Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077130

RESUMO

DNA Holliday junction (HJ) is a four-way stranded DNA intermediate that formed in replication fork regression, homology-dependent repair and mitosis, performing a significant role in genomic stability. Failure to remove HJ can induce an acceptable replication fork stalling and DNA damage in normal cells, leading to a serious chromosomal aberration and even cell death in HJ nuclease-deficient tumor cells. Thus, HJ is becoming an attractive target in cancer therapy. However, the development of HJ-targeting ligand faces great challenges because of flexile cavities on the center of HJs. This review introduces the discovery history of HJ, elucidates the formation and dissociation procedures of HJ in corresponding bio-events, emphasizes the importance of prompt HJ-removing in genome stability, and summarizes recent advances in HJ-based ligand discovery. Our review indicate that target HJ is a promising approach in oncotherapy.


Assuntos
DNA Cruciforme , DNA , DNA/metabolismo , Replicação do DNA , DNA Cruciforme/genética , Instabilidade Genômica , Humanos , Ligantes
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115399

RESUMO

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Assuntos
Síndrome de Bloom/genética , DNA Cruciforme/genética , Instabilidade Genômica/genética , Alelos , Proteínas de Transporte/genética , Linhagem Celular , DNA Topoisomerases Tipo I/genética , Humanos , Mutação/genética , Ligação Proteica/genética , RecQ Helicases/genética , Recombinação Genética/genética , Solubilidade
3.
Sci Adv ; 7(25)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34144978

RESUMO

Chromosomal fragile sites are implicated in promoting genome instability, which drives cancers and neurological diseases. Yet, the causes and mechanisms of chromosome fragility remain speculative. Here, we identify three spontaneous fragile sites in the Escherichia coli genome and define their DNA damage and repair intermediates at high resolution. We find that all three sites, all in the region of replication termination, display recurrent four-way DNA or Holliday junctions (HJs) and recurrent DNA breaks. Homology-directed double-strand break repair generates the recurrent HJs at all of these sites; however, distinct mechanisms of DNA breakage are implicated: replication fork collapse at natural replication barriers and, unexpectedly, frequent shearing of unsegregated sister chromosomes at cell division. We propose that mechanisms such as both of these may occur ubiquitously, including in humans, and may constitute some of the earliest events that underlie somatic cell mosaicism, cancers, and other diseases of genome instability.


Assuntos
Fragilidade Cromossômica , Neoplasias , DNA , Replicação do DNA , DNA Cruciforme/genética , Escherichia coli/genética , Instabilidade Genômica , Humanos , Neoplasias/genética
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431668

RESUMO

Homologous recombination (HR) is an important DNA double-strand break (DSB) repair pathway that copies sequence information lost at the break site from an undamaged homologous template. This involves the formation of a recombination structure that is processed to restore the original sequence but also harbors the potential for crossover (CO) formation between the participating molecules. Synthesis-dependent strand annealing (SDSA) is an HR subpathway that prevents CO formation and is thought to predominate in mammalian cells. The chromatin remodeler ATRX promotes an alternative HR subpathway that has the potential to form COs. Here, we show that ATRX-dependent HR outcompetes RECQ5-dependent SDSA for the repair of most two-ended DSBs in human cells and leads to the frequent formation of COs, assessed by measuring sister chromatid exchanges (SCEs). We provide evidence that subpathway choice is dependent on interaction of both ATRX and RECQ5 with proliferating cell nuclear antigen. We also show that the subpathway usage varies among different cancer cell lines and compare it to untransformed cells. We further observe HR intermediates arising as ionizing radiation (IR)-induced ultra-fine bridges only in cells expressing ATRX and lacking MUS81 and GEN1. Consistently, damage-induced MUS81 recruitment is only observed in ATRX-expressing cells. Cells lacking BLM show similar MUS81 recruitment and IR-induced SCE formation as control cells. Collectively, these results suggest that the ATRX pathway involves the formation of HR intermediates whose processing is entirely dependent on MUS81 and GEN1 and independent of BLM. We propose that the predominant ATRX-dependent HR subpathway forms joint molecules distinct from classical Holliday junctions.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Recombinação Homóloga/genética , RecQ Helicases/genética , Proteína Nuclear Ligada ao X/genética , Proliferação de Células/genética , Montagem e Desmontagem da Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Cruciforme/genética , Resolvases de Junção Holliday/genética , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Radiação Ionizante , Transdução de Sinais/genética
5.
Nature ; 586(7830): 623-627, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814343

RESUMO

During meiosis, crossover recombination connects homologous chromosomes to direct their accurate segregation1. Defective crossing over causes infertility, miscarriage and congenital disease. Each pair of chromosomes attains at least one crossover via the formation and biased resolution of recombination intermediates known as double Holliday junctions2,3. A central principle of crossover resolution is that the two Holliday junctions are resolved in opposite planes by targeting nuclease incisions to specific DNA strands4. The endonuclease activity of the MutLγ complex has been implicated in the resolution of crossovers5-10, but the mechanisms that activate and direct strand-specific cleavage remain unknown. Here we show that the sliding clamp PCNA is important for crossover-biased resolution. In vitro assays with human enzymes show that PCNA and its loader RFC are sufficient to activate the MutLγ endonuclease. MutLγ is further stimulated by a co-dependent activity of the pro-crossover factors EXO1 and MutSγ, the latter of which binds Holliday junctions11. MutLγ also binds various branched DNAs, including Holliday junctions, but does not show canonical resolvase activity, implying that the endonuclease incises adjacent to junction branch points to achieve resolution. In vivo, RFC facilitates MutLγ-dependent crossing over in budding yeast. Furthermore, PCNA localizes to prospective crossover sites along synapsed chromosomes. These data highlight similarities between crossover resolution and the initiation steps of DNA mismatch repair12,13 and evoke a novel model for crossover-specific resolution of double Holliday junctions during meiosis.


Assuntos
Troca Genética , Endonucleases/metabolismo , Meiose , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , DNA Cruciforme/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Masculino , Camundongos , Proteínas MutS/metabolismo , Ligação Proteica , Proteína de Replicação C/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Biochemistry ; 59(28): 2616-2626, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32567845

RESUMO

Sequences of DNA typically adopt B-form duplexes in genomes, although noncanonical structures such as G-quadruplexes, i-motifs, Z-DNA, and cruciform structures can occur. A challenge is to determine the functions of these various structures in cellular processes. We and others have hypothesized that G-rich G-quadruplex-forming sequences in human genome promoters serve to sense oxidative damage generated during oxidative stress impacting gene regulation. Herein, chemical tools and a cell-based assay were used to study the oxidation of guanine to 8-oxo-7,8-dihydroguanine (OG) in the context of a cruciform-forming sequence in a gene promoter to determine the impact on transcription. We found that OG in the nontemplate strand in the loop of a cruciform-forming sequence could induce gene expression; conversely when OG was in the same sequence on the template strand, gene expression was inhibited. A model for the transcriptional changes observed is proposed in which OG focuses the DNA repair process on the promoter to impact expression. Our cellular and biophysical studies and literature sources support the idea that removal of OG from duplex DNA by OGG1 yields an abasic site (AP) that triggers a structural shift to the cruciform fold. The AP-bearing cruciform structure is presented to APE1, which functions as a conduit between DNA repair and gene regulation. The significance is enhanced by a bioinformatic study of all human gene promoters and transcription termination sites for inverted repeats (IRs). Comparison of the two regions showed that promoters have stable and G-rich IRs at a low frequency and termination sites have many AT-rich IRs with low stability.


Assuntos
DNA Cruciforme/genética , Desoxiguanosina/metabolismo , Estresse Oxidativo , Regiões Promotoras Genéticas , Transcrição Gênica , Linhagem Celular Tumoral , Reparo do DNA , DNA Cruciforme/metabolismo , Quadruplex G , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Oxirredução
7.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32362315

RESUMO

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Assuntos
Troca Genética/fisiologia , Recombinação Homóloga/fisiologia , Meiose/fisiologia , Animais , Segregação de Cromossomos/genética , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Recombinação Homóloga/genética , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heteroduplexes/genética
8.
Nat Commun ; 9(1): 34, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295984

RESUMO

In eukaryotes, RAD54 catalyzes branch migration (BM) of Holliday junctions, a basic process during DNA repair, replication, and recombination. RAD54 also stimulates RAD51 recombinase and has other activities. Here, we investigate the structural determinants for different RAD54 activities. We find that the RAD54 N-terminal domain (NTD) is responsible for initiation of BM through two coupled, but distinct steps; specific binding to Holliday junctions and RAD54 oligomerization. Furthermore, we find that the RAD54 oligomeric state can be controlled by NTD phosphorylation at S49, a CDK2 consensus site, which inhibits RAD54 oligomerization and, consequently, BM. Importantly, the effect of phosphorylation on RAD54 oligomerization is specific for BM, as it does not affect stimulation of RAD51 recombinase by RAD54. Thus, the transition of the oligomeric states provides an important control of the biological functions of RAD54 and, likely, other multifunctional proteins.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , DNA Cruciforme/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Linhagem Celular , DNA Helicases/química , DNA Helicases/genética , Reparo do DNA , DNA Cruciforme/química , DNA Cruciforme/genética , Proteínas de Ligação a DNA , Humanos , Hidrólise , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Fosforilação , Multimerização Proteica , Recombinação Genética , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera
9.
Biochim Biophys Acta Gen Subj ; 1862(3): 649-659, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29246583

RESUMO

Maintaining genome integrity is crucial for normal cellular functions. DNA double-strand breaks (DSBs), when unrepaired, can potentiate chromosomal translocations. t(14;18) translocation involving BCL2 gene on chromosome 18 and IgH loci at chromosome 14, could lead to follicular lymphoma. Molecular basis for fragility of translocation breakpoint regions is an active area of investigation. Previously, formation of non-B DNA structures like G-quadruplex, triplex, B/A transition were investigated at peak I of BCL2 major breakpoint region (MBR); however, it is less understood at peak III. In vitro gel shift assays show faster mobility for MBR peak III sequences, unlike controls. CD studies of peak III sequences reveal a spectral pattern different from B-DNA. Although complementary C-rich stretches exhibit single-strandedness, corresponding guanine-rich sequences do not show DMS protection, ruling out G-quadruplex and triplex DNA. Extrachromosomal assay indicates that peak III halts transcription, unlike its mutated version. Taken together, multiple lines of evidence suggest formation of potential cruciform DNA structure at MBR peak III, which was also supported by in silico studies. Thus, our study reveals formation of non-B DNA structure which could be a basis for fragility at BCL2 breakpoint regions, eventually leading to chromosomal translocations.


Assuntos
Pontos de Quebra do Cromossomo , Sítios Frágeis do Cromossomo/genética , Cromossomos Humanos Par 14/ultraestrutura , Cromossomos Humanos Par 18/ultraestrutura , DNA Cruciforme/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Translocação Genética , Sequência de Bases , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Instabilidade Cromossômica/genética , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 18/genética , Dicroísmo Circular , DNA Cruciforme/análise , Eletroforese em Gel de Poliacrilamida , Predisposição Genética para Doença , Humanos , Leucemia de Células B/patologia , Modelos Genéticos , Transcrição Gênica/genética
10.
Biochim Biophys Acta Gene Regul Mech ; 1860(2): 282-288, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27923713

RESUMO

Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest.


Assuntos
DNA Cruciforme/genética , RNA Polimerase II/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Instabilidade Genômica/genética , Células HeLa , Humanos , Recombinação Genética/genética , Proteínas Virais/genética
11.
PLoS Genet ; 12(12): e1006483, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977684

RESUMO

Bloom syndrome is a recessive human genetic disorder with features of genome instability, growth deficiency and predisposition to cancer. The only known causative gene is the BLM helicase that is a member of a protein complex along with topoisomerase III alpha, RMI1 and 2, which maintains replication fork stability and dissolves double Holliday junctions to prevent genome instability. Here we report the identification of a second gene, RMI2, that is deleted in affected siblings with Bloom-like features. Cells from homozygous individuals exhibit elevated rates of sister chromatid exchange, anaphase DNA bridges and micronuclei. Similar genome and chromosome instability phenotypes are observed in independently derived RMI2 knockout cells. In both patient and knockout cell lines reduced localisation of BLM to ultra fine DNA bridges and FANCD2 at foci linking bridges are observed. Overall, loss of RMI2 produces a partially active BLM complex with mild features of Bloom syndrome.


Assuntos
Síndrome de Bloom/genética , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Neoplasias/genética , Proteínas Nucleares/genética , Síndrome de Bloom/complicações , Síndrome de Bloom/patologia , Instabilidade Cromossômica/genética , DNA Helicases/genética , DNA Cruciforme/genética , Predisposição Genética para Doença , Instabilidade Genômica , Humanos , Complexos Multiproteicos/genética , Neoplasias/complicações , Neoplasias/patologia , Troca de Cromátide Irmã/genética
12.
Nat Commun ; 7: 13157, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779184

RESUMO

Cells have evolved mechanisms to protect, restart and repair perturbed replication forks, allowing full genome duplication, even under replication stress. Interrogating the interplay between nuclease-helicase Dna2 and Holliday junction (HJ) resolvase Yen1, we find the Dna2 helicase activity acts parallel to homologous recombination (HR) in promoting DNA replication and chromosome detachment at mitosis after replication fork stalling. Yen1, but not the HJ resolvases Slx1-Slx4 and Mus81-Mms4, safeguards chromosome segregation by removing replication intermediates that escape Dna2. Post-replicative DNA damage checkpoint activation in Dna2 helicase-defective cells causes terminal G2/M arrest by precluding Yen1-dependent repair, whose activation requires progression into anaphase. These findings explain the exquisite replication stress sensitivity of Dna2 helicase-defective cells, and identify a non-canonical role for Yen1 in the processing of replication intermediates that is distinct from HJ resolution. The involvement of Dna2 helicase activity in completing replication may have implications for DNA2-associated pathologies, including cancer and Seckel syndrome.


Assuntos
DNA Helicases/genética , Replicação do DNA , Regulação Fúngica da Expressão Gênica , Resolvases de Junção Holliday/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Segregação de Cromossomos , Cromossomos Fúngicos/química , Cromossomos Fúngicos/metabolismo , DNA Helicases/metabolismo , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Resolvases de Junção Holliday/metabolismo , Recombinação Homóloga , Mitose , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Biochem Biophys Res Commun ; 478(4): 1739-45, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27603574

RESUMO

DNA cruciform structures play an important role in the regulation of natural processes including gene replication and expression, as well as nucleosome structure and recombination. They have also been implicated in the evolution and development of diseases such as cancer and neurodegenerative disorders. Cruciform structures are formed by inverted repeats, and their stability is enhanced by DNA supercoiling and protein binding. They have received broad attention because of their important roles in biology. Computational approaches to study inverted repeats have allowed detailed analysis of genomes. However, currently there are no easily accessible and user-friendly tools that can analyse inverted repeats, especially among long nucleotide sequences. We have developed a web-based server, Palindrome analyser, which is a user-friendly application for analysing inverted repeats in various DNA (or RNA) sequences including genome sequences and oligonucleotides. It allows users to search and retrieve desired gene/nucleotide sequence entries from the NCBI databases, and provides data on length, sequence, locations and energy required for cruciform formation. Palindrome analyser also features an interactive graphical data representation of the distribution of the inverted repeats, with options for sorting according to the length of inverted repeat, length of loop, and number of mismatches. Palindrome analyser can be accessed at http://bioinformatics.ibp.cz.


Assuntos
Biologia Computacional/métodos , DNA/genética , Internet , Sequências Repetidas Invertidas/genética , Sequência de Bases , DNA/análise , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Cruciforme/análise , DNA Cruciforme/genética , DNA Viral/análise , DNA Viral/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Genoma Viral/genética , Oligonucleotídeos/análise , Oligonucleotídeos/genética , Reprodutibilidade dos Testes , Vírus/classificação , Vírus/genética
14.
Structure ; 24(8): 1292-1300, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27427477

RESUMO

The reactivation of stalled DNA replication via fork regression invokes Holliday junction formation, branch migration, and the recovery of the replication fork after DNA repair or error-free DNA synthesis. The coordination mechanism for these DNA structural transitions by molecular motors, however, remains unclear. Here we perform single-molecule fluorescence experiments with Werner syndrome protein (WRN) and model replication forks. The Holliday junction is readily formed once the lagging arm is unwound, and migrated unidirectionally with 3.2 ± 0.03 bases/s velocity. The recovery of the replication fork was controlled by branch migration reversal of WRN, resulting in repetitive fork regression. The Holliday junction formation, branch migration, and migration direction reversal are all ATP dependent, revealing that WRN uses the energy of ATP hydrolysis to actively coordinate the structural transitions of DNA.


Assuntos
Trifosfato de Adenosina/metabolismo , Replicação do DNA , DNA Cruciforme/química , Proteínas Recombinantes de Fusão/metabolismo , Helicase da Síndrome de Werner/metabolismo , Animais , Pareamento de Bases , Carbocianinas/química , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Expressão Gênica , Humanos , Proteínas Recombinantes de Fusão/genética , Células Sf9 , Imagem Individual de Molécula , Spodoptera , Helicase da Síndrome de Werner/genética
15.
Sci Adv ; 2(11): e1601605, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28090586

RESUMO

DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR-HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Bacteriano , DNA Cruciforme , Escherichia coli , RecQ Helicases , Recombinação Genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo
16.
Mol Cells ; 37(8): 569-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24938228

RESUMO

As a scaffold, SLX4/FANCP interacts with multiple proteins involved in genome integrity. Although not having recognizable catalytic domains, SLX4 participates in diverse genome maintenance pathways by delivering nucleases where they are needed, and promoting their cooperative execution to prevent genomic instabilities. Physiological importance of SLX4 is emphasized by the identification of causative mutations of SLX4 genes in patients diagnosed with Fanconi anemia (FA), a rare recessive genetic disorder characterized by genomic instability and predisposition to cancers. Recent progress in understanding functional roles of SLX4 has greatly expanded our knowledge in the repair of DNA interstrand crosslinks (ICLs), Holliday junction (HJ) resolution, telomere homeostasis and regulation of DNA damage response induced by replication stress. Here, these diverse functions of SLX4 are reviewed in detail.


Assuntos
Reparo do DNA , Replicação do DNA , Anemia de Fanconi/genética , Genoma Humano , Recombinases/genética , Animais , Dano ao DNA , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Instabilidade Genômica , Humanos , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Recombinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Homeostase do Telômero
17.
PLoS Genet ; 10(4): e1004251, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699519

RESUMO

Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.


Assuntos
Reparo do DNA/genética , DNA/genética , Recombinação Genética/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Cruciforme/genética , Marcação de Genes/métodos , Vetores Genéticos/genética , Células HCT116 , Humanos
18.
PLoS Genet ; 10(1): e1004125, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497841

RESUMO

Segregation of chromosomes during the first meiotic division relies on crossovers established during prophase. Although crossovers are strictly regulated so that at least one occurs per chromosome, individual variation in crossover levels is not uncommon. In an analysis of different inbred strains of male mice, we identified among-strain variation in the number of foci for the crossover-associated protein MLH1. We report studies of strains with "low" (CAST/EiJ), "medium" (C3H/HeJ), and "high" (C57BL/6J) genome-wide MLH1 values to define factors responsible for this variation. We utilized immunofluorescence to analyze the number and distribution of proteins that function at different stages in the recombination pathway: RAD51 and DMC1, strand invasion proteins acting shortly after double-strand break (DSB) formation, MSH4, part of the complex stabilizing double Holliday junctions, and the Bloom helicase BLM, thought to have anti-crossover activity. For each protein, we identified strain-specific differences that mirrored the results for MLH1; i.e., CAST/EiJ mice had the lowest values, C3H/HeJ mice intermediate values, and C57BL/6J mice the highest values. This indicates that differences in the numbers of DSBs (as identified by RAD51 and DMC1) are translated into differences in the number of crossovers, suggesting that variation in crossover levels is established by the time of DSB formation. However, DSBs per se are unlikely to be the primary determinant, since allelic variation for the DSB-inducing locus Spo11 resulted in differences in the numbers of DSBs but not the number of MLH1 foci. Instead, chromatin conformation appears to be a more important contributor, since analysis of synaptonemal complex length and DNA loop size also identified consistent strain-specific differences; i.e., crossover frequency increased with synaptonemal complex length and was inversely related to chromatin loop size. This indicates a relationship between recombination and chromatin compaction that may develop as DSBs form or earlier during establishment of the meiotic axis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , DNA Cruciforme/genética , Meiose/genética , Proteínas Nucleares/genética , Prófase/genética , Recombinação Genética , Animais , Proteínas de Ciclo Celular/genética , Cromatina/genética , Troca Genética , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Genoma , Masculino , Camundongos , Proteína 1 Homóloga a MutL , Proteínas de Ligação a Fosfato , Rad51 Recombinase/genética , Complexo Sinaptonêmico/genética
19.
J Biol Chem ; 289(9): 5664-73, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24403070

RESUMO

Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Cruciforme/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/metabolismo , Meiose/fisiologia , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Quebras de DNA de Cadeia Simples , DNA Cruciforme/genética , DNA Fúngico/genética , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/genética , Desoxirribonuclease I/genética , Proteína 1 Homóloga a MutL , Proteínas MutL , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Biol Chem ; 289(9): 5674-86, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24443562

RESUMO

MutLγ, a heterodimer of the MutL homologues Mlh1 and Mlh3, plays a critical role during meiotic homologous recombination. The meiotic function of Mlh3 is fully dependent on the integrity of a putative nuclease motif DQHAX2EX4E, inferring that the anticipated nuclease activity of Mlh1-Mlh3 is involved in the processing of joint molecules to generate crossover recombination products. Although a vast body of genetic and cell biological data regarding Mlh1-Mlh3 is available, mechanistic insights into its function have been lacking due to the unavailability of the recombinant protein complex. Here we expressed the yeast Mlh1-Mlh3 heterodimer and purified it into near homogeneity. We show that recombinant MutLγ is a nuclease that nicks double-stranded DNA. We demonstrate that MutLγ binds DNA with a high affinity and shows a marked preference for Holliday junctions. We also expressed the human MLH1-MLH3 complex and show that preferential binding to Holliday junctions is a conserved capacity of eukaryotic MutLγ complexes. Specific DNA recognition has never been observed with any other eukaryotic MutL homologue. MutLγ thus represents a new paradigm for the function of the eukaryotic MutL protein family. We provide insights into the mode of Holliday junction recognition and show that Mlh1-Mlh3 prefers to bind the open unstacked Holliday junction form. This further supports the model where MutLγ is part of a complex acting on joint molecules to generate crossovers in meiosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Cruciforme/metabolismo , DNA Fúngico/metabolismo , Desoxirribonuclease I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , DNA Cruciforme/genética , DNA Fúngico/genética , Desoxirribonuclease I/genética , Humanos , Proteína 1 Homóloga a MutL , Proteínas MutL , Multimerização Proteica/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA