Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.056
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Microbiol ; 81(5): 124, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551738

RESUMO

In this study, we employed a polyphasic approach to determine the taxonomic position of a newly isolated actinomycete, designated SE31T, obtained from a sediment sample collected at Cape Rochado, Malaysia. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain SE31T belonged to the family Pseudonocardiaceae and exhibited the highest sequence similarity (98.9%) to Sciscionella marina. Further genomic analysis demonstrated a 93.4% average nucleotide identity and 54.4% digital DNA-DNA hybridization relatedness between strain SE31T and S. marina. The chemotaxonomic characteristics of strain SE31T were typical of the genus Sciscionella, including cell-wall chemotype IV (with meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as whole-cell sugars). The identified polar lipids of strain SE31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, and hydroxyphosphatidymethylethanolamine. The primary menaquinone observed was MK-9(H4), and the major cellular fatty acid was iso-C16:0. The genomic DNA size of strain SE31T was determined to be 7.4 Mbp with a G+C content of 68.7%. Based on these comprehensive findings, strain SE31T represents a novel species within the genus Sciscionella, in which the name Sciscionella sediminilitoris sp. nov. is proposed. The type strain of Sciscionella sediminilitoris is SE31T (= DSM 46824T = TBRC 5134T).


Assuntos
Actinobacteria , Actinomycetales , Filogenia , RNA Ribossômico 16S/genética , Malásia , DNA Bacteriano/genética , DNA Bacteriano/química , Análise de Sequência de DNA , Actinobacteria/genética , Ácidos Graxos/química , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Vitamina K 2/química
2.
mBio ; 15(4): e0018124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38477597

RESUMO

A comprehensive microbial surveillance was conducted at NASA's Mars 2020 spacecraft assembly facility (SAF), where whole-genome sequencing (WGS) of 110 bacterial strains was performed. One isolate, designated 179-BFC-A-HST, exhibited less than 80% average nucleotide identity (ANI) to known species, suggesting a novel organism. This strain demonstrated high-level resistance [minimum inhibitory concentration (MIC) >256 mg/L] to third-generation cephalosporins, including ceftazidime, cefpodoxime, combination ceftazidime/avibactam, and the fourth-generation cephalosporin cefepime. The results of a comparative genomic analysis revealed that 179-BFC-A-HST is most closely related to Virgibacillus halophilus 5B73CT, sharing an ANI of 78.7% and a digital DNA-DNA hybridization (dDDH) value of 23.5%, while their 16S rRNA gene sequences shared 97.7% nucleotide identity. Based on these results and the recent recognition that the genus Virgibacillus is polyphyletic, strain 179-BFC-A-HST is proposed as a novel species of a novel genus, Tigheibacillus jepli gen. nov., sp. nov (type strain 179-BFC-A-HST = DSM 115946T = NRRL B-65666T), and its closest neighbor, V. halophilus, is proposed to be reassigned to this genus as Tigheibacillus halophilus comb. nov. (type strain 5B73CT = DSM 21623T = JCM 21758T = KCTC 13935T). It was also necessary to reclassify its second closest neighbor Virgibacillus soli, as a member of a novel genus Paracerasibacillus, reflecting its phylogenetic position relative to the genus Cerasibacillus, for which we propose Paracerasibacillus soli comb. nov. (type strain CC-YMP-6T = DSM 22952T = CCM 7714T). Within Amphibacillaceae (n = 64), P. soli exhibited 11 antibiotic resistance genes (ARG), while T. jepli encoded for 3, lacking any known ß-lactamases, suggesting resistance from variant penicillin-binding proteins, disrupting cephalosporin efficacy. P. soli was highly resistant to azithromycin (MIC >64 mg/L) yet susceptible to cephalosporins and penicillins. IMPORTANCE: The significance of this research extends to understanding microbial survival and adaptation in oligotrophic environments, such as those found in SAF. Whole-genome sequencing of several strains isolated from Mars 2020 mission assembly cleanroom facilities, including the discovery of the novel species Tigheibacillus jepli, highlights the resilience and antimicrobial resistance (AMR) in clinically relevant antibiotic classes of microbes in nutrient-scarce settings. The study also redefines the taxonomic classifications within the Amphibacillaceae family, aligning genetic identities with phylogenetic data. Investigating ARG and virulence factors (VF) across these strains illuminates the microbial capability for resistance under resource-limited conditions while emphasizing the role of human-associated VF in microbial survival, informing sterilization practices and microbial management in similar oligotrophic settings beyond spacecraft assembly cleanrooms such as pharmaceutical and medical industry cleanrooms.


Assuntos
Ceftazidima , Ácidos Graxos , Humanos , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Hibridização de Ácido Nucleico , Esporos/química , Nucleotídeos , DNA , DNA Bacteriano/genética , DNA Bacteriano/química , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
3.
Antonie Van Leeuwenhoek ; 117(1): 32, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329631

RESUMO

A Gram-stain-positive, facultatively anaerobic, rod-shaped bacterium, designated JX-17T, was isolated from a soil sample collected in Jiangxi Province, PR China. Growth was observed at 15-48 °C (optimum 37 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-6.0% (w/v) NaCl (optimum 1.0%). Strain JX-17T could degrade approximately 50% of 50 mg/L mesotrione within 2 days of incubation, but could not use mesotrione as sole carbon source for growth. Strain JX-17T showed less than 95.3% 16S rRNA gene sequence similarity with type strains of the genus Paenibacillus. In the phylogenetic tree based on 16S rRNA gene and genome sequences, strain JX-17T formed a distinct lineage within the genus Paenibacillus. The ANI values between JX-17T and the most closely related type strains P. lentus CMG1240T and P. farraposensis UY79T were 70.1% and 71.4%, respectively, and the dDDH values between them were 19.0% and 23.3%, respectively. The major cellular fatty acids were anteiso-C15:0, iso-C16:0, anteiso-C17:0 and C16:0, the predominant respiratory quinone was MK-7, the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid, an aminophospholipid and a phosphatidylinositol. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid, and the DNA G + C content was 50.1 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain JX-17T represents a novel species within the genus Paenibacillus, for which the name Paenibacillus lacisoli sp. nov is proposed, with strain JX-17T (= GDMCC 1.3962T = KCTC 43568T) as the type strain.


Assuntos
Cicloexanonas , Paenibacillus , Fosfolipídeos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Hibridização de Ácido Nucleico , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
4.
Diagn Microbiol Infect Dis ; 108(3): 116182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215518

RESUMO

This case presents the clinical and genomic aspects of a rare and multidrug-resistant Pseudomonas guariconensis isolate carrying blaVIM-2 and highlights the need for heightened awareness in healthcare facilities. A 63-year-old woman underwent surgery for the diagnosis of a paraspinal abscess and infectious spondylitis. During hospitalization, the patient was diagnosed with heart failure exacerbation. The patient had no symptoms of urinary tract infection and met the criteria for asymptomatic bacteriuria. In urine culture, colonies of the organism grew >105 CFU/mL on blood agar and on MacConkey agar. The Bruker Biotyper mass spectrometry showed P. guariconensis. Based on the 16S rRNA gene sequence showed that a 99.79 % match with as P. guariconensis LMG 27394T. The average nucleotide identity with P. guariconensis LMG 27394T was 91.53 %. Antimicrobial susceptibility testing showed that the isolate was not susceptible to most of the antibiotics. Antimicrobial resistance genes identified were aph(6)-Id, aph(3″)-Ib, aac(6')-Ib3, aac(3)-If, gyrA mutation (T83I) and blaVIM-2.


Assuntos
Bacteriúria , Pseudomonas , beta-Lactamases , Humanos , Feminino , Pessoa de Meia-Idade , beta-Lactamases/genética , Bacteriúria/diagnóstico , DNA Bacteriano/genética , DNA Bacteriano/química , RNA Ribossômico 16S/genética , Ágar , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Arch Microbiol ; 206(1): 47, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38160217

RESUMO

A novel filamentous eel-leptocephalus pathogenic marine bacterium, designated strain EL160426T, was isolated from Japanese eel, Anguilla japonica, leptocephali reared at a laboratory in Mie, Japan. In experimental infection studies on eel larvae, the strain EL160426T caused massive larval mortality and was reisolated from moribund leptocephali. Characteristically, observations of infected larvae found that EL160426T forms columnar colonies on the cranial surface of larvae. The novel isolate exhibited growth at 15-30 °C, pH 7-9, and seawater concentrations of 60-150% (W/V). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain EL160426T was most closely related to Aureispira maritima 59SAT with 97.7% sequence similarity. The whole genome sequence analysis of the strain EL160426T showed that the strain maintained a circular chromosome with a size of approximately 7.58 Mbp and the DNA G + C content was 36.2%. The major respiratory quinone was MK-7 and the predominant cellular fatty acids were 16:0, 20:4 w6c (arachidonic acid), 17:0 iso and 16:0 N alcohol. DNA relatedness between the closest phylogenetic neighbor strain EL160426T and A. maritima (JCM23207T) was less than 13%. On the basis of the polyphasic taxonomic data, the strain represents a novel species of the genus Aureispira, for which the name Aureispira anguillae sp. nov. is proposed. The type strain is EL160426T (= JCM 35024 T = TSD-286 T).


Assuntos
Anguilla , Animais , Anguilla/genética , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Água do Mar/microbiologia , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise
6.
Appl Microbiol Biotechnol ; 107(20): 6325-6338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566161

RESUMO

Streptomyces species are ubiquitous, Gram-positive, spore-forming bacteria with the ability to produce various clinically relevant compounds. The strain 4503 T was isolated from mangrove sediments, showing morphological and chemical properties which were consistent with those of members of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was primarily identified as members of the genus Streptomyces, sharing more than 99% sequence identity to Streptomyces yatensis DSM 41771 T, S. antimycoticus NBRC 12839 T, and S. melanosporofaciens NBRC 13061 T. Average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 4503 T and its close relatives were all below 95-96% and 75% of the novel species threshold, respectively. Results from phylogenetic, genomic, phenotypic, and chemotaxonomic characteristics analyses confirmed that the isolate represented a novel species of the genus Streptomyces, for which the name Streptomyces niphimycinicus sp. nov. 4503 T (= MCCC 1K04557T = JCM 34996 T) is proposed. The bioassay-guided fractionation of the extract of strain 4503 T resulted in the isolation of a known compound niphimycin C, which showed cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines TW03 and 5-8F with half maximal inhibitory concentration (IC50) values of 12.24 µg/mL and 9.44 µg/mL, respectively. Further experiments revealed that niphimycin C not only exhibited the capacity of anti-proliferation, anti-metastasis, induction of cell cycle arrest, and apoptosis, but was also able to increase the reactive oxygen species (ROS) production and regulate several signaling pathways in NPC cells. KEY POINTS: • Strain 4503 T was classified as a novel species of Streptomyces. • Niphimycin C correlates with the cytotoxic effect of strain 4503 T against NPC cells. • Niphimycin C induces apoptosis, autophagic flux disruption and cell cycle arrest.


Assuntos
Neoplasias Nasofaríngeas , Streptomyces , Humanos , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Microbiologia do Solo , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Streptomyces/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Ácidos Graxos/metabolismo , Análise de Sequência de DNA
7.
Antonie Van Leeuwenhoek ; 116(7): 711-719, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37165262

RESUMO

A novel strain designated NBU1457T, was isolated from marine sediment sampled on Meishan Island located in the East China Sea. Cells of strain NBU1457T was Gram-negative, facultatively anaerobic, non-motile and ovoid-shaped. Strain NBU1457T grew optimally at 37 °C, NaCl concentration of 2.0-3.0% (w/v) and pH 6.5-7.5. Catalase and oxidase activities, urease, nitrate reduction and H2S production were positive. Indole production, methyl red reaction, hydrolysis of starch, gelatin, casein, Tweens 20, 40, 60 and 80 were negative. Comparative analysis of the 16S rRNA gene sequence showed highest similarities to the species with validated name Oricola thermophila MEBiC13590T (98.8%), Oricola cellulosilytica CC-AMH-0 T (97.9%) and Oricola indica JL-62 T (97.9%). Phylogenetic analyses indicated that strain NBU1457T clustered with the genus Oricola and closely related to strains Oricola thermophila MEBiC13590T, Oricola cellulosilytica CC-AMH-0 T and Oricola indica JL-62 T. The average nucleotide identity and digital DNA-DNA hybridization values between strain NBU1457T and related species of genus Oricola were well below the threshold limit for prokaryotic species delineation. The DNA G + C content was 63.2%. The major cellular fatty acid was summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylmonomethylethanolamine, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. The only respiratory quinone was ubiquinone-10 (Q-10). Combining results of our phenotypic, chemotaxonomic and genotypic data, strain NBU1457T is considered to be a representative in the genus Oricola, which the name Oricola nitratireducens sp. nov. is proposed. The type strain of the new species is NBU1457T (= KCTC 82225 T = MCCC 1K04764T).


Assuntos
Nitratos , Fosfolipídeos , Adolescente , Criança , Humanos , Fosfolipídeos/análise , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Sedimentos Geológicos/microbiologia , Ácidos Graxos/análise , China , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
8.
Antonie Van Leeuwenhoek ; 116(8): 817-828, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37237242

RESUMO

A polyphasic taxonomic study was conducted on two Gram-negative, non-sporulating, non-motile bacterial strains, S2-20-2T and S2-21-1, isolated from a contaminated freshwater sediment in China. Comparative 16S rRNA gene sequence studies revealed a clear affiliation of two strains with Bacteroidetes, which showed the highest pairwise sequence similarities with Hymenobacter duratus BT646T (99.3%), Hymenobacter psychrotolerans Tibet-IIU11T (99.3%), Hymenobacter kanuolensis T-3T (97.6%), Hymenobacter swuensis DY53T (96.9%), Hymenobacter tenuis POB6T (96.8%), Hymenobacter seoulensis 16F7GT (96.7%), and Hymenobacter rigui KCTC 12533T (96.5%). The phylogenetic analysis based on 16S rRNA gene sequences showed that two strains formed a clear phylogenetic lineage with the genus Hymenobacter. Major fatty acids were identified as iso-C15:0, anteiso-C15:0, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c/t) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). Major cellular polar lipids were identified as phosphatidylethanolamine, three unidentified aminolipids, an unidentified aminophosopholipid and an unidentified lipid. The respiratory quinone was detected as MK-7 and the genomic DNA G + C content was determined to be 57.9% (genome) for type strain S2-20-2T and 57.7 mol% (HPLC) for strain S2-21-1. The observed ANI and dDDH values between strain S2-20-2T and its closely related strains were 75.7-91.4% and 21.2-43.9%, respectively. Based on physiological, biochemical, genetic and genomic characteristics, we propose that strains S2-20-2T and S2-21-1 represent a novel species of the genus Hymenobacter, for which the name Hymenobacter sediminicola sp. nov. is proposed. The type strain is S2-20-2T (= CGMCC 1.18734T = JCM 35801T).


Assuntos
Cytophagaceae , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos/análise , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
9.
Antonie Van Leeuwenhoek ; 116(7): 631-641, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133556

RESUMO

A Gram-staining-negative, strictly aerobic, dark beige-colored, rod-shaped, chemoorganoheterotrophic, and catalase- and oxidase-positive bacterium, designated as KMU-90T, was isolated from coastal seawater in the Republic of Korea, and subjected to a polyphasic study. The novel isolate was able to grow at 0-6.0% NaCl concentrations (w/v), pH 6.5-9.5, and 4-45 °C. The 16S rRNA gene sequences-based phylogeny revealed that the novel marine isolate belongs to the family Roseobacteraceae of class Alphaproteobacteria and that it shared the greatest sequence similarity (97.3%) with Aestuariicoccus marinus NAP41T. The novel strain could be distinguished phenotypically from related representatives of the family Roseobacteraceae. The major (> 10%) fatty acids of strain KMU-90T were C18:1 ω7c and C18:1 ω7c 11-methyl and the only respiratory quinone was ubiquinone-10 (Q-10). Strain KMU-90T contained phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, two unidentified aminolipids, an unidentified phospholipid, and three unidentified glycolipids as polar lipids. The assembled draft genome size of strain KMU-90T was 4.84 Mbp with a DNA G + C content of 66.5%. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between the genomes of strain KMU-90T and its closely related representatives were 77.0-79.0%, 14.6-20.0%, and 60.0-69.9%, respectively. From the polyphasic taxonomic results obtained, the strain is considered to represent a novel genus and a new species of the family Roseobacteraceae, for which the name Thetidibacter halocola gen. nov., sp. nov. is proposed. The type species is T. halocola, with the type strain KMU-90T (= KCCM 90287T = NBRC 113375T).


Assuntos
Fosfolipídeos , Água do Mar , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Análise de Sequência de DNA , Água do Mar/microbiologia , Fosfolipídeos/análise , Ácidos Graxos/análise , Filogenia , Técnicas de Tipagem Bacteriana
10.
J Microbiol Biotechnol ; 33(7): 909-914, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37100761

RESUMO

While searching for the bacteria which are responsible for degradation of pesticide in soybean field soil, a novel bacterial strain, designated 5-5T, was isolated. The cells of the strain were Gram-staining-positive, aerobic and non-motile rods. Growth occurred at 10-42oC (optimum, 30oC), pH 5.5-9.0 (optimum, pH 7.0-7.5), and 0-2% (w/v) NaCl (optimum, 1%). The predominant fatty acids were C15:0 anteiso, C17:0 anteiso, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The predominant menaquinone was MK-9 (H2). Diphosphatidylglycerol, glycolipids, phosphatidylinositol, and phosphatidylglycerol were the major polar lipids. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain 5-5T is a member of the genus Sinomonas and its closest relative is Sinomonas humi MUSC 117T, sharing a genetic similarity of 98.4%. The draft genome of strain 5-5T was 4,727,205 bp long with an N50 contig of 4,464,284 bp. Genomic DNA G+C content of strain 5-5T was 68.0 mol%. The average nucleotide identity (ANI) values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 87.0, and 84.3 % respectively. In silico DNA-DNA hybridization values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 32.5% and 27.9% respectively. Based on the ANI and in silico DNA-DNA hybridization analyses, the 5-5T strain was considered as novel species belonging to the genus Sinomonas. On the basis of the results from phenotypic, genotypic and chemotaxonomic analyses, strain 5-5T represents a novel species of the genus Sinomonas, for which the name Sinomonas terrae sp. nov. is proposed. The type strain is 5-5T (=KCTC 49650T=NBRC 115790T).


Assuntos
Microbiologia do Solo , Solo , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
11.
Antonie Van Leeuwenhoek ; 116(6): 499-510, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36917346

RESUMO

"Psychrodesulfovibrio", a proposed genus within the family Desulfovibrionaceae, is a group of sulfate-reducing bacteria with biogeochemical significance but restricted child taxa availability. In this study, a strictly anaerobic bacterium, designed strain FT415T, was isolated from mangrove sediments in Futian Mangrove Nature Reserve in Shenzhen, China. The strain was Gram-stain-negative, motile, and vibrio-shaped with a single polar flagellum, which grew at the temperature range of 15-42 °C (optimum 37 °C), pH range of 6.0-7.5 (optimum 6.8), and in the presence of 0-36 g l-1 NaCl (optimum 6 g l-1 NaCl). In the presence of sulfate, electron donors including lactate, ethanol, pyruvate, malate, fumarate, succinate, cysteine, and glycerol were incompletely oxidized to acetate, and H2 and formate were used as electron donors with acetate as the carbon source by strain FT415T. Sulfate, thiosulfate, sulfide, and anthraquinone-2,6-disulfonate were reduced in the presence of lactate. Fe(III) oxide was reduced without cell growth. Fermentative growth was observed with pyruvate and cysteine. Vitamins were not required for growth. The major cellular fatty acids (> 10%) were C16:0, summed feature 10 (C18:1 c11/t9/t6 and/or unknown ECL 17.834), C16:1 cis 9, and C18:0. The major polar lipids were phosphatidylethanolamine, phospholipids, and aminolipids. The predominant menaquinone was MK-6(H2). The genomic DNA G+C content was 56.7%. Phylogenetic analysis showed that strain FT415T shared a 98.1% similarity in 16S rRNA gene sequence, an average nucleotide identity value of 84.0%, an average amino-acid identity value of 85.4%, and a digital DNA-DNA hybridization value of 25.7% with its closest relative Desulfovibrio subterraneus HN2T, which has been proposed to be transferred to the genus "Psychrodesulfovibrio". Based on phenotypic, phylogenetic, and genotypic evidence, a new species of the family Desulfovibrionaceae, Desulfovibrio mangrovi sp. nov. was proposed with the type strain FT415T (=GDMCC 1.3410T=KCTC 25525T).


Assuntos
Desulfovibrio , Sulfatos , Humanos , Criança , Sulfatos/análise , Sulfatos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Cisteína/genética , Cloreto de Sódio , Compostos Férricos , Análise de Sequência de DNA , Ácidos Graxos/análise , Fosfolipídeos/análise , Lactatos , Piruvatos , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Sedimentos Geológicos/microbiologia
12.
J Antibiot (Tokyo) ; 76(4): 191-197, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747085

RESUMO

Strain Mg02T was isolated from roots of Eucommia ulmoides Oliv. collected from Changde City, Hunan Province, China. Strain Mg02T, which exhibited distinct chemotaxonomic characteristics of the genus Nocardiopsis: cell-wall chemotype III/C, i.e., meso-diaminopimelic acid as diagnostic amino acid in whole-cell hydrolysates and menaquinone MK-10 with variable degrees of saturation in the side chain as the predominant isoprenoid quinone, was investigated by a polyphasic approach to determine their taxonomic position. Sequence analysis of the 16S rRNA gene indicated that strain Mg02T is affiliated to the genus Nocardiopsis, having highest sequence similarity to Nocardiopsis flavescens CGMCC 4.5723T (99.1%) and <98.7% to other species of the genus Nocardiopsis with validly published names. Phylogenetic analysis of 16S rRNA gene indicated strain Mg02T formed a separate evolutionary clade, suggesting that it could be a novel Nocardiopsis species. Phylogenomic analysis showed that strain Mg02T was closely related to N. flavescens CGMCC 4.5723T and distinct from the latter according to the clustering patterns. The Average Nucleotide Identity and digital DNA-DNA hybridization values between strain Mg02T and N. flavescens CGMCC 4.5723T were far below the species-level thresholds. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, we think that strain Mg02T should represent a novel Nocardiopsis species, for which the name Nocardiopsis changdeensis sp. nov. is proposed. The type strain is Mg02T (=MCCC 1K06174T = JCM 34709T).


Assuntos
Actinobacteria , Actinomycetales , Eucommiaceae , Actinobacteria/genética , Actinobacteria/metabolismo , Eucommiaceae/genética , Eucommiaceae/metabolismo , Ácidos Graxos/química , Nocardiopsis/metabolismo , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , China , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
13.
Antonie Van Leeuwenhoek ; 116(2): 97-107, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36222940

RESUMO

A novel bacterium designated A3.4T was isolated from the beach sediment of Zhairuo Island, which is located in the East China Sea. Strain A3.4T was found to be Gram-stain negative, cream coloured, rod-shaped, aerobic and motile via a single monopolar flagellum. The isolate grows at 20-37 °C (optimum 25-30 °C), at pH 6.0-8.0 (optimum pH 7.0-8.0), and in the presence of 0-5.0% (w/v) NaCl (optimum 0.5-1%). A3.4T has catalase and oxidase activity. The predominant fatty acids (≥ 10%) of the strain were identified as C16:0, summed feature 3 (C16:1 ω7c /C16:1 ω6c) and summed feature 8 (C18:1 ω7c /C18:1 ω6c). Q-9 was identified as the major isoprenoid quinone, with trace levels of Q-8 present. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The draft genome size is 3.55 Mb, with a DNA G + C content of 57.7 mol%. Analysis of the 16S rRNA gene sequence of strain A3.4T indicates that it belongs to the genus Atopomonas and shares high sequence similarity with Atopomonas hussainii JCM 19513T (97.60%). This classification was also supported by phylogenetic analysis using rpoB and several core genes. The genome of strain A3.4T shows an average nucleotide identity of 82.3%, an amino acid identity of 83.0%, and a digital DNA-DNA hybridization value of 22.1% with A. hussainii. In addition, 20 conserved signature indels (CSIs) were identified to be specific for A3.4T and A. hussainii, demonstrating that the strain A3.4T is closely related to A. hussainii rather than other species of family Pseudomonadaceae. Hundreds of unique genes were identified in the genomes of A3.4T and A. hussainii, which may underly multiple phenotypic differences between these strains. Based on phenotypic, chemotaxonomic, phylogenetic, and genomic investigations, strain A3.4T is concluded to represent a novel species of the genus Atopomonas, for which the name Atopomonas sediminilitoris sp. nov. is proposed. The type strain is A3.4T (= LMG 32563T = MCCC 1K07166T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/análise , DNA , China , DNA Bacteriano/genética , DNA Bacteriano/química , Análise de Sequência de DNA
14.
Antonie Van Leeuwenhoek ; 116(3): 231-242, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36525157

RESUMO

A Gram-stain-negative, halotolerant bacterium designated as PTR5T was isolated from the roots of rice plants, collected in Ilsan, South Korea. Cells were, aerobic, asporogenous, motile, rod-shaped, white in color, and grew at 5-38 °C (optimum 30 °C), at pH 5.0-0-8.0 (optimum, 7.0) and tolerates up to 10% (w/v) NaCl (optimum, 0% NaCl). According to the EZbioCloud server the most closely related Devosia species to strain PTR5T based on 16 S rRNA gene sequence comparison are Devosia crocina (97.4%), followed by D. soli (97.2%), D. lucknowensis (96.9%) and D. marina (96.5%). The respiratory quinone was identified as Q-10. The major polar lipids were phosphatidylglycerol and diphosphatidylglycerol. C16:0, C18:1 ω7c 11-methyl and summed feature 8 (comprising C18:1 ω7c/C18:1 ω6c) constituted the main cellular fatty acids. The draft genome sequence of strain PTR5T was 3,689,283 bp in size. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH) and amino acid identity (AAI) values between strain PTR5T and its close relative were 72.8-76.8%, 19-20.7% and 70.3-75%, respectively. The G + C content was 63.7%. Strain PTR5T was able to produce siderophore and indole acetic acid (IAA) in the presence of L-tryptophan. Genes for siderophore production, auxin responsive and tryptophan biosynthesis were present in the genome of novel strain. Also, gene clusters involved in detoxification of various metal pollutants and antibiotics were also revealed in the genome of novel strain PTR5T, this suggest that novel strain can facilitate bioremediation of heavy metals and antibiotics in contaminated areas. This study aimed to determine the detailed taxonomic position of the strain PTR5T using the modern polyphasic approach. On the basis of evidence presented in this study, strain PTR5T is considered to represent a novel species of the genus Devosia, for which the name Devosia oryzisoli sp. nov. (type strain PTR5T (KCTC 82691T = TBRC 15163T) is proposed.


Assuntos
Oryza , Fosfolipídeos , Fosfolipídeos/análise , Cloreto de Sódio/metabolismo , Sideróforos , Ubiquinona/química , Ácidos Graxos/análise , Bactérias/genética , DNA , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/química , Análise de Sequência de DNA
15.
Arch Microbiol ; 204(11): 676, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269423

RESUMO

A bacterial strain, Gram-positive, aerobic, rod-shaped, motile, designated YIM B00624T which was isolated from a Hamazui hot spring in Tengchong, Yunnan province, south-west China. The strain grew well on International Streptomyces Project (ISP) 2 medium and colonies were creamy yellow, flat and circular. The results of 16S rRNA gene sequence similarity analysis showed that strain YIM B00624T was closely related to the type strain of Paenibacillus filicis S4T (95.9%). The main menaquinone of strain YIM B00624T was menaquinone-7 (MK-7) and major fatty acids were anteiso-C15:0, anteiso-C17:0 and C16:0. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and four unidentified glycolipids. The DNA G+C content of strain YIM B00624T was 53.4 mol%. Based on physiological, phenotypic and chemotaxonomic data, strain YIM B00624T belongs to a novel species of the genus Paenibacillus, for which the name Paenibacillus hamazuiensis sp. nov. is proposed. The type strain is YIM B00624T (= CGMCC 1.19245T = KCTC 43365T).


Assuntos
Fontes Termais , Paenibacillus , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Fosfatidiletanolaminas , Ácido Diaminopimélico/química , Vitamina K 2/análise , Cardiolipinas , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Filogenia , Fosfolipídeos/análise , China , Análise de Sequência de DNA , Ácidos Graxos/análise , Glicolipídeos/química
16.
Curr Microbiol ; 79(12): 362, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253621

RESUMO

A novel actinomycete strain, designated H8589T, was isolated from a lake sediment sample, and a polyphasic approach was employed to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene indicated that strain H8589T formed a monophyletic clade within the genus Sphaerisporangium and was most closely related to Sphaerisporangium siamense DSM 45784 T (97.9% similarity) and Sphaerisporangium rufum DSM 46862 T (97.7% similarity). The draft genome had a length of 10,134,050 bp with a G + C content of 71.2%. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between strain H8589T and its closely related Sphaerisporangium species were 80.6 ~ 83.2%, 73.9 ~ 78.4% and 24.5 ~ 29.0%, respectively, which were significantly lower than the widely accepted species-defined threshold. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. Whole-cell sugars were glucose, ribose and madurose. The menaquinones were MK-9(H4), MK-9(H2), MK-9(H6) and MK-9. The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, unidentified phospholipids and unidentified aminophospholipids. The major fatty acids were identified as iso-C16:0, 10-methyl-C17:0 and C17:0. The results of phenotypic properties, genotypic distinctiveness and chemotaxonomic features indicated that strain H8589T should represent a novel species within the genus Sphaerisporangium, Sphaerisporangium fuscum sp.nov. The type strain is H8589T (= JCM 34848 T = CICC 25115 T).


Assuntos
Actinomycetales , Fosfatidiletanolaminas , Cardiolipinas , DNA Bacteriano/química , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glucose , Lagos/análise , Nucleotídeos , Peptidoglicano/análise , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Ribose , Análise de Sequência de DNA , Microbiologia do Solo , Tibet , Vitamina K 2/química
17.
Elife ; 112022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062913

RESUMO

Three-component ParABS partition systems ensure stable inheritance of many bacterial chromosomes and low-copy-number plasmids. ParA localizes to the nucleoid through its ATP-dependent nonspecific DNA-binding activity, whereas centromere-like parS-DNA and ParB form partition complexes that activate ParA-ATPase to drive the system dynamics. The essential parS sequence arrangements vary among ParABS systems, reflecting the architectural diversity of their partition complexes. Here, we focus on the pSM19035 plasmid partition system that uses a ParBpSM of the ribbon-helix-helix (RHH) family. We show that parSpSM with four or more contiguous ParBpSM-binding sequence repeats is required to assemble a stable ParApSM-ParBpSM complex and efficiently activate the ParApSM-ATPase, stimulating complex disassembly. Disruption of the contiguity of the parSpSM sequence array destabilizes the ParApSM-ParBpSM complex and prevents efficient ATPase activation. Our findings reveal the unique architecture of the pSM19035 partition complex and how it interacts with nucleoid-bound ParApSM-ATP.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Centrômero , DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Plasmídeos
18.
Arch Microbiol ; 204(10): 638, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131209

RESUMO

A novel marine Gram-stain-negative, aerobic, rod-shaped bacterium, designated as strain PS1T, was isolated from the deep-sea sediments of the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 35 °C (ranging 10-45 °C), pH 6 (ranging pH 5-10) and with 11% (w/v) NaCl (ranging 0-17%). The 16S rRNA gene sequence similarity results revealed that strain PS1T was most closely related to Pseudomonas stutzeri ATCC 17588T, Pseudomonas nitrititolerans GL14T, Pseudomonas zhaodongensis NEAU-ST5-21T, Pseudomonas xanthomarina DSM 18231T and Pseudomonas kunmingensis HL22-2T with 98.3-98.7%. The digital DNA-DNA hybridization values and the average nucleotide identity between strain PS1T and the reference strains were 20.4-40.1% and 78.7-79.4%, respectively. The major respiratory quinone is ubiquinone Q-9. The major polar lipids were phosphatidylethanolamine, diphosphatidyglycerol, phosphatidylglycerol, phosphatidylcholine, aminoglycolipid, two unidentified glycolipids and one unidentified lipid. The predominant cellular fatty acids of strain PS1T were summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0 and cyclo-C19:0 ω8c. The G + C content of the genomic DNA was 63.0%. The combined genotypic and phenotypic data indicated that strain PS1T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas marianensis sp. nov. is proposed, with the type strain PS1T (= DSM 112238T = MCCC 1K05112T).


Assuntos
Fosfatidiletanolaminas , Cloreto de Sódio , Ancitabina , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Glicolipídeos/química , Nucleotídeos , Fosfatidilcolinas , Fosfatidilgliceróis , Fosfolipídeos/análise , Filogenia , Pseudomonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
19.
Antonie Van Leeuwenhoek ; 115(11): 1307-1317, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018400

RESUMO

Strain IB182493T, a marine, aerobic, Gram-stain-negative and motile bacterium, was isolated from seashore sand of South China Sea. Cells grew optimally at 25-30 °C, pH 7.0-8.0 and with 2-4% NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus Paenibacillus, and was most closely related to Paenibacillus harenae DSM 16969 T (similarity 96.6%) and Paenibacillus alkaliterrae DSM 17040 T (similarity 96.1%). The chemotaxonomic characteristics of strain IB182493T included MK-7 as the predominant isoprenoid quinone, anteiso-C15:0 and iso-C16:0 as the major cellular fatty acids and meso-diaminopimelic acid as the diagnostic diaminoacid in cell wall peptidoglycan. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. The DNA G + C content of strain IB182493T was 56.2 %. The values of whole genome average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the isolate and the closely related type strains were less than 84.7% and 23.6%, respectively. On the basis of phenotypic and chemotaxonomic properties, phylogenetic distinctiveness and genomic data, we named the strain as Paenibacillus arenilitoris sp. nov. and proposed that strain IB182493T (= MCCC 1K04626T = JCM 34215 T) in the genus Paenibacillus represents a novel species.


Assuntos
Paenibacillus , Areia , RNA Ribossômico 16S/genética , Filogenia , Fosfatidiletanolaminas , Ácido Diaminopimélico/química , Peptidoglicano/química , Cloreto de Sódio/metabolismo , Antibacterianos , Cardiolipinas , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/análise , Ácidos Graxos/análise , Nucleotídeos , Terpenos , Quinonas
20.
Nature ; 609(7926): 384-393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002573

RESUMO

Bacterial transposons are pervasive mobile genetic elements that use distinct DNA-binding proteins for horizontal transmission. For example, Escherichia coli Tn7 homes to a specific attachment site using TnsD1, whereas CRISPR-associated transposons use type I or type V Cas effectors to insert downstream of target sites specified by guide RNAs2,3. Despite this targeting diversity, transposition invariably requires TnsB, a DDE-family transposase that catalyses DNA excision and insertion, and TnsC, a AAA+ ATPase that is thought to communicate between transposase and targeting proteins4. How TnsC mediates this communication and thereby regulates transposition fidelity has remained unclear. Here we use chromatin immunoprecipitation with sequencing to monitor in vivo formation of the type I-F RNA-guided transpososome, enabling us to resolve distinct protein recruitment events before integration. DNA targeting by the TniQ-Cascade complex is surprisingly promiscuous-hundreds of genomic off-target sites are sampled, but only a subset of those sites is licensed for TnsC and TnsB recruitment, revealing a crucial proofreading checkpoint. To advance the mechanistic understanding of interactions responsible for transpososome assembly, we determined structures of TnsC using cryogenic electron microscopy and found that ATP binding drives the formation of heptameric rings that thread DNA through the central pore, thereby positioning the substrate for downstream integration. Collectively, our results highlight the molecular specificity imparted by consecutive factor binding to genomic target sites during RNA-guided transposition, and provide a structural roadmap to guide future engineering efforts.


Assuntos
Adenosina Trifosfatases , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , RNA Bacteriano , Adenosina Trifosfatases/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Especificidade por Substrato , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA