Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 534(7605): 133-7, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251291

RESUMO

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Assuntos
Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Transporte Ativo do Núcleo Celular , Sequência de Bases , Domínio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , DNA Espaçador Ribossômico/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Ligação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Fúngico/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Rotação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
2.
RNA Biol ; 12(3): 255-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826659

RESUMO

Ribosome biogenesis governs protein synthesis. NIFK is transactivated by c-Myc, the key regulator of ribosome biogenesis. The biological function of human NIFK is not well established, except that it has been shown to interact with Ki67 and NPM1. Here we report that NIFK is required for cell cycle progression and participates in the ribosome biogenesis via its RNA recognition motif (RRM). We show that silencing of NIFK inhibits cell proliferation through a reversible p53-dependent G1 arrest, possibly by induction of the RPL5/RPL11-mediated nucleolar stress. Mechanistically it is the consequence of impaired maturation of 28S and 5.8S rRNA resulting from inefficient cleavage of internal transcribed spacer (ITS) 1, a critical step in the separation of pre-ribosome to small and large subunits. Complementation of NIFK silencing by mutants shows that RNA-binding ability of RRM is essential for the pre-rRNA processing and G1 progression. More specifically, we validate that the RRM of NIFK preferentially binds to the 5'-region of ITS2 rRNA likely in both sequence specific and secondary structure dependent manners. Our results show how NIFK is involved in cell cycle progression through RRM-dependent pre-rRNA maturation, which could enhance our understanding of the function of NIFK in cell proliferation, and potentially also cancer and ribosomopathies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Biossíntese de Proteínas , Precursores de RNA/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Nucleofosmina , Motivos de Nucleotídeos , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Precursores de RNA/metabolismo , RNA Ribossômico 28S/metabolismo , RNA Ribossômico 5,8S/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Nucleic Acids Res ; 42(9): 5505-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24609384

RESUMO

Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously.


Assuntos
Nucléolo Celular/metabolismo , DNA Espaçador Ribossômico/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Nucléolo Celular/genética , Proliferação de Células , Montagem e Desmontagem da Cromatina , DNA Espaçador Ribossômico/metabolismo , Epigênese Genética , Células HEK293 , Células HeLa , Humanos , Conformação de Ácido Nucleico , Ratos
4.
Mol Biol Cell ; 24(18): 2943-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23904269

RESUMO

The nucleolus is a plurifunctional organelle in which structure and function are intimately linked. Its structural plasticity has long been appreciated, particularly in response to transcriptional inhibition and other cellular stresses, although the mechanism and physiological relevance of these phenomena are unclear. Using MCF-7 and other mammalian cell lines, we describe a structural and functional adaptation of the nucleolus, triggered by heat shock or physiological acidosis, that depends on the expression of ribosomal intergenic spacer long noncoding RNA (IGS lncRNA). At the heart of this process is the de novo formation of a large subnucleolar structure, termed the detention center (DC). The DC is a spatially and dynamically distinct region, characterized by an 8-anilino-1-naphthalenesulfonate-positive hydrophobic signature. Its formation is accompanied by redistribution of nucleolar factors and arrest in ribosomal biogenesis. Silencing of regulatory IGS lncRNA prevents the creation of this structure and allows the nucleolus to retain its tripartite organization and transcriptional activity. Signal termination causes a decrease in IGS transcript levels and a return to the active nucleolar conformation. We propose that the induction of IGS lncRNA by environmental signals operates as a molecular switch that regulates the structure and function of the nucleolus.


Assuntos
Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Meio Ambiente , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , DNA Espaçador Ribossômico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Biológicos , Células NIH 3T3 , Transcrição Gênica
5.
J Plant Res ; 126(3): 351-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23239308

RESUMO

Prunus subgenus Padus is a group with a wide distribution in temperate eastern Asia and eastern North America with one species extending to Europe and one to Central America. Phylogenetic relationships of subgenus Padus were reconstructed using sequences of nuclear ribosomal ITS, and plastid ndhF gene, and rps16 intron and rpl16 intron. Prunus subgenus Padus is shown to be polyphyletic. Taxa of subgenus Padus and subgenus Laurocerasus are highly intermixed in both the ITS and the plastid trees. The results support two disjunctions between eastern North America and Eurasia within the Padus group. One disjunction is between Prunus virginiana of eastern North America and P. padus of Eurasia, estimated to have diverged at 2.99 (95 % HPD 0.59-6.15)-4.1 (95 % HPD 0.63-8.59) mya. The other disjunction is between P. serotina and its Asian relatives. The second disjunction may have occurred earlier than the former one, but the age estimate is difficult due to the unresolved phylogenetic position of the P. serotina complex.


Assuntos
Evolução Biológica , Proteínas de Plantas/genética , Plastídeos/genética , Prunus/classificação , Prunus/genética , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , Ásia Oriental , Dados de Sequência Molecular , América do Norte , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência
6.
Mol Cell Biol ; 25(5): 1586-95, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15713619

RESUMO

UV photofootprinting and repair of pyrimidine dimers by photolyase was used to investigate chromatin structure, protein-DNA interactions, and DNA repair in the spacer and promoter of Saccharomyces cerevisiae rRNA genes. Saccharomyces cerevisiae contains about 150 copies of rRNA genes separated by nontranscribed spacers. Under exponential growth conditions about half of the genes are transcribed by RNA polymerase I (RNAP-I). Initiation of transcription requires the assembly of the upstream activating factor (UAF), the core factor (CF), TATA binding protein, and RNAP-I with Rrn3p on the upstream element and core promoter. We show that UV irradiation of wild-type cells and transcription factor mutants generates photofootprints in the promoter elements. The core footprint depends on UAF, while the UAF footprint was also detected in absence of the CFs. Fractionation of active and inactive promoters showed the core footprint mainly in the active fraction and similar UAF footprints in both fractions. DNA repair by photolyase was strongly inhibited in active promoters but efficient in inactive promoters. The data suggest that UAF is present in vivo in active and inactive promoters and that recruitment of CF and RNAP-I to active promoters generates a stable complex which inhibits repair.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Genes de RNAr/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia , Cromatina/química , Cromatina/metabolismo , Dano ao DNA/genética , Pegada de DNA , Reparo do DNA/genética , DNA Fúngico/metabolismo , DNA Fúngico/efeitos da radiação , DNA Espaçador Ribossômico/metabolismo , DNA Espaçador Ribossômico/efeitos da radiação , Desoxirribodipirimidina Fotoliase/fisiologia , Regulação Fúngica da Expressão Gênica , Genes de RNAr/efeitos da radiação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Regiões Promotoras Genéticas/fisiologia , Dímeros de Pirimidina/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA