Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 738
Filtrar
1.
Nature ; 616(7958): 843-848, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076626

RESUMO

Structural maintenance of chromosomes (SMC) protein complexes are essential for the spatial organization of chromosomes1. Whereas cohesin and condensin organize chromosomes by extrusion of DNA loops, the molecular functions of the third eukaryotic SMC complex, Smc5/6, remain largely unknown2. Using single-molecule imaging, we show that Smc5/6 forms DNA loops by extrusion. Upon ATP hydrolysis, Smc5/6 reels DNA symmetrically into loops at a force-dependent rate of one kilobase pair per second. Smc5/6 extrudes loops in the form of dimers, whereas monomeric Smc5/6 unidirectionally translocates along DNA. We also find that the subunits Nse5 and Nse6 (Nse5/6) act as negative regulators of loop extrusion. Nse5/6 inhibits loop-extrusion initiation by hindering Smc5/6 dimerization but has no influence on ongoing loop extrusion. Our findings reveal functions of Smc5/6 at the molecular level and establish DNA loop extrusion as a conserved mechanism among eukaryotic SMC complexes.


Assuntos
Proteínas de Ciclo Celular , Cromossomos Fúngicos , DNA Fúngico , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos/química , Cromossomos Fúngicos/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Hidrólise , Complexos Multiproteicos , Imagem Individual de Molécula , Coesinas
2.
Methods Mol Biol ; 2605: 79-102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520390

RESUMO

Extraction of high-quality, high molecular weight DNA is a critical step for sequencing an organism's genome. For fungi, DNA extraction is often complicated by co-precipitation of secondary metabolites, the most destructive being polysaccharides, polyphenols, and melanin. Different DNA extraction protocols and clean-up methods have been developed to address challenging materials and contaminants; however, the method of fungal cultivation and tissue preparation also plays a critical role to limit the production of inhibitory compounds prior to extraction. Here, we provide protocols and guidelines for (i) fungal tissue cultivation and processing with solid media containing a cellophane overlay or in liquid media, (ii) DNA extraction with customized recommendations for taxonomically and ecologically diverse plant-associated fungi, and (iii) assessing DNA quantity and quality for downstream genome sequencing with single-molecule technology such as PacBio.


Assuntos
Fungos , Genoma , DNA Fúngico/genética , DNA Fúngico/metabolismo , Peso Molecular , Fungos/genética , Fungos/metabolismo , Mapeamento Cromossômico
3.
Nat Struct Mol Biol ; 29(2): 121-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173352

RESUMO

Chromatin remodelers are ATP-dependent enzymes that reorganize nucleosomes within all eukaryotic genomes. Here we report a complex of the Chd1 remodeler bound to a nucleosome in a nucleotide-free state, determined by cryo-EM to 2.3 Å resolution. The remodeler stimulates the nucleosome to absorb an additional nucleotide on each strand at two different locations: on the tracking strand within the ATPase binding site and on the guide strand one helical turn from the ATPase motor. Remarkably, the additional nucleotide on the tracking strand is associated with a local transformation toward an A-form geometry, explaining how sequential ratcheting of each DNA strand occurs. The structure also reveals a histone-binding motif, ChEx, which can block opposing remodelers on the nucleosome and may allow Chd1 to participate in histone reorganization during transcription.


Assuntos
DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Montagem e Desmontagem da Cromatina/fisiologia , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Nucleossomos/química , Nucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Nat Commun ; 13(1): 359, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042867

RESUMO

Single-stranded DNA (ssDNA) commonly occurs as intermediates in DNA metabolic pathways. The ssDNA binding protein, RPA, not only protects the integrity of ssDNA, but also directs the downstream factor that signals or repairs the ssDNA intermediate. However, it remains unclear how these enzymes/factors outcompete RPA to access ssDNA. Using the budding yeast Saccharomyces cerevisiae as a model system, we find that Dna2 - a key nuclease in DNA replication and repair - employs a bimodal interface to act with RPA both in cis and in trans. The cis-activity makes RPA a processive unit for Dna2-catalyzed ssDNA digestion, where RPA delivers its bound ssDNA to Dna2. On the other hand, activity in trans is mediated by an acidic patch on Dna2, which enables it to function with a sub-optimal amount of RPA, or to overcome DNA secondary structures. The trans-activity mode is not required for cell viability, but is necessary for effective double strand break (DSB) repair.


Assuntos
DNA Helicases/metabolismo , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálise , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Modelos Biológicos , Mutação/genética , Peptídeos/metabolismo , Fleomicinas/farmacologia , Ligação Proteica , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Tirosina/metabolismo
5.
Sci Rep ; 12(1): 394, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013471

RESUMO

Delayed luminescence (DL) is gradually used in various detection of biological systems as a rapid detection technique, however, its biological mechanism was still not clear. In this study, a new model of DL detection system for liquid biological samples is established to investigate the DL emission of Saccharomyces cerevisiae cells cultured in different glucose concentrations. We analyzed the relationship between the DL emission and cell growth, cell vitality, mitochondrial morphology, mitochondrial DNA (mtDNA) copy number, adenosine triphosphate (ATP), oxygen consumption rate (OCR), as well as mitochondria membrane potential (MMP) in S. cerevisiae cells cultured with 0.01, 0.05, 0.15, 3, 10 and 20 g/L glucose respectively. It was found that the DL emission had strong correlation with mitochondrial morphology, OCR, and MMP. The results suggested that DL is an indicator of mitochondria status under different glucose supply conditions, and may be an effective method to detect mitochondrial metabolism related disorders.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Medições Luminescentes , Potencial da Membrana Mitocondrial , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/genética , Consumo de Oxigênio , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Espectrometria de Fluorescência , Fatores de Tempo
6.
Nucleic Acids Res ; 50(2): 915-936, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35018465

RESUMO

Adaptive mutations can cause drug resistance in cancers and pathogens, and increase the tolerance of agricultural pests and diseases to chemical treatment. When and how adaptive mutations form is often hard to discern, but we have shown that adaptive copy number amplification of the copper resistance gene CUP1 occurs in response to environmental copper due to CUP1 transcriptional activation. Here we dissect the mechanism by which CUP1 transcription in budding yeast stimulates copy number variation (CNV). We show that transcriptionally stimulated CNV requires TREX-2 and Mediator, such that cells lacking TREX-2 or Mediator respond normally to copper but cannot acquire increased resistance. Mediator and TREX-2 can cause replication stress by tethering transcribed loci to nuclear pores, a process known as gene gating, and transcription at the CUP1 locus causes a TREX-2-dependent accumulation of replication forks indicative of replication fork stalling. TREX-2-dependent CUP1 gene amplification occurs by a Rad52 and Rad51-mediated homologous recombination mechanism that is enhanced by histone H3K56 acetylation and repressed by Pol32 and Pif1. CUP1 amplification is also critically dependent on late-firing replication origins present in the CUP1 repeats, and mutations that remove or inactivate these origins strongly suppress the acquisition of copper resistance. We propose that replicative stress imposed by nuclear pore association causes replication bubbles from these origins to collapse soon after activation, leaving a tract of H3K56-acetylated chromatin that promotes secondary recombination events during elongation after replication fork re-start events. The capacity for inefficient replication origins to promote copy number variation renders certain genomic regions more fragile than others, and therefore more likely to undergo adaptive evolution through de novo gene amplification.


Assuntos
DNA Fúngico/metabolismo , Exodesoxirribonucleases/metabolismo , Histonas/metabolismo , Metalotioneína/metabolismo , Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Recombinação Homóloga , Origem de Replicação
7.
Nucleic Acids Res ; 50(2): 962-974, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35037018

RESUMO

We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.


Assuntos
DNA Polimerase II/metabolismo , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Replicação do DNA , Mutação , Taxa de Mutação
8.
Nucleic Acids Res ; 50(2): 820-832, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34951453

RESUMO

The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-dependent motor mechanism remains unclear but likely involves steps associated with large conformational changes within the ∼50 nm protein complex. Here, using high-resolution magnetic tweezers, we resolve single steps in the loop extrusion process by individual yeast condensins. The measured median step sizes range between 20-40 nm at forces of 1.0-0.2 pN, respectively, comparable with the holocomplex size. These large steps show that, strikingly, condensin typically reels in DNA in very sizeable amounts with ∼200 bp on average per single extrusion step at low force, and occasionally even much larger, exceeding 500 bp per step. Using Molecular Dynamics simulations, we demonstrate that this is due to the structural flexibility of the DNA polymer at these low forces. Using ATP-binding-impaired and ATP-hydrolysis-deficient mutants, we find that ATP binding is the primary step-generating stage underlying DNA loop extrusion. We discuss our findings in terms of a scrunching model where a stepwise DNA loop extrusion is generated by an ATP-binding-induced engagement of the hinge and the globular domain of the SMC complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Conformação de Ácido Nucleico , Ligação Proteica
9.
Biochemistry ; 61(1): 10-20, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932305

RESUMO

The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.


Assuntos
DNA Helicases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Helicases/química , DNA Fúngico/química , Quadruplex G , Hidrólise , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
10.
Nat Commun ; 12(1): 5568, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552065

RESUMO

Eukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway. Furthermore, it was possible to reconstitute a Rad27- and Msh2-Msh6-dependent MMR reaction in vitro using a mispaired DNA substrate and other MMR proteins. Our results demonstrate Rad27 defines an Exo1-independent eukaryotic MMR pathway that is redundant with at least two other MMR pathways.


Assuntos
Reparo de Erro de Pareamento de DNA , Exodesoxirribonucleases/metabolismo , Endonucleases Flap/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Ligases/metabolismo , DNA Fúngico/metabolismo , Exodesoxirribonucleases/genética , Endonucleases Flap/genética , Proteínas MutL/genética , Proteínas MutL/metabolismo , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell ; 81(19): 3979-3991.e4, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375584

RESUMO

Epigenetic inheritance of heterochromatin requires DNA-sequence-independent propagation mechanisms, coupling to RNAi, or input from DNA sequence, but how DNA contributes to inheritance is not understood. Here, we identify a DNA element (termed "maintainer") that is sufficient for epigenetic inheritance of pre-existing histone H3 lysine 9 methylation (H3K9me) and heterochromatin in Schizosaccharomyces pombe but cannot establish de novo gene silencing in wild-type cells. This maintainer is a composite DNA element with binding sites for the Atf1/Pcr1 and Deb1 transcription factors and the origin recognition complex (ORC), located within a 130-bp region, and can be converted to a silencer in cells with lower rates of H3K9me turnover, suggesting that it participates in recruiting the H3K9 methyltransferase Clr4/Suv39h. These results suggest that, in the absence of RNAi, histone H3K9me is only heritable when it can collaborate with maintainer-associated DNA-binding proteins that help recruit the enzyme responsible for its epigenetic deposition.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , DNA Fúngico/genética , Hereditariedade , Heterocromatina/genética , Sequências Reguladoras de Ácido Nucleico , Schizosaccharomyces/genética , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/metabolismo , Epigênese Genética , Regulação Fúngica da Expressão Gênica , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
PLoS Comput Biol ; 17(7): e1009265, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329301

RESUMO

The condensin protein complex compacts chromatin during mitosis using its DNA-loop extrusion activity. Previous studies proposed scrunching and loop-capture models as molecular mechanisms for the loop extrusion process, both of which assume the binding of double-strand (ds) DNA to the hinge domain formed at the interface of the condensin subunits Smc2 and Smc4. However, how the hinge domain contacts dsDNA has remained unknown. Here, we conducted atomic force microscopy imaging of the budding yeast condensin holo-complex and used this data as basis for coarse-grained molecular dynamics simulations to model the hinge structure in a transient open conformation. We then simulated the dsDNA binding to open and closed hinge conformations, predicting that dsDNA binds to the outside surface when closed and to the outside and inside surfaces when open. Our simulations also suggested that the hinge can close around dsDNA bound to the inside surface. Based on these simulation results, we speculate that the conformational change of the hinge domain might be essential for the dsDNA binding regulation and play roles in condensin-mediated DNA-loop extrusion.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Biologia Computacional , Simulação por Computador , DNA Fúngico/química , Microscopia de Força Atômica , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Eletricidade Estática
13.
Nucleic Acids Res ; 49(12): 6832-6848, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157114

RESUMO

Rad51 is the key protein in homologous recombination that plays important roles during DNA replication and repair. Auxiliary factors regulate Rad51 activity to facilitate productive recombination, and prevent inappropriate, untimely or excessive events, which could lead to genome instability. Previous genetic analyses identified a function for Rrp1 (a member of the Rad5/16-like group of SWI2/SNF2 translocases) in modulating Rad51 function, shared with the Rad51 mediator Swi5-Sfr1 and the Srs2 anti-recombinase. Here, we show that Rrp1 overproduction alleviates the toxicity associated with excessive Rad51 levels in a manner dependent on Rrp1 ATPase domain. Purified Rrp1 binds to DNA and has a DNA-dependent ATPase activity. Importantly, Rrp1 directly interacts with Rad51 and removes it from double-stranded DNA, confirming that Rrp1 is a translocase capable of modulating Rad51 function. Rrp1 affects Rad51 binding at centromeres. Additionally, we demonstrate in vivo and in vitro that Rrp1 possesses E3 ubiquitin ligase activity with Rad51 as a substrate, suggesting that Rrp1 regulates Rad51 in a multi-tiered fashion.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/fisiologia , Instabilidade Genômica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/isolamento & purificação , Proteínas de Schizosaccharomyces pombe/fisiologia
14.
EMBO J ; 40(15): e107807, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34191293

RESUMO

Eukaryotic cells employ three SMC (structural maintenance of chromosomes) complexes to control DNA folding and topology. The Smc5/6 complex plays roles in DNA repair and in preventing the accumulation of deleterious DNA junctions. To elucidate how specific features of Smc5/6 govern these functions, we reconstituted the yeast holo-complex. We found that the Nse5/6 sub-complex strongly inhibited the Smc5/6 ATPase by preventing productive ATP binding. This inhibition was relieved by plasmid DNA binding but not by short linear DNA, while opposing effects were observed without Nse5/6. We uncovered two binding sites for Nse5/6 on Smc5/6, based on an Nse5/6 crystal structure and cross-linking mass spectrometry data. One binding site is located at the Smc5/6 arms and one at the heads, the latter likely exerting inhibitory effects on ATP hydrolysis. Cysteine cross-linking demonstrated that the interaction with Nse5/6 anchored the ATPase domains in a non-productive state, which was destabilized by ATP and DNA. Under similar conditions, the Nse4/3/1 module detached from the ATPase. Altogether, we show how DNA substrate selection is modulated by direct inhibition of the Smc5/6 ATPase by Nse5/6.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA Fúngico/metabolismo , Hidrólise , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
Mol Cell ; 81(5): 1043-1057.e8, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421364

RESUMO

Homologous recombination (HR) is essential for maintenance of genome integrity. Rad51 paralogs fulfill a conserved but undefined role in HR, and their mutations are associated with increased cancer risk in humans. Here, we use single-molecule imaging to reveal that the Saccharomyces cerevisiae Rad51 paralog complex Rad55-Rad57 promotes assembly of Rad51 recombinase filament through transient interactions, providing evidence that it acts like a classical molecular chaperone. Srs2 is an ATP-dependent anti-recombinase that downregulates HR by actively dismantling Rad51 filaments. Contrary to the current model, we find that Rad55-Rad57 does not physically block the movement of Srs2. Instead, Rad55-Rad57 promotes rapid re-assembly of Rad51 filaments after their disruption by Srs2. Our findings support a model in which Rad51 is in flux between free and single-stranded DNA (ssDNA)-bound states, the rate of which is controlled dynamically though the opposing actions of Rad55-Rad57 and Srs2.


Assuntos
Adenosina Trifosfatases/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Recombinação Homóloga , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Imagem Individual de Molécula , Proteína Vermelha Fluorescente
16.
Mol Biol Cell ; 32(1): 74-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147102

RESUMO

R-loops, the byproduct of DNA-RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA-RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.


Assuntos
Centrômero/metabolismo , Cromatina/química , Instabilidade Cromossômica , Cinetocoros/metabolismo , Estruturas R-Loop , Saccharomycetales/metabolismo , Ciclo Celular , DNA Fúngico/metabolismo , Genoma Fúngico , Histonas/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citologia , Saccharomycetales/genética
17.
DNA Repair (Amst) ; 97: 103019, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202365

RESUMO

DNA double-strand breaks (DSBs) constitute one of the most cytotoxic forms of DNA damage and pose a significant threat to cell viability, survival, and homeostasis. DSBs have the potential to promote aneuploidy, cell death and potentially deleterious mutations that promote tumorigenesis. Homologous recombination (HR) is one of the main DSB repair pathways and while being essential for cell survival under genotoxic stress, it requires proper regulation to avoid chromosome rearrangements. Here, we characterize the Saccharomyces cerevisiae E3 ubiquitin ligase/putative helicase Irc20 as a regulator of HR. Using purified Irc20, we show that it can hydrolyze ATP in the presence and absence of DNA, but does not increase access to DNA within a nucleosome. In addition, we show that both the ATPase and ubiquitin ligase activities of Irc20 are required for suppressing the spontaneous formation of recombination foci. Finally, we demonstrate a role for Irc20 in promoting Rad51 chromatin association and the removal of Rad52 recombinase from chromatin, thus facilitating subsequent HR steps and directing recombination to more error-free modes.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Fúngico/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/genética
18.
Biochem Biophys Res Commun ; 533(4): 899-904, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008596

RESUMO

Non-homologous end joining (NHEJ) is a highly conserved mechanism of DNA double-stranded break (DSB) repair. Here we utilize a computational protein-protein interaction method to identify human PRKACB as a potential candidate interacting with NHEJ proteins. We show that the deletion of its yeast homolog, TPK1 that codes for the protein kinase A catalytic subunit reduces the efficiency of NHEJ repair of breaks with overhangs and blunt ends in plasmid-based repair assays. Additionally, tpk1Δ mutants showed defects in the repair of chromosomal breaks induced by HO-site specific endonuclease. Our double deletion mutant analyses suggest that TPK1 and YKU80, a key player in NHEJ could function in parallel pathways. Altogether, here we report a novel involvement for TPK1 in NHEJ.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/deficiência , Quebras de DNA de Cadeia Dupla , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Genes Fúngicos , Genes Sintéticos , Estudos de Associação Genética , Humanos , Mapas de Interação de Proteínas
19.
Nat Struct Mol Biol ; 27(12): 1134-1141, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989304

RESUMO

Structural maintenance of chromosome (SMC) protein complexes are the key organizers of the spatiotemporal structure of chromosomes. The condensin SMC complex has recently been shown to be a molecular motor that extrudes large loops of DNA, but the mechanism of this unique motor remains elusive. Using atomic force microscopy, we show that budding yeast condensin exhibits mainly open 'O' shapes and collapsed 'B' shapes, and it cycles dynamically between these two states over time, with ATP binding inducing the O to B transition. Condensin binds DNA via its globular domain and also via the hinge domain. We observe a single condensin complex at the stem of extruded DNA loops, where the neck size of the DNA loop correlates with the width of the condensin complex. The results are indicative of a type of scrunching model in which condensin extrudes DNA by a cyclic switching of its conformation between O and B shapes.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/ultraestrutura , DNA Fúngico/química , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Microscopia de Força Atômica , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
FEBS Lett ; 594(19): 3142-3155, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32735705

RESUMO

Irc3 is a superfamily II DNA helicase required for the maintenance of mitochondrial DNA stability in Saccharomyces cerevisiae. Here, we show that recombinant Irc3 is a monomeric protein and that it can form a binary complex with forked DNA. The catalytically active enzyme is a monomer as no positive cooperativity of ATP hydrolysis or DNA unwinding can be detected. Interestingly, we find that Irc3 prefers to unwind the nascent lagging strand at a replication fork. Using DNase I footprinting, we demonstrate that Irc3 captures DNA substrates by establishing a strong contact at the DNA branching point. Additional protections on the lagging strand template suggest a 3'-to-5' polarity for Irc3 movement.


Assuntos
DNA Helicases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/metabolismo , Sequência de Bases , DNA Helicases/genética , DNA Fúngico/metabolismo , DNA Mitocondrial/metabolismo , Desoxirribonuclease I/metabolismo , Hidrólise , Modelos Biológicos , Peso Molecular , Proteínas Mutantes/metabolismo , Fenótipo , Mutação Puntual/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA