Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
ACS Appl Mater Interfaces ; 13(35): 41498-41506, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435498

RESUMO

Covalent organic frameworks (COFs) have emerged as promising materials for biomedical applications, but their functions remain to be explored and the potential toxicity concerns should be resolved. Herein, it is presented that carbonization significantly enhances the fluorescence quenching efficiency and aqueous stability of nanoscale COFs. The probes prepared by physisorbing dye-labeled nucleic acid recognition sequences onto the carbonized COF nanoparticles (termed C-COF) were employed for cell imaging, which could effectively light up biomarkers (survivin and TK1 mRNA) in living cells. The C-COF has enhanced photothermal conversion capacity, indicating that the probes are also promising candidates for photothermal therapy. The potential toxicity concern from the aromatic rigid building units of COFs was detoured by carbonization. Overall, carbonization is a promising strategy for developing biocompatible and multifunctional COF-derived nanoprobes for biomedical applications. This work may inspire more versatile COF-derived nanoprobes for bioanalysis and nanomedicine.


Assuntos
Biomarcadores Tumorais/análise , DNA/química , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Nanopartículas/química , RNA Mensageiro/análise , Biomarcadores Tumorais/genética , Carbono/química , Carbono/toxicidade , Linhagem Celular Tumoral , DNA/toxicidade , Corantes Fluorescentes/toxicidade , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/toxicidade , Estruturas Metalorgânicas/toxicidade , Microscopia Confocal , Microscopia de Fluorescência , Nanopartículas/toxicidade , Neoplasias/diagnóstico por imagem , RNA Mensageiro/genética , Survivina/genética , Timidina Quinase/genética
2.
ACS Appl Mater Interfaces ; 12(17): 19295-19306, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32239907

RESUMO

Recently, pH-sensitive polymers have received extensive attention in tumor therapy. However, the rapid response to pH changes is the key to achieving efficient treatment. Here, a novel shielding system with a rapidly pH-responsive polymer (PAMT) is synthesized by click reaction between poly(γ-allyl-l-glutamate) and thioglycolic acid or 2-(Boc-amino)ethanethiol. The zwitterionic biodegradable polymer PAMT, which is negatively charged at physiological pH, can be used to shield positively charged nanoparticles. PAMT is electrostatically attached to the surface of the positively charged PEI/pDNA complex to form a ternary complex. The zwitterionic PAMT-shielded complex exhibits rapid charge conversion when the pH decreases from 7.4 to 6.8. For the in vivo tumor inhibition experiment, PAMT/PEI/shVEGF injected intravenously shows a more significant inhibitory effect on tumor growth. The excellent results are mainly attributed to introduction of the zwitterionic copolymer PAMT, which can shield the positively charged PEI/shVEGF complex in physiological conditions, while the surface potential of the shielded complexes changes to a positive charge in the acidic tumor environment.


Assuntos
DNA/uso terapêutico , Portadores de Fármacos/química , Neoplasias/terapia , Plasmídeos/uso terapêutico , Ácido Poliglutâmico/análogos & derivados , Animais , Linhagem Celular Tumoral , DNA/genética , DNA/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Técnicas de Transferência de Genes , Terapia Genética/métodos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Plasmídeos/toxicidade , Polietilenoimina/química , Polietilenoimina/toxicidade , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/toxicidade , RNA Antissenso/genética , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Anal Chem ; 92(2): 1850-1855, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31867957

RESUMO

Highly efficient cellular transfection and intracellular signal amplification is a prerequisite for low-abundant microRNA (miRNA) imaging and biomedical application. Herein, we report a functional cancer cell membrane (CM) vesicle, Au-P/DSN@CM (DSN, double-specific nucleases), which consists of Au nanoparticles modified with three types of fluorescent miRNA detection probes (Au-P) and DSN that simultaneously encapsulate in cancer CM. We find that the Au-P/DSN@CM could specifically target the cancer cell and transfect the cell with higher efficiency than Au nanoparticles. The internalized Au-P/DSN@CM could further specifically recognize the target miRNA and induce DSN-assisted target recycle signal amplification, leading to multiple miRNA simultaneous detection with high sensitivity. It successfully detects oncogenic miRNAs in MCF-7 cells with high sensitivity and is amenable to monitor the dynamic expression change of oncogenic miRNAs in cancer cells. Our study represents a promising gene delivery vector for cancer diagnosis and potential therapy.


Assuntos
Membrana Celular/química , MicroRNAs/análise , DNA/química , DNA/genética , DNA/toxicidade , Sondas de DNA/química , Sondas de DNA/genética , Sondas de DNA/toxicidade , Endonucleases/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Ouro/química , Ouro/toxicidade , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia de Fluorescência/métodos , Hibridização de Ácido Nucleico , Espectrometria de Fluorescência/métodos
4.
Analyst ; 144(24): 7250-7262, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31687670

RESUMO

Variations in the intracellular expression level of cancer-related microRNAs (miRNAs) are connected with worsening tumor progression. A simple, accurate, and sensitive analytical method for the imaging and detection of intracellular miRNA is still a great challenge due to the low abundance of miRNAs and the complexity of intracellular environments. In this work, target miRNA (miRNA)-mediated catalytic hairpin assembly (CHA)-induced gold nanocage (GNC)-hairpin DNA1 (hpDNA1)-hpDNA2-GNC nanostructures were designed for surface-enhanced Raman scattering (SERS) detection and imaging of the specific miR-125a-5p in the normal lung epithelial cell line (BEAS-2B cells) and lung cancer cell line (A549 cells). The finite difference time domain (FDTD) simulations showed that the polymer of GNCs possessed a much stronger electromagnetic field in nanogaps than that of single GNC, theoretically confirming the rational design of the CHA assembly strategy. Using this method, miR-125a-5p can be detected in a wide linear range with a detection limit of 43.96 aM and high selectivity over other miRNAs in vitro. Moreover, SERS imaging successfully detected and distinguished the expression levels of intracellular miR-125a-5p in BEAS-2B cells and A549 cells. The results obtained by the SERS assay were consistent with those obtained by the real-time quantitative polymerase chain reaction (qRT-PCR). This method can offer a powerful strategy for the imaging and quantitative detection of various types of biomolecules in vitro as well as in living cells.


Assuntos
Biomarcadores Tumorais/análise , DNA/química , Nanopartículas Metálicas/química , MicroRNAs/análise , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , DNA/genética , DNA/toxicidade , Ouro/química , Ouro/toxicidade , Humanos , Sequências Repetidas Invertidas , Limite de Detecção , Nanopartículas Metálicas/toxicidade , Modelos Químicos , Soroalbumina Bovina/química , Soroalbumina Bovina/toxicidade
5.
Anal Chem ; 91(22): 14681-14690, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31617347

RESUMO

Rapid, accurate, and safe screening of foodborne pathogenic bacteria is essential to effectively control and prevent outbreaks of foodborne illness. Fluorescent sensors constructed from carbon dots (CDs) and nanomaterial-based quenchers have provided an innovative method for screening of pathogenic bacteria. Herein, an ultrasensitive magnetic fluorescence aptasensor was designed for separation and detection of Staphylococcus aureus (S. aureus). Multicolor fluorescent CDs with a long fluorescent lifetime (6.73 ns) and high fluorescence stability were synthesized using a facile hydrothermal approach and modified cDNA as a highly sensitive fluorescent probe. CD fluorescence was quenched by Fe3O4 + aptamer via fluorescence resonance energy transfer (FRET). Under optimal conditions, the FRET-based aptasensor can detect S. aureus accompanied by a wide linear range of 50-107 CFU·mL-1 and a detection limit of 8 CFU·mL-1. Compared with other standard methods, this method was faster and more convenient, and the entire test was finished within 30 min. The capability of the aptasensor was simultaneously investigated on food samples. Additionally, the developed CDs exhibited excellent biocompatibility and were thus applied as fluorescent probes for bioimaging both in vitro and in vivo. This new platform provided an excellent application of the CDs for detecting and bioimaging pathogenic bacteria.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Pontos Quânticos/química , Staphylococcus aureus/isolamento & purificação , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/toxicidade , Carbono/química , Carbono/toxicidade , DNA/química , DNA/toxicidade , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/toxicidade , Contaminação de Alimentos/análise , Sucos de Frutas e Vegetais/microbiologia , Células Hep G2 , Humanos , Limite de Detecção , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Camundongos Nus , Leite/microbiologia , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Fenilenodiaminas/química , Fenilenodiaminas/toxicidade , Pontos Quânticos/toxicidade , Staphylococcus aureus/química
6.
Hum Exp Toxicol ; 38(8): 983-991, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31064220

RESUMO

The principal impediment to gene therapy is the development of efficient, nontoxic gene carriers that can handle and deliver foreign genetic materials into various cell types, including healthy and cancerous cells. Poly-l-lysine (PLL) polymers are one of the most favorable gene carriers among nonviral vectors, and PLL had low transfection and safety issues. The purpose of this study was to measure cellular toxicity, DNA damage, and apoptotic effects of PLL nanoparticles. Neuro2A mammalian cells were cultured and exposed to PLL/DNA complexes at different polymer/DNA ratios (C/P ratio 2 and 6) for 24 h. To evaluate metabolic activity, genotoxicity, and apoptotic influences of PLL nanoparticle, the following experimental methods were employed, in order: 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), DNA damage (COMET analysis) assay, and sub-G1 peak apoptosis assay. Our data indicate that toxicity is concentration dependent and a high concentration of polymer declined the metabolic activity. In addition, largest complexes (C/P 6 in HEPES buffered saline buffer) have slighter negative impact on metabolic activity. In agreement with our cytotoxicity data, apoptotic assay result represented that increase in size of PLL/DNA complexes decrease the number of apoptotic cells. Also, there was a remarkable increase in percent tail DNA of Neuro2A cells treated with higher concentration of PLL and its polyplexes. The present study demonstrated that PLL/DNA complexes caused cytotoxic, apoptotic, and genotoxic effects in a dose-dependent and weight ratio-dependent manner, which also affected the size of polyplexes.


Assuntos
DNA/toxicidade , Nanopartículas/toxicidade , Polilisina/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Camundongos , Plasmídeos
7.
Analyst ; 144(9): 2994-3004, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30892312

RESUMO

The human telomerase reverse transcriptase catalytic subunit (hTERT) is the rate-limiting subunit of the telomerase holoenzyme. Down-regulating the expression of hTERT mRNA by antisense oligonucleotides would reduce the expression of hTERT, inhibit telomerase activity, and impair the growth of cancer cells in vitro. In this work, we propose a locked nucleic acid-functionalized gold nanoparticle flare probe (AuNP-probe). After transferring these probes into cells by endocytosis of the gold nanoparticles, the binding process of the antisense locked nucleic acid with hTERT mRNA along with gene regulation can be visualized by fluorescence recovery of flare-sequences. A significant decline in hTERT mRNA levels and the hTERT content occurred in cancer cells after treatment with the AuNP-probes, and only approximately 25% of the original level of hTERT mRNA remained after 72 h. AuNP-probe treated cancer cells were arrested in the G1 phase of the cell cycle and underwent apoptosis; cell viability decreased obviously compared with that of telomerase-negative normal cells.


Assuntos
DNA/química , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Carbocianinas/química , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/toxicidade , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Fluorescência , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/toxicidade , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/toxicidade , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/toxicidade , RNA Mensageiro/genética , Telomerase/antagonistas & inibidores , Telomerase/genética , Fatores de Tempo
8.
ACS Sens ; 3(12): 2702-2708, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30460840

RESUMO

DNA fluorescent probes are versatile tools that are widely used for biological detection in tubes. Using DNA probes in living systems, however, represents a significant challenge because of the endogenous nuclease-induced DNA degradation and strong background fluorescence in complex biological environments. Here, we show that assembling DNA probes into core-satellite gold nanoparticle (AuNP) superstructures could unprecedentedly enhance enzymatic stability and reduce background interference. The embedded DNA probes are protected from interaction with nuclease, eliminating the enzymatic degradation. In the meantime, the AuNP superstructures show extremely high quenching efficiency (>98%) toward the embedded DNA probes, whose fluorescence can be instantly turned on by the target binding, resulting in high signal-to-background ratio. To demonstrate these distinct properties, we made use of the assembled nanoprobes to monitor the ATP levels under different stimuli in living cells. The assembly strategy leads to a new opportunity for accurately sensing targets in living systems.


Assuntos
Sondas de DNA/química , DNA/química , Nanopartículas Metálicas/química , Trifosfato de Adenosina/análise , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/toxicidade , Carbocianinas/química , Carbocianinas/toxicidade , Linhagem Celular Tumoral , DNA/toxicidade , Sondas de DNA/toxicidade , Desoxirribonuclease I/química , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Ouro/química , Ouro/toxicidade , Humanos , Nanopartículas Metálicas/toxicidade , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Estudo de Prova de Conceito
9.
Anal Chem ; 90(22): 13188-13192, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380845

RESUMO

The efficient detection and in situ monitoring of telomerase activity is of great importance for cancer diagnosis and biomedical research. Here we report for the first time that the development of a novel multivalent self-assembled DNA polymer, constructed through telomerase primer sequence (ITS) triggered hybridization chain assembly using two functional hairpin probes (tumor-trageting aptamer modified H1 and signal probe modified H2), for sensitive detection and imaging of telomerase activity in living cells. After internalizing into the tumor cells by multivalent aptamer targeting, the ITS on DNA polymers can be elongated by intracellular telomerase to generate telomere repeat sequences that are complementary with the signal probe, which can proceed along the DNA polymers, and gradually light up the whole DNA polymers, leading to an enhanced fluorescence signal directly correlated with the activity of telomerase. Our results demonstrated that the developed DNA polymer show excellent performance for specifically detecting telomerase activity in cancer cells, dynamically monitoring the activity change of telomerase in response to telomerase-based drugs, and efficiently distinguishing cancer cells from normal cells. The proposed strategy may afford a valuable tool for the monitoring of telomerase activity in living cells and have great implications for biological and diagnostic applications.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Polímeros/química , Telomerase/análise , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/toxicidade , Carbocianinas/química , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , DNA/toxicidade , Ensaios Enzimáticos/métodos , Fluorescência , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Hibridização de Ácido Nucleico , Fosfoproteínas/metabolismo , Polímeros/metabolismo , Polímeros/toxicidade , Proteínas de Ligação a RNA/metabolismo , Nucleolina
12.
Toxicol Sci ; 159(1): 76-85, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28903493

RESUMO

The longevity of pain after surgery is debilitating and limits the recovery of patients. AYX1 is a double-stranded, unprotected, 23 base-pair oligonucleotide designed to reduce acute post-surgical pain and prevent its chronification with a single intrathecal perioperative dose. AYX1 mimics the DNA sequence normally bound by EGR1 on chromosomes, a transcription factor transiently induced in the dorsal root ganglia-spinal cord network following a noxious input. AYX1 binds to EGR1 and prevents it from launching waves of gene regulation that are necessary to maintain pain over time. A formulation suitable for an intrathecal injection of AYX1 was developed, including a specific ratio of AYX1 and calcium so the ionic homeostasis of the cerebrospinal fluid is maintained and no impact on neuromuscular control is produced upon injection. A GLP toxicology study in naïve Sprague Dawley rats was conducted using 3 dose levels up to the maximum feasible dose. Clinical observations, neurobehavioral observations, clinical pathology and histopathology of the nervous system and peripheral tissues were conducted. An additional nonGLP study was conducted in the spared nerve injury model of chronic neuropathic pain in which EGR1 is induced in the dorsal root ganglia and spinal cord. Similar testing was performed, including a modified Irwin test to assess a potential impact of AYX1 on autonomic nervous system responses, locomotion, activity, arousal, sensorimotor, and neuromuscular function. No AYX1-related adverse events were observed in any of the studies and the no-observed-adverse-effect-level was judged to be the maximum feasible dose.


Assuntos
DNA/administração & dosagem , DNA/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Líquido Cefalorraquidiano , DNA/metabolismo , Relação Dose-Resposta a Droga , Composição de Medicamentos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Homeostase , Injeções Espinhais , Masculino , Neuralgia/prevenção & controle , Ratos , Ratos Sprague-Dawley
13.
Anticancer Res ; 36(1): 81-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26722030

RESUMO

AIM: Eudragit® E 100 (EE100) was used to improve the transfection efficiency of polyethylenimine (PEI). MATERIALS AND METHODS: Mobility of PEI-DNA complexes with and without EE100 were visualized by agarose gel electrophoresis and their transfection efficiencies were investigated in KB human oral carcinoma cells by flow cytometry. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of transfected cells. RESULTS: Gel electrophoresis illustrated formation of complete complexes at N/P ratios above 5. PEI had the highest transfection efficiency at an N/P ratio of 15, whereas in combination with EE100, the transfection efficiency was highest at an N/P ratio of 7.5. High concentrations of EE100 in combination with PEI were found to reduce cell viability. CONCLUSION: The results show a synergistic action of EE100 in transfection of DNA at low N/P ratios compared to PEI alone.


Assuntos
Acrilatos/química , DNA/biossíntese , Neoplasias Bucais/genética , Polietilenoimina/química , Polímeros/química , Transfecção/métodos , Acrilatos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/toxicidade , Replicação do DNA , Relação Dose-Resposta a Droga , Eletroforese em Gel de Ágar , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Polímeros/toxicidade
14.
ACS Appl Mater Interfaces ; 7(14): 7542-51, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801088

RESUMO

Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.


Assuntos
DNA/genética , Metacrilatos/química , Nanocápsulas/química , Nanocápsulas/toxicidade , Nylons/química , Sulfadiazina/química , Transfecção/métodos , Cátions , Sobrevivência Celular/efeitos dos fármacos , Cristalização/métodos , DNA/administração & dosagem , DNA/toxicidade , Células HEK293 , Humanos , Células MCF-7 , Teste de Materiais , Nanocápsulas/ultraestrutura
15.
Biomacromolecules ; 16(4): 1390-400, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25756930

RESUMO

Polycations often suffer from the irreconcilable inconsistency between transfection efficiency and toxicity. Polymers with high molecular weight (MW) and cationic charge feature potent gene delivery capabilities, while in the meantime suffer from strong chemotoxicity, restricted intracellular DNA release, and low stability in vivo. To address these critical challenges, we herein developed pH-responsive, reversibly cross-linked, polyetheleneimine (PEI)-based polyplexes coated with hyaluronic acid (HA) for the effective and targeted gene delivery to cancer cells. Low-MW PEI was cross-linked with the ketal-containing linker, and the obtained high-MW analogue afforded potent gene delivery capabilities during transfection, while rapidly degraded into low-MW segments upon acid treatment in the endosomes, which promoted intracellular DNA release and reduced material toxicity. HA coating of the polyplexes shielded the surface positive charges to enhance their stability under physiological condition and simultaneously reduced the toxicity. Additionally, HA coating allowed active targeting to cancer cells to potentiate the transfection efficiencies in cancer cells in vitro and in vivo. This study therefore provides an effective approach to overcome the efficiency-toxicity inconsistence of nonviral vectors, which contributes insights into the design strategy of effective and safe vectors for cancer gene therapy.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Neoplasias/terapia , Animais , Reagentes de Ligações Cruzadas/química , DNA/genética , DNA/toxicidade , Endossomos/metabolismo , Terapia Genética/métodos , Vetores Genéticos/toxicidade , Células HeLa , Humanos , Ácido Hialurônico/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoimina/química
16.
Int J Nanomedicine ; 10: 1223-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25709444

RESUMO

PURPOSE: Nanostructured lipid carriers (NLC) represent an improved generation of lipid nanoparticles. They have specific nanostructures to accommodate drugs/genes, and thus achieve higher loading capacity. The aim of this study was to develop transferrin (Tf)-decorated NLC as multifunctional nanomedicine for co-delivery of paclitaxel (PTX) and enhanced green fluorescence protein plasmid. METHODS: Firstly, Tf-conjugated ligands were synthesized. Secondly, PTX- and DNA-loaded NLC (PTX-DNA-NLC) was prepared. Finally, Tf-containing ligands were used for the surface decoration of NLC. Their average size, zeta potential, drug, and gene loading were evaluated. Human non-small cell lung carcinoma cell line (NCl-H460 cells) was used for the testing of in vitro transfection efficiency, and in vivo transfection efficiency of NLC was evaluated on mice bearing NCl-H460 cells. RESULTS: Tf-decorated PTX and DNA co-encapsulated NLC (Tf-PTX-DNA-NLC) were nano-sized particles with positive zeta potential. Tf-PTX-DNA-NLC displayed low cytotoxicity, high gene transfection efficiency, and enhanced antitumor activity in vitro and in vivo. CONCLUSION: The results demonstrated that Tf-PTX-DNA-NLC can achieve impressive antitumor activity and gene transfection efficiency. Tf decoration also enhanced the active targeting ability of the carriers to NCl-H460 cells. The novel drug and gene delivery system offers a promising strategy for the treatment of lung cancer.


Assuntos
Antineoplásicos , Lipídeos , Neoplasias Pulmonares/tratamento farmacológico , Nanomedicina/métodos , Nanoestruturas , Transfecção/métodos , Transferrina , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , DNA/uso terapêutico , DNA/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/uso terapêutico , Portadores de Fármacos/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipídeos/química , Lipídeos/uso terapêutico , Lipídeos/toxicidade , Camundongos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Nanoestruturas/toxicidade , Paclitaxel/química , Paclitaxel/metabolismo , Paclitaxel/uso terapêutico , Paclitaxel/toxicidade , Transferrina/química , Transferrina/metabolismo , Transferrina/uso terapêutico , Transferrina/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Control Release ; 195: 162-175, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25204289

RESUMO

Many polycation-based gene delivery vectors show high transfection in vitro, but their cationic nature generally leads to significant toxicity and poor in vivo performance which significantly hampers their clinical applicability. Unlike conventional polycation-based systems, decationized polyplexes are based on hydrophilic and neutral polymers. They are obtained by a 3-step process: charge-driven condensation followed by disulfide crosslinking stabilization and finally polyplex decationization. They consist of a disulfide-crosslinked poly(hydroxypropyl methacrylamide) (pHPMA) core stably entrapping plasmid DNA (pDNA), surrounded by a shell of poly(ethylene glycol) (PEG). In the present paper the applicability of decationized polyplexes for systemic administration was evaluated. Cy5-labeled decationized polyplexes were evaluated for stability in plasma by fluorescence single particle tracking (fSPT), which technique showed stable size distribution for 48 h unlike its cationic counterpart. Upon the incubation of the polymers used for the formation of polyplexes with HUVEC cells, MTT assay showed excellent cytocompatibility of the neutral polymers. The safety was further demonstrated by a remarkable low teratogenicity and mortality activity of the polymers in a zebrafish assay, in great contrast with their cationic counterpart. Near infrared (NIR) dye-labeled polyplexes were evaluated for biodistribution and tumor accumulation by noninvasive optical imaging when administered systemically in tumor bearing mice. Decationized polyplexes exhibited an increased circulation time and higher tumor accumulation, when compared to their cationic precursors. Histology of tumors sections showed that decationized polyplexes induced reporter transgene expression in vivo. In conclusion, decationized polyplexes are a platform for safer polymeric vectors with improved biodistribution properties when systemically administered.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Neoplasias/metabolismo , Polímeros/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/farmacocinética , DNA/toxicidade , Estabilidade de Medicamentos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Proteínas de Fluorescência Verde/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos Nus , Tamanho da Partícula , Plasmídeos , Polímeros/química , Polímeros/farmacocinética , Polímeros/toxicidade , Distribuição Tecidual , Peixe-Zebra/embriologia
18.
Mol Biosyst ; 9(12): 3175-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24126459

RESUMO

Cationic polymers have been regarded as promising non-viral gene carriers because of their advantages over viral gene vectors, such as low cost, a high level of safety and easy manipulation. However, their poor transfection efficiency in the presence of serum and high toxicity are still limiting issues for clinical applications. In addition, the lack of adequate understanding of the gene delivery mechanism hinders their development to some extent. In this study, new polycations (PAPEs) consisting of a low generation polyamidoamine (PAMAM) core and branched polyethyleneimine (PEI-1.8k) outer layers were synthesized and their transfection activity and mechanism were studied. PAPEs were characterized by FTIR, (1)H NMR and gel permeation chromatography. PAPEs were able to self-assemble with pDNA and form spherical nanoparticles with sizes of 70-204 nm and zeta potentials of 13-33 mV. Importantly, the PAPE-pDNA complexes displayed lower cytotoxicity and higher transfection activity than PEI 25k in various cell lines, specifically in the presence of serum. The transfection mechanism was evaluated by endocytosis inhibition with specific inhibitors, time-dependent transfection, and intracellular trafficking inspection by CLSM. The high levels of transgene expression mediated by PAPEs were attributed to caveolae-mediated cellular uptake, the reduced entry into lysosomes and the entry into the nucleus through mitosis.


Assuntos
DNA/toxicidade , Poliaminas/química , Polietilenoimina/química , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , DNA/química , Células HEK293 , Células HeLa , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Transfecção
19.
Int J Pharm ; 454(1): 192-203, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23811132

RESUMO

Mixtures of two cationic proteins were used to prepare protein-DNA gel particles, employing associative phase separation and interfacial diffusion (Morán et al., 2009a). By mixing the two proteins, we have obtained particles that displayed higher loading efficiency and loading capacity values than those obtained in single-protein systems. However, nothing is known about the adverse effects on haemocompatibility and cytotoxicity of these protein-DNA gel particles. Here, we examined the interaction of protein-DNA gel particles obtained by two different preparation methods, and their components, with red blood cells and established cells. From a haemolytic point of view, these protein-DNA gel particles were demonstrated to be promising long-term blood-contacting medical devices. Safety evaluation with the established cell lines revealed that, in comparison with proteins in solution, the cytotoxicity was reduced when administered in the protein-DNA systems. In comparison with large-sized particles, the cytotoxic responses of small-sized protein-DNA gel particles showed to be strongly dependent of both the protein composition and the cell line being the tumour cell line HeLa more sensitive to the deleterious effects of the mixed protein-based particles. The observed trends in haemolysis and cell viabilities were in agreement with the degree of complexation values obtained for the protein-DNA gel particles prepared by both preparation methods.


Assuntos
DNA/metabolismo , Muramidase/metabolismo , Protaminas/metabolismo , Transfecção/métodos , Animais , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/toxicidade , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Géis , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Muramidase/química , Muramidase/toxicidade , Células NIH 3T3 , Tamanho da Partícula , Protaminas/química , Protaminas/toxicidade , Fatores de Tempo
20.
J Control Release ; 165(1): 1-8, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23123257

RESUMO

We previously designed a new siRNA vector that efficiently silences genes in vitro and in vivo. The vector originality is based on the fact that, in addition to the siRNA molecule, it contains two components: 1) a cationic liposome that auto-associates with the siRNA to form particles called "lipoplexes" and, 2) an anionic polymer which enhances the lipoplex's efficiency. This anionic polymer can be a nucleic acid, a polypeptide or a polysaccharide. We show here how the nature of the added anionic polymer into our siRNA delivery system impacts the toxic effects induced by siRNA lipoplexes. We first observed that: (i) siRNA lipoplexes-induced toxicity was cell line dependent, tumoral cell lines being the more sensitive; and (ii) plasmid DNA-containing siRNA lipoplexes were more toxic than polyglutamate-containing ones or cationic liposomes. We next determined that the toxicity induced by plasmid-containing lipoplexes is a long-lasting effect that decreased cell survival capacity for several generations. We also found that treated cells underwent death following apoptosis pathway. Systemic injection to mice of siRNA lipoplexes, rather than of cationic liposome, triggered a production of several cytokines in mice and replacement of plasmid by polyglutamate reduced the elevation of all assayed cytokines. In order to enhance siRNA lipoplexes efficiency, the addition of polyglutamate as anionic polymer should be preferred to plasmid DNA as far as in vitro as well as in vivo toxicity is concerned.


Assuntos
Lipossomos/química , Ácido Poliglutâmico/química , RNA Interferente Pequeno/química , Alanina Transaminase/sangue , Animais , Apoptose , Linhagem Celular , Sobrevivência Celular , DNA/química , DNA/toxicidade , Feminino , Inativação Gênica , Lipossomos/toxicidade , Luciferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos , Ácido Poliglutâmico/toxicidade , RNA Interferente Pequeno/toxicidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA