Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163830

RESUMO

Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1ß), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.


Assuntos
Citocinas/sangue , DNA Bacteriano/imunologia , Sulfato de Dextrana/efeitos adversos , Lipopolissacarídeos/imunologia , Mucosite/imunologia , Sepse/imunologia , Animais , Modelos Animais de Doenças , Fezes/microbiologia , Interleucina-10/sangue , Interleucina-6/sangue , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Mucosite/induzido quimicamente , Mucosite/microbiologia , Sepse/induzido quimicamente , Sepse/microbiologia , Fator de Necrose Tumoral alfa/sangue
2.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622805

RESUMO

Common variable immunodeficiency (CVID) is characterized by profound primary antibody defects and frequent infections, yet autoimmune/inflammatory complications of unclear origin occur in 50% of individuals and lead to increased mortality. Here, we show that circulating bacterial 16S rDNA belonging to gut commensals was significantly increased in CVID serum (P < 0.0001), especially in patients with inflammatory manifestations (P = 0.0007). Levels of serum bacterial DNA were associated with parameters of systemic immune activation, increased serum IFN-γ, and the lowest numbers of isotype-switched memory B cells. Bacterial DNA was bioactive in vitro and induced robust host IFN-γ responses, especially among patients with CVID with inflammatory manifestations. Patients with X-linked agammaglobulinemia (Bruton tyrosine kinase [BTK] deficiency) also had increased circulating bacterial 16S rDNA but did not exhibit prominent immune activation, suggesting that BTK may be a host modifier, dampening immune responses to microbial translocation. These data reveal a mechanism for chronic immune activation in CVID and potential therapeutic strategies to modify the clinical outcomes of this disease.


Assuntos
Agamaglobulinemia/sangue , Imunodeficiência de Variável Comum/sangue , DNA Bacteriano/sangue , DNA Ribossômico/sangue , Microbioma Gastrointestinal/genética , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Inflamação/sangue , Adolescente , Adulto , Agamaglobulinemia/imunologia , Idoso , Anemia Hemolítica Autoimune/sangue , Anemia Hemolítica Autoimune/complicações , Anemia Hemolítica Autoimune/imunologia , Linfócitos B/imunologia , Translocação Bacteriana , Criança , Pré-Escolar , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/imunologia , DNA Bacteriano/imunologia , DNA Ribossômico/imunologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Granuloma/sangue , Granuloma/complicações , Granuloma/imunologia , Humanos , Switching de Imunoglobulina , Memória Imunológica/imunologia , Inflamação/imunologia , Interferon gama/sangue , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/imunologia , Masculino , Pessoa de Meia-Idade , Poliendocrinopatias Autoimunes/sangue , Poliendocrinopatias Autoimunes/complicações , Poliendocrinopatias Autoimunes/imunologia , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/complicações , Púrpura Trombocitopênica Idiopática/imunologia , Esplenomegalia/sangue , Esplenomegalia/complicações , Esplenomegalia/imunologia , Adulto Jovem
3.
J Leukoc Biol ; 109(5): 991-998, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33527516

RESUMO

Bacterial DNA containing unmethylated CpG motifs can activate immune cells to release proinflammatory cytokines. Here, the role of bacterial DNA containing CpG motifs in diseases with a focus on arthritis is discussed. Our studies demonstrate that the intraarticular injection of bacterial DNA and oligodeoxynucleotides containing CpG motifs (CpG ODN) induced arthritis. The induction of arthritis involves the role of macrophages over other cells such as neutrophils, NK cells, and lymphocytes. TNF-α and TNFRI play an important role in the development of arthritis. NF-κB also plays a critical regulatory role in arthritis. Systemic anti-inflammatory treatment, along with antibiotic therapy, has beneficial effects on the course and the outcome of bacterial arthritis. Thus, future treatment strategies for bacterial arthritis should include attempts to minimizing bacterial growth while blocking the proinflammatory effects of the bacterial DNA. Significant therapeutic efficiency has also been shown by CpG ODN-mediated Th1 immune activation in mouse models of cancer, infectious disease, and allergy/asthma.


Assuntos
DNA Bacteriano/metabolismo , Doença/genética , Oligodesoxirribonucleotídeos/metabolismo , Animais , DNA Bacteriano/imunologia , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Oligodesoxirribonucleotídeos/imunologia
4.
Sci Rep ; 10(1): 18293, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106559

RESUMO

Bacterial-derived RNA and DNA can function as ligands for intracellular receptor activation and induce downstream signaling to modulate the host response to bacterial infection. The mechanisms underlying the secretion of immunomodulatory RNA and DNA by pathogens such as Staphylococcus aureus and their delivery to intracellular host cell receptors are not well understood. Recently, extracellular membrane vesicle (MV) production has been proposed as a general secretion mechanism that could facilitate the delivery of functional bacterial nucleic acids into host cells. S. aureus produce membrane-bound, spherical, nano-sized, MVs packaged with a select array of bioactive macromolecules and they have been shown to play important roles in bacterial virulence and in immune modulation through the transmission of biologic signals to host cells. Here we show that S. aureus secretes RNA and DNA molecules that are mostly protected from degradation by their association with MVs. Importantly, we demonstrate that MVs can be delivered into cultured macrophage cells and subsequently stimulate a potent IFN-ß response in recipient cells via activation of endosomal Toll-like receptors. These findings advance our understanding of the mechanisms by which bacterial nucleic acids traffic extracellularly to trigger the modulation of host immune responses.


Assuntos
DNA Bacteriano/imunologia , Vesículas Extracelulares/genética , Macrófagos/virologia , RNA Bacteriano/imunologia , Staphylococcus aureus/patogenicidade , Animais , Vesículas Extracelulares/imunologia , Interferon gama/genética , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Tamanho da Partícula , Células RAW 264.7 , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Receptores Toll-Like/genética , Virulência
5.
Vet Microbiol ; 246: 108732, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32605752

RESUMO

Campylobacter jejuni colonizes the chicken gut at a high density without causing disease. However, consumption of poultry products contaminated with this bacterium causes gastroenteritis in humans. Therefore, it is critically important to reduce the Campylobacter burden in poultry products to prevent transmission to humans. Evidence indicates that enhancing intestinal mucosal immune responses is of paramount importance for preventing or reducing Campylobacter colonization in chickens. In view of this, the present study was undertaken to evaluate host responses to different C. jejuni-derived ligands, including lipooligosaccharide (LOS), outer membrane proteins (OMPs), and genomic DNA, with the ultimate goal of identifying a ligand with potent immunostimulatory capacity to serve as a mucosal vaccine adjuvant against enteric infections in chickens. The results revealed that C. jejuni pathogen-associated molecular patterns (PAMPs) varied in their ability to induce the expression of cytokines and chemokines in chicken macrophages and cecal tonsil mononuclear cells and nitric oxide production in macrophages. In addition, C. jejuni OMPs demonstrated superior activity over LOS and DNA ligands in eliciting cytokine expression associated with T helper (Th)1 and Th2 responses (interferon [IFN]-γ and interleukin [IL]-13, respectively), in addition to expression of pro-inflammatory cytokines (IL-1ß), chemokine (CXCLi2), and regulatory cytokines (IL-10 and TGFß1/4) in cecal tonsil cells. Importantly, in addition to their ability to induce innate responses, OMPs could also function as antigens to elicit C. jejuni-specific antibody responses and thereby confer dual protection against C. jejuni infection. Further studies are required to assess the protective efficacy of C. jejuni OMPs against C. jejuni infection in chickens.


Assuntos
Campylobacter/imunologia , Quimiocinas/genética , Citocinas/genética , Imunidade nas Mucosas , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Adjuvantes Imunológicos/análise , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Campylobacter/genética , Galinhas/imunologia , DNA Bacteriano/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leucócitos Mononucleares/microbiologia , Ligantes , Lipopolissacarídeos/imunologia , Macrófagos/microbiologia , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Tonsila Palatina/microbiologia
6.
BMC Microbiol ; 20(1): 217, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689952

RESUMO

BACKGROUND: Lactobacillus gasseri OLL2809 can highly induce interleukin (IL)-12 production in immune cells. Even though beneficial properties of this strain for both humans and animals have been reported, the mechanism by which the bacteria induces the production of IL-12 in immune cells remains elusive. In this study, we investigated the mechanism of induction of IL-12 using a mouse macrophage cell line J774.1. RESULTS: Inhibition of phagocytosis of L. gasseri OLL2809, and myeloid differentiation factor 88 and Toll-like receptors (TLRs) 7 and 9 signalling attenuated IL-12 production in J774.1 cells. Total RNA and genomic DNA of L. gasseri OLL2809, when transferred to the J774.1 cells, also induced IL-12 production. The difference in the IL-12-inducing activity of Lactobacilli is attributed to the susceptibility to phagocytosis, but not to a difference in the total RNA and genomic DNA of each strain. CONCLUSION: We concluded that total RNA and genomic DNA of phagocytosed L. gasseri OLL2809 induce IL-12 production in J774.1 cell via TLRs 7 and 9, and the high IL-12-inducing activity of L. gasseri OLL2809 is due to its greater susceptibility to phagocytosis.


Assuntos
DNA Bacteriano/imunologia , Interleucina-12/metabolismo , Lactobacillus gasseri/genética , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , RNA Bacteriano/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Genoma Bacteriano , Lactobacillus gasseri/imunologia , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose , Transdução de Sinais , Regulação para Cima
7.
Immunity ; 53(1): 43-53, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668227

RESUMO

Besides its role as the blueprint of life, DNA can also alert the cell to the presence of microbial pathogens as well as damaged or malignant cells. A major sensor of DNA that triggers the innate immune response is cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS), which produces the second messenger cGAMP. cGAMP activates stimulator of interferon genes (STING), which activates a signaling cascade leading to the production of type I interferons and other immune mediators. Recent research has demonstrated an expanding role of the cGAS-cGAMP-STING pathway in many physiological and pathological processes, including host defense against microbial infections, anti-tumor immunity, cellular senescence, autophagy, and autoimmune and inflammatory diseases. Biochemical and structural studies have elucidated the mechanism of signal transduction in the cGAS pathway at the atomic resolution. This review focuses on the structural and mechanistic insights into the roles of cGAS and STING in immunity and diseases revealed by these recent studies.


Assuntos
DNA Bacteriano/imunologia , DNA Viral/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Humanos , Interferon Tipo I/imunologia , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais/imunologia
8.
Tuberculosis (Edinb) ; 121: 101890, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32279869

RESUMO

CpG motifs in DNA sequences are recognized by Toll-like receptor 9 and activate immune cells. Bacterial genomic DNA (gDNA) has modified cytosine bases (5-methylcytosine [5 mC]) and modified adenine bases (6-methyladenine [6 mA]). 5 mC inhibits immune activation by CpG DNA; however, it is unclear whether 6 mA inhibits immune activation by CpG DNA. Mycobacterium bovis BCG (BCG) has three adenine methyltransferases (MTases) that act on specific target sequences. In this study, we examined whether the 6 mA at the target sites of adenine MTases affected the immunostimulatory activity of CpG DNA. Our results showed that only 6 mA located at the target sequence of mamA, an adenine MTase from BCG, enhanced interleukin (IL)-12p40 production from murine bone marrow-derived macrophages (BMDMs) stimulated with CpG DNA. Enhancement of IL-12p40 production in BMDMs was also observed when BMDMs were stimulated with CpG DNA ligated to oligodeoxynucleotides (ODNs) harboring 6 mA. Accordingly, we then evaluated whether gDNA from adenine MTase-deficient BCG was less efficient with regard to stimulation of BMDMs. Indeed, gDNA from a mamA-deficient BCG had less ability to activate BMDMs than that from wild-type BCG. We concluded from these results that adenine methylation on ODNs and bacterial gDNA may enhance immune activity induced by CpG DNA.


Assuntos
Adenina/análogos & derivados , Adjuvantes Imunológicos/farmacologia , DNA Bacteriano/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metiltransferases/imunologia , Mycobacterium bovis/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Receptor Toll-Like 9/agonistas , Adenina/imunologia , Animais , Células Cultivadas , DNA Bacteriano/genética , Interações Hospedeiro-Patógeno , Subunidade p40 da Interleucina-12/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Metiltransferases/deficiência , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/enzimologia , Mycobacterium bovis/genética , Transdução de Sinais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
9.
Immunology ; 158(2): 85-93, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31335975

RESUMO

Bacterial DNA contains CpG oligonucleotide (ODN) motifs to trigger innate immune responses through the endosomal receptor Toll-like receptor 9 (TLR9). One of the cell surface receptors to capture and deliver microbial DNA to intracellular TLR9 is the C-type lectin molecule DEC-205 through its N-terminal C-type lectin-like domain (CTLD). CD93 is a cell surface protein and member of the lectin group XIV with a CTLD. We hypothesized that CD93 could interact with CpG motifs, and possibly serve as a novel receptor to deliver bacterial DNA to endosomal TLR9. Using ELISA and tryptophan fluorescence binding studies we observed that the soluble histidine-tagged CD93-CTLD was specifically binding to CpG ODN and bacterial DNA. Moreover, we found that CpG ODN could bind to CD93-expressing IMR32 neuroblastoma cells and induced more robust interleukin-6 secretion when compared with mock-transfected IMR32 control cells. Our data argue for a possible contribution of CD93 to control cell responsiveness to bacterial DNA in a manner reminiscent of DEC-205. We postulate that CD93 may act as a receptor at plasma membrane for DNA or CpG ODN and to grant delivery to endosomal TLR9.


Assuntos
DNA Bacteriano/imunologia , Regulação da Expressão Gênica/imunologia , Glicoproteínas de Membrana/imunologia , Oligodesoxirribonucleotídeos/imunologia , Receptores de Complemento/imunologia , Receptor Toll-Like 9/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Transporte Biológico/genética , Transporte Biológico/imunologia , Linhagem Celular Tumoral , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Inflamação , Interleucina-6/genética , Interleucina-6/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Modelos Biológicos , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/genética
10.
Nat Commun ; 10(1): 1731, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043596

RESUMO

Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis and vasculopathy. CXCL4 represents an early serum biomarker of severe SSc and likely contributes to inflammation via chemokine signaling pathways, but the exact role of CXCL4 in SSc pathogenesis is unclear. Here, we elucidate an unanticipated mechanism for CXCL4-mediated immune amplification in SSc, in which CXCL4 organizes "self" and microbial DNA into liquid crystalline immune complexes that amplify TLR9-mediated plasmacytoid dendritic cell (pDC)-hyperactivation and interferon-α production. Surprisingly, this activity does not require CXCR3, the CXCL4 receptor. Importantly, we find that CXCL4-DNA complexes are present in vivo and correlate with type I interferon (IFN-I) in SSc blood, and that CXCL4-positive skin pDCs coexpress IFN-I-related genes. Thus, we establish a direct link between CXCL4 overexpression and the IFN-I-gene signature in SSc and outline a paradigm in which chemokines can drastically modulate innate immune receptors without being direct agonists.


Assuntos
DNA Bacteriano/metabolismo , Interferon-alfa/metabolismo , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/imunologia , Receptor Toll-Like 9/metabolismo , Adulto , Idoso , Biópsia , Estudos de Casos e Controles , DNA Bacteriano/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Interferon-alfa/imunologia , Cristais Líquidos , Masculino , Pessoa de Meia-Idade , Fator Plaquetário 4/imunologia , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Escleroderma Sistêmico/microbiologia , Escleroderma Sistêmico/patologia , Pele/citologia , Pele/imunologia , Pele/microbiologia , Pele/patologia , Receptor Toll-Like 9/imunologia
11.
Front Immunol ; 10: 474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936875

RESUMO

Interferon-inducible protein (IFI204) (p204, the murine homolog of human IFI16) is known as a cytosolic DNA sensor to recognize DNA viruses and intracellular bacteria. However, little is known about its role during extracellular bacterial infection. Here we show that IFI204 is required for host defense against the infection of Staphylococcus aureus, an extracellular bacterial pathogen. IFI204 deficiency results in decreased survival, increased bacterial loads, severe organs damage, and decreased recruitment of neutrophils and macrophages. Production of several inflammatory cytokines/chemokines including IFN-ß and KC is markedly decreased, as well as the related STING-IRF3 and NF-κB pathways are impaired. However, exogenous administration of recombinant KC or IFN-ß is unable to rescue the susceptibility of IFI204-deficient mice, suggesting that other mechanisms rather than KC and IFN-ß account for IFI204-mediated host defense. IFI204 deficiency leads to a defect in extracellular bacterial killing in macrophages and neutrophils, although bacterial engulf, and intracellular killing activity are normal. Moreover, the defect of bactericidal activity is mediated by decreased extracellular trap formation in the absence of IFI204. Adoptively transferred WT bone marrow cells significantly protect WT and IFI204-deficient recipients against Staphylococcus infection compared with transferred IFI204-deficient bone marrow cells. Hence, this study suggests that IFI204 is essential for the host defense against Staphylococcus infection.


Assuntos
DNA Bacteriano/imunologia , Macrófagos/imunologia , Neutrófilos/microbiologia , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia , Infecções Estafilocócicas/imunologia , Animais , Bacteriemia/imunologia , Bacteriemia/microbiologia , Carga Bacteriana , Transplante de Medula Óssea , Quimiocina CXCL1/biossíntese , Quimiocina CXCL1/imunologia , Quimiocina CXCL1/farmacologia , Citocinas/biossíntese , Feminino , Fator Regulador 3 de Interferon/fisiologia , Interferon beta/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Macrófagos/microbiologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Neutrófilos/imunologia , Proteínas Nucleares/deficiência , Fosfoproteínas/deficiência , Pneumonia Estafilocócica/imunologia , Pneumonia Estafilocócica/microbiologia , Quimera por Radiação , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Infecções Estafilocócicas/microbiologia
12.
J Med Microbiol ; 67(9): 1383-1390, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30016232

RESUMO

PURPOSE: Pasteurella multocida (P. multocida) is a principal pathogen of domestic animals and an opportunistic pathogen of humans. It is the causative agent of pneumonia and haemorrhagic septicaemia in cattle, sheep and goats, fowl cholera in chickens and progressive atrophic rhinitis in swine. In this study, we investigated the humoral and cellular immune responses and protective immunity conferred by an iron-inactivated vaccine with bacterial DNA (IIV+bDNA) as an adjuvant in mice. METHODOLOGY: P. multocida was grown in BHI broth, inactivated with formalin and FeCl3 and adjuvanted with alum and bDNA. Mice were immunized with two whole-cell inactivated vaccine doses 2 weeks apart. The animals were challenged 4 weeks after booster immunization. Immunogens (vaccines and bDNA) posed no safety problems when mice were injected subcutaneously (s/c) with these preparations. The serum antibody titres were tested by ELISA. At 28 days post immunization, cell-mediated immunity responses were determined. The responses were measured by assay of IL-6 and IL-12 in lymphocyte spleen culture supernatants. RESULTS: ELISA results showed that the levels of antibodies in iron inactivated with bDNA adjuvant groups were higher than in the formalin inactivated with alum adjuvant vaccine group. The protection rate of IIV+bDNA adjuvant vaccine was superior to that of the other vaccines and it protected 100 % of the challenge group mice. Following immunization, bDNA promoted increased production of interleukins compared to the control groups. CONCLUSION: These studies indicate that bDNA is effective as an immune adjuvant, and along with stimulatory bDNA represent promising new humoral and cellular immune enhancers for vaccination applications. In addition, this vaccine is able to provide long-term protection against infection.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , DNA Bacteriano/imunologia , Infecções por Pasteurella/veterinária , Pasteurella multocida/imunologia , Doenças dos Ovinos/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/administração & dosagem , Cloretos/farmacologia , DNA Bacteriano/administração & dosagem , Feminino , Compostos Férricos/farmacologia , Humanos , Imunização , Interleucina-12/imunologia , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/genética , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
13.
World J Gastroenterol ; 23(44): 7830-7839, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29209124

RESUMO

AIM: To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. METHODS: Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro. RESULTS: TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. CONCLUSION: Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.


Assuntos
Colo/microbiologia , DNA Bacteriano/imunologia , Microbioma Gastrointestinal/fisiologia , Bactérias Gram-Negativas/fisiologia , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Animais , Colo/imunologia , Colo/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Fragmento de Restrição
14.
J Mol Med (Berl) ; 95(11): 1227-1236, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28879509

RESUMO

Interleukin IL26 supports killing of microbes and the innate sensing of bacterial-derived DNA (bactDNA). We evaluated the relationship between IL26 serum levels and bactDNA translocation in Crohn's disease (CD). We ran a prospective study on CD patients in remission. IL26 common polymorphisms, serum cytokines and complement protein, amplified-bactDNA, and anti-TNF-α were evaluated. In vitro PBMC analysis was performed. Three hundred and thirteen patients were included (mean CDAI: 83.6 ± 32.8; mean fecal calprotectin: 55.4 ± 35.3 µg/g). A total of 106 patients (33.8%) showed bactDNA and 223 patients (71%) had a varIL26 genotype. BactDNA significantly correlated with increased IL26 levels compared with bactDNA-negative patients. PBMCs from varIL26 patients significantly reduced E. coli killing capacity compared with wtIL26-genotyped patients. The stimulation with a recombinant IL26 protein reduced pro-inflammatory cytokines in response to E. coli in the varIL26 cell supernatants. Serum anti-TNF-α levels in varIL26 vs wtIL26-genotyped patients on biologics were significantly lower in the presence of bactDNA. Cells from varIL26 vs wtIL26-genotyped patients cultured with E. coli DNA and infliximab showed a significant decrease in free anti-TNF-α concentration. A varIL26 genotype was associated with the initiation of anti-TNF-α in CD patients during the 6-month follow-up. IL26 polymorphisms may prevent bactDNA clearance and identify CD patients with a worse inflammatory evolution and response to therapy. KEY MESSAGES: BactDNA translocation in CD is associated with an increased risk of relapse. IL26 is sensitive to bactDNA and modulates the inflammatory response in CD patients. The varIL26 genotype is associated with reduced PMN capacity to kill bacteria. A varIL26 genotype is associated with decreased levels of anti-TNF-α in CD patients. IL26 may help explain the role of bactDNA as a risk factor of flare in CD patients.


Assuntos
Doença de Crohn/genética , Doença de Crohn/imunologia , Citocinas/metabolismo , DNA Bacteriano/imunologia , Interleucinas/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Feminino , Genótipo , Humanos , Interleucinas/sangue , Leucócitos/imunologia , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
15.
PLoS Pathog ; 13(7): e1006496, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704551

RESUMO

Successful host defense against pathogens requires innate immune recognition of the correct pathogen associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs) to trigger the appropriate gene program tailored to the pathogen. While many PRR pathways contribute to the innate immune response to specific pathogens, the relative importance of each pathway for the complete transcriptional program elicited has not been examined in detail. Herein, we used RNA-sequencing with wildtype and mutant macrophages to delineate the innate immune pathways contributing to the early transcriptional response to Staphylococcus aureus, a ubiquitous microorganism that can activate a wide variety of PRRs. Unexpectedly, two PRR pathways-the Toll-like receptor (TLR) and Stimulator of Interferon Gene (STING) pathways-were identified as dominant regulators of approximately 95% of the genes that were potently induced within the first four hours of macrophage infection with live S. aureus. TLR signaling predominantly activated a pro-inflammatory program while STING signaling activated an antiviral/type I interferon response with live but not killed S. aureus. This STING response was largely dependent on the cytosolic DNA sensor cyclic guanosine-adenosine synthase (cGAS). Using a cutaneous infection model, we found that the TLR and STING pathways played opposite roles in host defense to S. aureus. TLR signaling was required for host defense, with its absence reducing interleukin (IL)-1ß production and neutrophil recruitment, resulting in increased bacterial growth. In contrast, absence of STING signaling had the opposite effect, enhancing the ability to restrict the infection. These results provide novel insights into the complex interplay of innate immune signaling pathways triggered by S. aureus and uncover opposing roles of TLR and STING in cutaneous host defense to S. aureus.


Assuntos
Citosol/imunologia , Proteínas de Membrana/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Receptores Toll-Like/imunologia , Animais , Citosol/microbiologia , DNA , DNA Bacteriano/genética , DNA Bacteriano/imunologia , Feminino , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Transdução de Sinais , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Receptores Toll-Like/genética
16.
Sci Rep ; 7(1): 4265, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655927

RESUMO

Hepcidin acts as both an antimicrobial peptide and a hormonal regulator of iron homeostasis; however, the biological significance of this dual-function in immune reactions remains elusive. In this study, we provide experimental evidence regarding the coordination of this dual-function in the innate antimicrobial immunity using a zebrafish model. The transcription of hepcidin gene was significantly upregulated in liver by Aeromonas hydrophila (A.h) DNA stimulation, which was accompanied by an increase of hepcidin protein and a decrease of iron concentration in serum. Thus, an enhanced bactericidal activity against A.h and Escherichia coli and inhibitory effects on A.h growth and OmpA expression were observed in A.h cells, the latter of which made the bacterium more susceptible to complement attack. The enhanced bacteriostatic activities in serum following the stimulation were dramatically impaired by neutralizing hepcidin or restoring iron to the samples. Immuno-protection assay showed that zebrafish administrated with A.h DNA or designed CpG-ODNs had a significantly enhanced defence against A.h and Vibrio alginolyticus infections, which was also eliminated by the neutralization of hepcidin. Results indicate that the induction of hepcidin leads to the decrease of iron in circulation, which eventually limits iron availability to invading microorganisms, thus contributing to host defence.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Hepcidinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/efeitos dos fármacos , Proteínas Reguladoras de Ferro/farmacologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Aeromonas hydrophila/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , DNA Bacteriano/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Hepcidinas/metabolismo , Ferro/sangue , Ferro/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Fígado/metabolismo , Oligodesoxirribonucleotídeos/imunologia
17.
Am J Respir Cell Mol Biol ; 57(4): 419-427, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28443674

RESUMO

There is a high prevalence of aeroallergen sensitivity in asthmatic populations, and seroreactivity to aeroallergens early in infancy is associated with increased risk of developing asthma later in life. In addition to allergen sensitivity, asthma development has been associated with differential microbial exposure and infection in early life. We have previously shown that cord blood mononuclear cells respond to common aeroallergens (i.e., house dust mite [Der f1] and cockroach [Bla g2]) as assayed by lymphoproliferation and cytokine (IL-13 and IFN-γ) production. We hypothesized that there is a relationship between perinatal microbial exposure and response to specific aeroallergens. To test this hypothesis, we isolated DNA from cord blood serum samples with known lymphoproliferative and cytokine responses to Bla g2 and Der f1. Bacterial 16S ribosomal DNA amplicon libraries were generated and analyzed using high throughput sequencing of cord blood serum samples. In our analysis, we identified major compositional differences, including diversity and abundance of specific taxa, between groups whose IL-13 response to Der f1 and Bla g2 differed. We demonstrate a strong association between the ratio of Acinetobacter to Proteobacteria and IL-13 production and the probability of IL-13 production after allergen exposure. IL-13 concentrations in serum were also significantly correlated with the diversity of bacterial DNA. Together, these results underscore the relationship between immune responses to allergens and bacterial exposure during perinatal development.


Assuntos
Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Ácido Aspártico Endopeptidases/imunologia , Asma/imunologia , Infecções Bacterianas/imunologia , Cisteína Endopeptidases/imunologia , Exposição Ambiental/efeitos adversos , Interleucina-13/imunologia , Acinetobacter/imunologia , Asma/epidemiologia , Asma/microbiologia , Infecções Bacterianas/epidemiologia , DNA Bacteriano/imunologia , DNA Ribossômico/imunologia , Feminino , Humanos , Recém-Nascido , Interferon gama/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Masculino , RNA Ribossômico 16S/imunologia
18.
PLoS Pathog ; 13(4): e1006315, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28410407

RESUMO

Bacterial biofilms are associated with numerous human infections. The predominant protein expressed in enteric biofilms is the amyloid curli, which forms highly immunogenic complexes with DNA. Infection with curli-expressing bacteria or systemic exposure to purified curli-DNA complexes triggers autoimmunity via the generation of type I interferons (IFNs) and anti-double-stranded DNA antibodies. Here, we show that DNA complexed with amyloid curli powerfully stimulates Toll-like receptor 9 (TLR9) through a two-step mechanism. First, the cross beta-sheet structure of curli is bound by cell-surface Toll-like receptor 2 (TLR2), enabling internalization of the complex into endosomes. After internalization, the curli-DNA immune complex binds strongly to endosomal TLR9, inducing production of type I IFNs. Analysis of wild-type and TLR2-deficient macrophages showed that TLR2 is the major receptor that drives the internalization of curli-DNA complexes. Suppression of TLR2 internalization via endocytosis inhibitors led to a significant decrease in Ifnß expression. Confocal microscopy analysis confirmed that the TLR2-bound curli was required for shuttling of DNA to endosomal TLR9. Structural analysis using small-angle X-ray scattering revealed that incorporation of DNA into curli fibrils resulted in the formation of ordered curli-DNA immune complexes. Curli organizes parallel, double-stranded DNA rods at an inter-DNA spacing that matches up well with the steric size of TLR9. We also found that production of anti-double-stranded DNA autoantibodies in response to curli-DNA was attenuated in TLR2- and TLR9-deficient mice and in mice deficient in both TLR2 and TLR9 compared to wild-type mice, suggesting that both innate immune receptors are critical for shaping the autoimmune adaptive immune response. We also detected significantly lower levels of interferon-stimulated gene expression in response to purified curli-DNA in TLR2 and TLR9 deficient mice compared to wild-type mice, confirming that TLR2 and TLR9 are required for the induction of type I IFNs. Finally, we showed that curli-DNA complexes, but not cellulose, were responsible elicitation of the immune responses to bacterial biofilms. This study defines the series of events that lead to the severe pro-autoimmune effects of amyloid-expressing bacteria and suggest a mechanism by which amyloid curli acts as a carrier to break immune tolerance to DNA, leading to the activation of TLR9, production of type I IFNs, and subsequent production of autoantibodies.


Assuntos
Amiloide/imunologia , Autoimunidade , Proteínas de Bactérias/imunologia , DNA Bacteriano/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Receptor 2 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Amiloide/química , Amiloide/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/genética , Receptor Toll-Like 9/química , Receptor Toll-Like 9/genética
19.
Immunity ; 46(3): 457-473, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329706

RESUMO

Living in a microbe-rich environment reduces the risk of developing asthma. Exposure of humans or mice to unmethylated CpG DNA (CpG) from bacteria reproduces these protective effects, suggesting a major contribution of CpG to microbe-induced asthma resistance. However, how CpG confers protection remains elusive. We found that exposure to CpG expanded regulatory lung interstitial macrophages (IMs) from monocytes infiltrating the lung or mobilized from the spleen. Trafficking of IM precursors to the lung was independent of CCR2, a chemokine receptor required for monocyte mobilization from the bone marrow. Using a mouse model of allergic airway inflammation, we found that adoptive transfer of IMs isolated from CpG-treated mice recapitulated the protective effects of CpG when administered before allergen sensitization or challenge. IM-mediated protection was dependent on IL-10, given that Il10-/- CpG-induced IMs lacked regulatory effects. Thus, the expansion of regulatory lung IMs upon exposure to CpG might underlie the reduced risk of asthma development associated with a microbe-rich environment.


Assuntos
Quimiotaxia de Leucócito/imunologia , DNA Bacteriano/imunologia , Hipersensibilidade/imunologia , Macrófagos Alveolares/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos/imunologia , Baço/imunologia
20.
Trends Immunol ; 38(3): 194-205, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28073693

RESUMO

Detection of evolutionarily conserved molecules on microbial pathogens by host immune sensors represents the initial trigger of the immune response against infection. Cytosolic receptors sense viral and intracellular bacterial genomes, as well as nucleic acids produced during replication. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Although distinct classes of receptors are responsible for the RNA and DNA sensing, the downstream signaling components are physically and functionally interconnected. This review highlights the importance of the crosstalk between retinoic acid inducible gene-I (RIG-I)-mitochondrial antiviral-signaling protein (MAVS) RNA sensing and the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) DNA sensing pathways in potentiating efficient antiviral responses. The potential of cGAS-STING manipulation as a component of cancer immunotherapy is also reviewed.


Assuntos
Infecções Bacterianas/imunologia , Proteína DEAD-box 58/metabolismo , Proteínas de Membrana/metabolismo , Receptor Cross-Talk , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , DNA Bacteriano/imunologia , Humanos , Imunidade Inata , Nucleotidiltransferases/metabolismo , Receptores Imunológicos , Receptores de Reconhecimento de Padrão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA