared to low fCP diets. The lower epithelial response to histamine and PGE2 and elevated epithelial histamine inactivation suggests an adaptation to high fCP diets.


Assuntos
Colo/metabolismo , Dieta , Glycine max/química , Histamina/metabolismo , Mucosa Intestinal/metabolismo , Ração Animal , Animais , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Ativação Enzimática , Feminino , Expressão Gênica , Masculino , Refeições , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Suínos , Desmame
18.
J Neurol ; 260(11): 2917-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24085347

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting both upper and lower motor neurons. The prognosis for ALS is extremely poor, but there is a limited course of treatment with only one approved medication. A most striking recent discovery is that TDP-43 is identified as a key molecule that is associated with both sporadic and familial forms of ALS. TDP-43 is not only a pathological hallmark, but also a genetic cause for ALS. Subsequently, a number of ALS-causative genes have been found. Above all, the RNA-binding protein, such as FUS, TAF15, EWSR1 and hnRNPA1, have structural and functional similarities to TDP-43, and physiological functions of some molecules, including VCP, UBQLN2, OPTN, FIG4 and SQSTM1, are involved in a protein degradation system. These discoveries provide valuable insight into the pathogenesis of ALS, and open doors for developing an effective disease-modifying therapy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Predisposição Genética para Doença/genética , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/genética , Animais , Ataxinas , Proteínas Relacionadas à Autofagia , Proteína C9orf72 , Proteínas de Ciclo Celular/genética , D-Aminoácido Oxidase/genética , Proteínas de Ligação a DNA/genética , Flavoproteínas/genética , Humanos , Proteínas de Membrana Transportadoras , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Monoéster Fosfórico Hidrolases , Profilinas/genética , Proteínas/genética , Proteína FUS de Ligação a RNA/genética , Receptores sigma/genética , Fator de Transcrição TFIIIA/genética , Ubiquitinas/genética , Proteína com Valosina , Receptor Sigma-1
19.
Can J Microbiol ; 59(9): 598-603, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24011342

RESUMO

Chronic Pseudomonas aeruginosa infections remain the leading cause of lung dysfunction and mortality for cystic fibrosis (CF) patients. Many other bacteria inhabit the CF lung, but P. aeruginosa utilizes novel strategies that allow it to colonize this environment as the predominant bacterial pathogen. D-Amino acid dehydrogenase encoded by dadA is highly expressed by P. aeruginosa within the CF lung, and it is required for optimal production of hydrogen cyanide by some CF-adapted isolates. To better understand the increased significance of D-amino acid dehydrogenase in P. aeruginosa physiology, we characterized the contribution of the dad operon to virulence factor production. In this study, we determined that DadA is required for optimal production of pyocyanin, pyoverdine, and rhamnolipid by CF-adapted and non-CF-adapted isolates of P. aeruginosa. In addition, DadA is required for optimal production of alginate, biofilm formation, and virulence of a CF-adapted isolated of P. aeruginosa in an alfalfa seedling model of infection. Taken together, the results indicate that DadA plays a pleiotropic role in the production of important virulence factors by P. aeruginosa.


Assuntos
Fibrose Cística/microbiologia , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/metabolismo , Biofilmes , Fibrose Cística/complicações , Humanos , Medicago sativa , Óperon , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa/genética , Virulência
20.
Biochim Biophys Acta ; 1832(3): 400-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23219954

RESUMO

Considering the key role of d-serine in N-methyl-d-aspartate receptor-mediated neurotransmission, it is highly relevant to define the role that enzymes play in d-serine synthesis and degradation. In particular, the details of regulation of the d-serine catabolic human enzyme d-amino acid oxidase (hDAAO) are unknown although different lines of evidence have shown it to be involved in schizophrenia susceptibility. Here we investigated the effect of three single nucleotide polymorphisms and known mutations in hDAAO, i.e., D31H, R279A, and G331V. A very low amount of soluble G331V hDAAO is produced in E. coli cells: the recombinant variant enzyme is fully active. Human U87 glioblastoma cells transiently transfected for G331V hDAAO show a low viability, a significant amount of protein aggregates, and augmented apoptosis. The recombinant D31H and R279A hDAAO variants do not show alterations in tertiary and quaternary structures, thermal stability, binding affinity for inhibitors, and the modulator pLG72, whereas the kinetic efficiency and the affinity for d-serine and for FAD were higher than for the wild-type enzyme. While these effects for the substitution at position 31 cannot be structurally explained, the R279A mutation might affect the hDAAO FAD-binding affinity by altering the "structurally ambivalent" peptide V47-L51. In agreement with the observed increased activity, expression of D31H and R279A hDAAO variants in U87 cells produces a higher decrease in cellular d/(d+l) serine ratio than the wild-type counterpart. In vivo, these substitutions could affect cellular d-serine concentration and its release at synapsis and thus might be relevant for schizophrenia susceptibility.


Assuntos
D-Aminoácido Oxidase/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Esquizofrenia/genética , Apoptose/genética , Western Blotting , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Clorpromazina/química , Clorpromazina/metabolismo , Dicroísmo Circular , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Estabilidade Enzimática/genética , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Microscopia Confocal , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fatores de Risco , Esquizofrenia/enzimologia , Serina/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA