Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 205(8): 2231-2242, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32929043

RESUMO

The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises 8-oxo-7,8-dihydroguanine lesions induced in DNA by reactive oxygen species, has been linked to the pathogenesis of lung diseases associated with bacterial infections. A recently developed small molecule, SU0268, has demonstrated selective inhibition of OGG1 activity; however, its role in attenuating inflammatory responses has not been tested. In this study, we report that SU0268 has a favorable effect on bacterial infection both in mouse alveolar macrophages (MH-S cells) and in C57BL/6 wild-type mice by suppressing inflammatory responses, particularly promoting type I IFN responses. SU0268 inhibited proinflammatory responses during Pseudomonas aeruginosa (PA14) infection, which is mediated by the KRAS-ERK1-NF-κB signaling pathway. Furthermore, SU0268 induces the release of type I IFN by the mitochondrial DNA-cGAS-STING-IRF3-IFN-ß axis, which decreases bacterial loads and halts disease progression. Collectively, our results demonstrate that the small-molecule inhibitor of OGG1 (SU0268) can attenuate excessive inflammation and improve mouse survival rates during PA14 infection. This strong anti-inflammatory feature may render the inhibitor as an alternative treatment for controlling severe inflammatory responses to bacterial infection.


Assuntos
DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , DNA Glicosilases/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia
2.
Pharmacol Ther ; 194: 59-72, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30240635

RESUMO

Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.


Assuntos
DNA Glicosilases/imunologia , Neoplasias Pulmonares/imunologia , Animais , Humanos , Imunidade Inata , NF-kappa B/imunologia , Prognóstico , Espécies Reativas de Oxigênio/imunologia
3.
DNA Repair (Amst) ; 58: 13-20, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28843610

RESUMO

OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes, which could account for an attenuated immune response observed in Ogg1-/- mice in several settings. Indications for at least two different mechanisms have been obtained. Thus, OGG1 could either act as an ancillary transcription factor cooperating with the lysine-specific demethylase LSD1 or as an activator of small GTPases. Here, we analysed the activation by lipopolysaccaride (LPS) of primary splenocytes obtained from two different Ogg1-/- mouse strains. We found that the induction of TNF-α expression was reduced in splenocytes (in particular macrophages) of both Ogg1-/- strains. Notably, an inhibitor of LSD1, OG-L002, reduced the induction of TNF-α mRNA in splenocytes from wild-type mice to the level observed in splenocytes from Ogg1-/- mice and had no influence in the latter cells. In contrast, inhibitors of the MAP kinases p38 and JNK as well as the antioxidant N-acetylcysteine attenuated the LPS-stimulated TNF-α expression both in the absence and presence of OGG1. The free base 8-oxo-7,8-dihydroguanine had no influence on the TNF-α expression in the splenocytes. The data demonstrate that OGG1 plays a role in an LSD1-dependent pathway of LPS-induced macrophage activation in mice.


Assuntos
DNA Glicosilases/imunologia , Baço/imunologia , Fator de Necrose Tumoral alfa/genética , Animais , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Glicosilases/fisiologia , Reparo do DNA , Regulação da Expressão Gênica , Guanina/análogos & derivados , Guanina/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Baço/citologia , Baço/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/fisiologia
4.
J Innate Immun ; 8(2): 143-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26756522

RESUMO

The airway mucosa is responsible for mounting a robust innate immune response (IIR) upon encountering pathogen-associated molecular patterns. The IIR produces protective gene networks that stimulate neighboring epithelia and components of the immune system to trigger adaptive immunity. Little is currently known about how cellular reactive oxygen species (ROS) signaling is produced and cooperates in the IIR. We discuss recent discoveries about 2 nuclear ROS signaling pathways controlling innate immunity. Nuclear ROS oxidize guanine bases to produce mutagenic 8-oxoguanine, a lesion excised by 8-oxoguanine DNA glycosylase1/AP-lyase (OGG1). OGG1 forms a complex with the excised base, inducing its nuclear export. The cytoplasmic OGG1:8-oxoG complex functions as a guanine nucleotide exchange factor, triggering small GTPase signaling and activating phosphorylation of the nuclear factor (NF)x03BA;B/RelA transcription factor to induce immediate early gene expression. In parallel, nuclear ROS are detected by ataxia telangiectasia mutated (ATM), a PI3 kinase activated by ROS, triggering its nuclear export. ATM forms a scaffold with ribosomal S6 kinases, inducing RelA phosphorylation and resulting in transcription-coupled synthesis of type I and type III interferons and CC and CXC chemokines. We propose that ATM and OGG1 are endogenous nuclear ROS sensors that transmit nuclear signals that coordinate with outside-in pattern recognition receptor signaling, regulating the IIR.


Assuntos
Núcleo Celular/imunologia , Imunidade Inata , Pulmão/imunologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/imunologia , Núcleo Celular/patologia , DNA Glicosilases/imunologia , Guanina/análogos & derivados , Guanina/imunologia , Humanos , Pulmão/patologia , Oxirredução , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Quinases S6 Ribossômicas/imunologia , Fator de Transcrição RelA/imunologia
5.
Am J Respir Cell Mol Biol ; 52(1): 25-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24918270

RESUMO

Asbestos causes asbestosis and malignancies by mechanisms that are not fully established. Alveolar epithelial cell (AEC) injury and repair are crucial determinants of the fibrogenic potential of noxious agents such as asbestos. We previously showed that mitochondrial reactive oxygen species mediate asbestos-induced AEC intrinsic apoptosis and that mitochondrial human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme, prevents oxidant-induced AEC apoptosis. We reasoned that OGG1 deficiency augments asbestos-induced pulmonary fibrosis. Compared with intratracheal instillation of PBS (50 µl) or titanium dioxide (100 µg/50 µl), crocidolite or Libby amphibole asbestos (100 µg/50 µl) each augmented pulmonary fibrosis in wild-type C57BL/6J (WT) mice after 3 weeks as assessed by histology, fibrosis score, lung collagen via Sircol, and type 1 collagen expression; these effects persisted at 2 months. Compared with WT mice, Ogg1 homozygous knockout (Ogg1(-/-)) mice exhibit increased pulmonary fibrosis after crocidolite exposure and apoptosis in cells at the bronchoalveolar duct junctions as assessed via cleaved caspase-3 immunostaining. AEC involvement was verified by colocalization studies using surfactant protein C. Asbestos increased endoplasmic reticulum stress in the lungs of WT and Ogg1(-/-) mice. Compared with WT, alveolar type 2 cells isolated from Ogg1(-/-) mice have increased mtDNA damage, reduced mitochondrial aconitase expression, and increased P53 and cleaved caspase-9 expression, and these changes were enhanced 3 weeks after crocidolite exposure. These findings suggest an important role for AEC mtDNA integrity maintained by OGG1 in the pathogenesis of pulmonary fibrosis that may represent a novel therapeutic target.


Assuntos
Células Epiteliais Alveolares/enzimologia , Asbesto Crocidolita/toxicidade , DNA Glicosilases/metabolismo , Fibrose Pulmonar/enzimologia , Células Epiteliais Alveolares/patologia , Animais , Dano ao DNA/genética , DNA Glicosilases/genética , DNA Glicosilases/imunologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fatores de Tempo
6.
J Immunol ; 192(5): 2384-94, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24489103

RESUMO

Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair pathway. In this study, we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we used a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, small interfering RNA knockdown, real-time PCR, and comet and reporter transcription assays. Our data show that exposure of cells to TNF-α altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences, and transiently inhibited base excision repair of 8-oxoG. Promoter-associated OGG1 then enhanced NF-κB/RelA binding to cis-elements and facilitated recruitment of specificity protein 1, transcription initiation factor II-D, and p-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. Small interfering RNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-α-induced inflammatory responses. Taken together, these results show that nonproductive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response.


Assuntos
Citocinas/imunologia , DNA Glicosilases/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Elementos de Resposta/imunologia , Fatores de Transcrição/imunologia , Animais , Citocinas/genética , DNA Glicosilases/genética , Feminino , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Blood ; 113(16): 3706-15, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19023113

RESUMO

Subjects with X-linked hyper-IgM syndrome (X-HIgM) have a markedly reduced frequency of CD27(+) memory B cells, and their Ig genes have a low level of somatic hypermutation (SHM). To analyze the nature of SHM in X-HIgM, we sequenced 209 nonproductive and 926 productive Ig heavy chain genes. In nonproductive rearrangements that were not subjected to selection, as well as productive rearrangements, most of the mutations were within targeted RGYW, WRCY, WA, or TW motifs (R = purine, Y = pyrimidine, and W = A or T). However, there was significantly decreased targeting of the hypermutable G in RGYW motifs. Moreover, the ratio of transitions to transversions was markedly increased compared with normal. Microarray analysis documented that specific genes involved in SHM, including activation-induced cytidine deaminase (AICDA) and uracil-DNA glycosylase (UNG2), were up-regulated in normal germinal center (GC) B cells, but not induced by CD40 ligation. Similar results were obtained from light chain rearrangements. These results indicate that in the absence of CD40-CD154 interactions, there is a marked reduction in SHM and, specifically, mutations of AICDA-targeted G residues in RGYW motifs along with a decrease in transversions normally related to UNG2 activity.


Assuntos
Linfócitos B/enzimologia , Citidina Desaminase/biossíntese , DNA Glicosilases/biossíntese , Regulação Enzimológica da Expressão Gênica/genética , Síndrome de Imunodeficiência com Hiper-IgM Tipo 1/genética , Cadeias Pesadas de Imunoglobulinas/genética , Hipermutação Somática de Imunoglobulina/genética , Adolescente , Adulto , Linfócitos B/imunologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Criança , Citidina Desaminase/genética , Citidina Desaminase/imunologia , DNA Glicosilases/genética , DNA Glicosilases/imunologia , Análise Mutacional de DNA , Regulação Enzimológica da Expressão Gênica/imunologia , Centro Germinativo/enzimologia , Centro Germinativo/imunologia , Humanos , Síndrome de Imunodeficiência com Hiper-IgM Tipo 1/enzimologia , Síndrome de Imunodeficiência com Hiper-IgM Tipo 1/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Capeamento Imunológico/genética , Capeamento Imunológico/imunologia , Memória Imunológica/genética , Masculino , Mutação , Hipermutação Somática de Imunoglobulina/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia
8.
Virchows Arch ; 454(1): 25-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19031083

RESUMO

Identifying patients with germline MUTYH mutation-associated polyposis is presently difficult. The aim of this study is to investigate the possibilities of IHC as a screening test to select patients for MUTYH mutation analysis. The expression of MUTYH protein in colorectal adenomas or cancer was studied by IHC using three different (1 polyclonal and 2 monoclonal) antibodies in six samples from patients with biallelic MUTYH mutations, in three samples from patients with a single MUTYH mutation, and in 11 samples from patients without MUTYH mutations. With the polyclonal antibody, adenomas and carcinomas from patients with biallelic MUTYH mutations showed a strong supranuclear cytoplasmic staining without epithelial nuclear staining. The strong supranuclear staining was also observed in the three samples from patients with a single MUTYH mutation and in nine out of 11 samples from patients without MUTYH mutations, with or without nuclear staining. Samples incubated with the monoclonal antibodies showed a non-specific pattern. Our results demonstrate that, in contrast with previous data, the cytoplasmic staining in neoplastic cells does not discriminate MUTYH mutated from unmutated cases. At present, IHC cannot be used in clinical practice to differentiate between colorectal tissue with and without germline MUTYH mutations.


Assuntos
DNA Glicosilases/genética , Testes Genéticos/métodos , Mutação em Linhagem Germinativa/genética , Imuno-Histoquímica/métodos , Polipose Intestinal/diagnóstico , Polipose Intestinal/genética , Adenoma/diagnóstico , Adenoma/genética , Adulto , Idoso , Anticorpos Monoclonais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Citoplasma/metabolismo , DNA Glicosilases/imunologia , DNA Glicosilases/metabolismo , Diagnóstico Diferencial , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA