Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.045
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(27): 5629-5635, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38912549

RESUMO

8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.


Assuntos
Guanina , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , RNA/metabolismo , RNA/análise , MicroRNAs/análise , MicroRNAs/metabolismo , DNA Ligases/metabolismo , Linhagem Celular Tumoral , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real
2.
Biomol NMR Assign ; 18(1): 105-109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689205

RESUMO

The BRCA1 carboxyl-terminal (BRCT) domain, an evolutionarily conserved structural motif, is ubiquitous in a multitude of proteins spanning prokaryotic and eukaryotic organisms. In Mycobacterium tuberculosis (Mtb), BRCT domain plays a pivotal role in the catalytic activity of the NAD+-dependent DNA ligase (LigA). LigA is pivotal in DNA replication, catalyzing the formation of phosphodiester bonds in Okazaki fragments and repairing single-strand breaks in damaged DNA, essential for the survival of Mtb. Structural and functional aspects of LigA unveil its character as a highly modular protein, undergoing substantial conformational changes during its catalytic cycle. Although the BRCT domain of Mtb LigA plays an essential role in DNA binding and protein-protein interactions, the precise mechanism of action remains poorly understood. Unravelling the structure of the BRCT domain holds the promise of advancing our understanding of this pivotal domain. Additionally, it will facilitate further exploration of the protein-protein interactions and enhance our understanding of inter domain interactions within LigA, specifically between BRCT and the Adenylation domain. In this study, we demonstrate the overexpression of the BRCT domain of Mtb LigA and conduct its analysis using solution NMR spectroscopy, revealing a well-folded structure and we present the nearly complete chemical shift assignments of both backbone and sidechains. In addition, a secondary structure prediction by TALOS N predicts BRCT consisting of 3 α-helices and 4 ß-sheets, closely resembling the typical structural topology of most BRCT domains.


Assuntos
Mycobacterium tuberculosis , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína , DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/química , DNA Ligases/metabolismo
3.
Chem Commun (Camb) ; 60(21): 2942-2945, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38374791

RESUMO

By forming a nick at the adenylation site instantaneously, nucleic acids are efficiently adenylated by T4 DNA ligase. The subsequent ligation is successfully suppressed in terms of rapid conversion of the instantaneous nick to a more stable gap. It is helpful to understand enzymatic ligation dynamics, and the adenylated products can be used for various practical applications.


Assuntos
Ligases , Oligonucleotídeos , Monofosfato de Adenosina , DNA Ligases
4.
Nucleic Acids Res ; 52(7): 3810-3822, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38366780

RESUMO

Base excision repair (BER) involves the tightly coordinated function of DNA polymerase ß (polß) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polß to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polß leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polß to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polß and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.


Assuntos
DNA Ligase Dependente de ATP , DNA Polimerase beta , Reparo do DNA , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligase Dependente de ATP/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA/metabolismo , DNA/genética , Dano ao DNA , DNA Ligases/metabolismo , DNA Ligases/genética , Reparo por Excisão
5.
Analyst ; 149(4): 1050-1054, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38231135

RESUMO

We propose a mutant detection approach based on endonuclease IV and DNA ligase in combination with qPCR. The enzymes functioned cooperatively to facilitate PCR for low abundance DNA detection. We demonstrate that our approach can distinguish mutations as low as 0.01%, indicating the potential application of this strategy in early cancer diagnosis.


Assuntos
DNA , Ligases , Desoxirribonuclease IV (Fago T4-Induzido) , Mutação , DNA/genética , DNA/análise , DNA Ligases
6.
J Mol Biol ; 436(1): 168276, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714297

RESUMO

The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.


Assuntos
DNA Ligases , Reparo do DNA , DNA , Animais , Humanos , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , DNA Ligases/metabolismo , Replicação do DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
7.
Genomics ; 115(6): 110731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871849

RESUMO

Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.


Assuntos
DNA Ligase Dependente de ATP , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , Reparo do DNA/genética , Ligases/genética , Ligases/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
8.
Int J Biol Macromol ; 253(Pt 2): 126711, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673141

RESUMO

The genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0039, which encodes a putative DNA ligase. Structural analysis disclosed the presence of signature sequences of ATP-dependent DNA ligases. We have heterologously expressed Pcal_0039 gene in Escherichia coli. The recombinant protein, majorly produced in soluble form, was purified and functionally characterized. Recombinant Pcal_0039 displayed nick-joining activity between 40 and 85 °C. Optimal activity was observed at 70 °C and pH 5.5. Nick-joining activity was retained even after heating for 1 h at 90 °C, indicating highly thermostable nature of Pcal_0039. The nick-joining activity, displayed by Pcal_0039, was metal ion dependent and Mg2+ was the most preferred. NaCl and KCl inhibited the nick-joining activity at or above 200 mmol/L. The activity catalyzed by recombinant Pcal_0039 was independent of addition of ATP or NAD+ or any other nucleotide cofactor. A mismatch adjacent to the nick, either at 3'- or 5'-end, abolished the nick-joining activity. These characteristics make Pcal_0039 a potential candidate for applications in DNA diagnostics. To the best of our knowledge, Pcal_0039 is the only DNA ligase, characterized from genus Pyrobaculum, which exhibits optimum nick-joining activity at pH below 6.0 and independent of any nucleotide cofactor.


Assuntos
Pyrobaculum , Pyrobaculum/genética , NAD/metabolismo , Estabilidade Enzimática , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , Archaea/metabolismo , Clonagem Molecular , Trifosfato de Adenosina/metabolismo
9.
Extremophiles ; 27(3): 26, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712998

RESUMO

Bacterial NAD+-dependent DNA ligases (LigAs) are enzymes involved in replication, recombination, and DNA-repair processes by catalyzing the formation of phosphodiester bonds in the backbone of DNA. These multidomain proteins exhibit four modular domains, that are highly conserved across species, with the BRCT (breast cancer type 1 C-terminus) domain on the C-terminus of the enzyme. In this study, we expressed and purified both recombinant full-length and a C-terminally truncated LigA from Deinococcus radiodurans (DrLigA and DrLigA∆BRCT) and characterized them using biochemical and X-ray crystallography techniques. Using seeds of DrLigA spherulites, we obtained ≤ 100 µm plate crystals of DrLigA∆BRCT. The crystal structure of the truncated protein was obtained at 3.4 Å resolution, revealing DrLigA∆BRCT in a non-adenylated state. Using molecular beacon-based activity assays, we demonstrated that DNA ligation via nick sealing remains unaffected in the truncated DrLigA∆BRCT. However, DNA-binding assays revealed a reduction in the affinity of DrLigA∆BRCT for dsDNA. Thus, we conclude that the flexible BRCT domain, while not critical for DNA nick-joining, plays a role in the DNA binding process, which may be a conserved function of the BRCT domain in LigA-type DNA ligases.


Assuntos
Deinococcus , Extremófilos , DNA Ligases , Deinococcus/genética , NAD , Reparo do DNA
10.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240360

RESUMO

Identifying the vulnerability of altered DNA repair machinery that displays synthetic lethality with MYCN amplification is a therapeutic rationale in unfavourable neuroblastoma. However, none of the inhibitors for DNA repair proteins are established as standard therapy in neuroblastoma. Here, we investigated whether DNA-PK inhibitor (DNA-PKi) could inhibit the proliferation of spheroids derived from neuroblastomas of MYCN transgenic mice and MYCN-amplified neuroblastoma cell lines. DNA-PKi exhibited an inhibitory effect on the proliferation of MYCN-driven neuroblastoma spheroids, whereas variable sensitivity was observed in those cell lines. Among them, the accelerated proliferation of IMR32 cells was dependent on DNA ligase 4 (LIG4), which comprises the canonical non-homologous end-joining pathway of DNA repair. Notably, LIG4 was identified as one of the worst prognostic factors in patients with MYCN-amplified neuroblastomas. It may play complementary roles in DNA-PK deficiency, suggesting the therapeutic potential of LIG4 inhibition in combination with DNA-PKi for MYCN-amplified neuroblastomas to overcome resistance to multimodal therapy.


Assuntos
Reparo do DNA , Neuroblastoma , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proliferação de Células , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , Linhagem Celular Tumoral , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica
11.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004747

RESUMO

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Assuntos
DNA Ligases , Síndromes de Imunodeficiência , Humanos , DNA Ligases/genética , Autoimunidade/genética , Haploinsuficiência , DNA Ligase Dependente de ATP/genética , Síndromes de Imunodeficiência/genética , Mutação , DNA
12.
Nucleic Acids Res ; 51(9): e51, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36971119

RESUMO

N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotic mRNAs. Currently available detection methods for locus-specific m6A marks rely on RT-qPCR, radioactive methods, or high-throughput sequencing. Here, we develop a non-qPCR, ultrasensitive, isothermal, and naked-eye visible method for m6A detection based on rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP), named m6A-Rol-LAMP, to verify putative m6A sites in transcripts obtained from the high-throughput data. When padlock probes hybridize to the potential m6A sites on targets, they are converted to circular form by DNA ligase in the absence of m6A modification, while m6A modification hinders the sealing of padlock probes. Subsequently, Bst DNA polymerase-mediated RCA and LAMP allow the amplification of the circular padlock probe to achieve the locus-specific detection of m6A. Following optimization and validation, m6A-Rol-LAMP can ultra-sensitively and quantitatively determine the existence of m6A modification on a specific target site as low as 100 amol under isothermal conditions. Detections of m6A can be performed on rRNA, mRNA, lincRNA, lncRNA and pre-miRNA from biological samples with naked-eye observations after dye incubation. Together, we provide a powerful tool for locus-specific detection of m6A, which can simply, quickly, sensitively, specifically, and visually determine putative m6A modification on RNA.


Assuntos
Adenosina , Técnicas de Amplificação de Ácido Nucleico , RNA Mensageiro , Adenosina/análogos & derivados , Adenosina/análise , Adenosina/química , DNA Polimerase Dirigida por DNA/metabolismo , MicroRNAs/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes , RNA Longo não Codificante/química , RNA Mensageiro/química , RNA Ribossômico/química , DNA Ligases/metabolismo
13.
J Biomol Struct Dyn ; 41(23): 14259-14274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36841550

RESUMO

Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.


Assuntos
Mpox , Humanos , Mpox/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas de Membrana , Simulação por Computador , DNA Ligases
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121760, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36030671

RESUMO

Specific and sensitive detection of flap endonuclease 1 (FEN1), an enzyme biomarker involved in DNA replications and several metabolic pathways, is of high values for the diagnosis of various cancers. In this work, a fluorescence strategy based on transcriptional amplification of lighting-up aptamers for label-free, low background and sensitive monitoring of FEN1 is developed. FEN1 cleaves the 5' flap of the DNA complex probe with double flaps to form a notched dsDNA, which is ligated by T4 DNA ligase to yield fully complementary dsDNA. Subsequently, T7 RNA polymerase binds the promoter region to initiate cyclic transcriptional generation of many RNA aptamers that associate with the malachite green dye to yield highly amplified fluorescence for detecting FEN1 with detection limit as low as 0.22 pM in a selective way. In addition, the method can achieve diluted serum monitoring of low concentrations of FEN1, exhibiting its potential for the diagnosis of early-stage cancers.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , DNA/genética , DNA/metabolismo , DNA Ligases , Sondas de DNA , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Humanos
15.
J Transl Med ; 20(1): 482, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273153

RESUMO

BACKGROUND: DNA ligases are crucial for DNA repair and cell replication since they catalyze the final steps in which DNA breaks are joined. DNA Ligase III (LIG3) exerts a pivotal role in Alternative-Non-Homologous End Joining Repair (Alt-NHEJ), an error-prone DNA repair pathway often up-regulated in genomically unstable cancer, such as Multiple Myeloma (MM). Based on the three-dimensional (3D) LIG3 structure, we performed a computational screening to identify LIG3-targeting natural compounds as potential candidates to counteract Alt-NHEJ activity in MM. METHODS: Virtual screening was conducted by interrogating the Phenol Explorer database. Validation of binding to LIG3 recombinant protein was performed by Saturation Transfer Difference (STD)-nuclear magnetic resonance (NMR) experiments. Cell viability was analyzed by Cell Titer-Glo assay; apoptosis was evaluated by flow cytometric analysis following Annexin V-7AAD staining. Alt-NHEJ repair modulation was evaluated using plasmid re-joining assay and Cytoscan HD. DNA Damage Response protein levels were analyzed by Western blot of whole and fractionated protein extracts and immunofluorescence analysis. The mitochondrial DNA (mtDNA) copy number was determined by qPCR. In vivo activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Here, we provide evidence that a natural flavonoid Rhamnetin (RHM), selected by a computational approach, counteracts LIG3 activity and killed Alt-NHEJ-dependent MM cells. Indeed, Nuclear Magnetic Resonance (NMR) showed binding of RHM to LIG3 protein and functional experiments revealed that RHM interferes with LIG3-driven nuclear and mitochondrial DNA repair, leading to significant anti-MM activity in vitro and in vivo. CONCLUSION: Taken together, our findings provide proof of concept that RHM targets LIG3 addiction in MM and may represent therefore a novel promising anti-tumor natural agent to be investigated in an early clinical setting.


Assuntos
DNA Ligase Dependente de ATP , Reparo do DNA , Flavonoides , Mieloma Múltiplo , Animais , Camundongos , Anexina A5/genética , Anexina A5/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/química , DNA Ligases/genética , DNA Ligases/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fenóis , Proteínas Recombinantes/metabolismo
16.
BMC Pediatr ; 22(1): 588, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221079

RESUMO

BACKGROUND: Ligase IV (LIG4) dificiency is a very rare clinical syndrome with around 50 cases reported to date. This syndrome is caused by biallelic pathogenic variants in the LIG4 gene, which cause DNA damage repair disorders, mainly manifesting as severe immunodeficiency. CASE PRESENTATION: We report the case of a 15-month-old male child with pancytopenia, growth retardation, microcephaly, history of vaccine-related rubella, elevated immunoglobulin G, and decreased T- and B lymphocytes. Next-generation sequencing revealed LIG4 pathogenic genes and compound heterozygous mutations, namely the missense mutation c.833G > T (p.Arg278Leu) and deletion mutation c.1271_1275del (p.Lys424Argfs*20). CONCLUSION: This case suggests that LIG4 dificiency can manifest not only as immunodeficiency but also with increased serum IgG levels and pancytopenia, which constitutes an additional clinical phenotype. Furthermore, this case suggests that LIG4 deficiency should be considered upon differential diagnosis of myelodysplastic syndrome in children.


Assuntos
Síndromes de Imunodeficiência , Síndromes Mielodisplásicas , Pancitopenia , Vacinas , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , Humanos , Imunoglobulina G , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Masculino , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Pancitopenia/etiologia
17.
Nucleic Acids Res ; 50(13): 7560-7569, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819229

RESUMO

5'-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5'-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.


Assuntos
Monofosfato de Adenosina/química , Técnicas Genéticas , MicroRNAs , Oligonucleotídeos/química , Polinucleotídeo 5'-Hidroxiquinase , DNA/química , DNA Ligases/metabolismo , DNA de Cadeia Simples , Polinucleotídeo 5'-Hidroxiquinase/genética , Pyrococcus furiosus/enzimologia , RNA Ligase (ATP)/metabolismo
18.
Front Immunol ; 13: 869728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592332

RESUMO

DNA ligase IV deficiency is a rare autosomal recessive disorder associated with impaired DNA repair mechanisms. Most patients with DNA repair defects present with neurologic deficits, combined immunodeficiency, bone marrow failure, and/or hematologic neoplasia. We present 3 unrelated cases of ligase IV deficiency with different clinical presentations. Patient 1 presented at the age of 5 with bone marrow failure, dysmorphic features, and T and B lymphopenia. A compound heterozygous variant L19W/K635fs in the LIG4 gene was identified. Patient 2 presented at the age of 16 with recurrent infections. He had agammaglobulinemia and absent B cells. A homozygous R278H in the LIG4 gene was identified. Patient 3 was referred for vitiligo and B-cell lymphopenia (low class-switched B cells) and hypogammaglobulinemia. Homozygous R278H in LIG4 was also identified. In the last few years, the spectrum of clinical manifestations caused by ligase IV deficiency has widened, making it very difficult to establish an accurate clinical diagnosis. The use of NGS allows a proper diagnosis and provides a better prognosis and adequate family counseling.


Assuntos
Leucopenia , Linfopenia , Transtornos da Insuficiência da Medula Óssea , DNA Ligases/genética , Homozigoto , Humanos , Masculino
19.
Talanta ; 243: 123342, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255432

RESUMO

The structure-specific endonuclease FEN1 participates in various genome maintenance pathways in eukaryotes and is associated with different human diseases. Herein, we demonstrate label-free and homogeneous detection of FEN1 based on ligation-promoted hyperbranched rolling circle amplification (HRCA). This assay can be performed isothermally with the involvement of primers 1 and 2 and a circular DNA substrate with a 5'-flap. When FEN1 is present, it cleaves 5'-flap of circular DNA substrate to obtain a circular padlock probe with the assistance of Taq DNA ligase. The circular padlock probe can serve as a template to initiate HRCA in the presence of primers 1 and 2 and Vent (exo-) DNA polymerase. The obtained dsDNA fragments can produce an enhanced fluorescence signal with SYBR Green I as indicator. This method displays good specificity and high sensitivity, and it can be employed to screen FEN1 inhibitors and quantitatively detect FEN1 activity in human cancer cells, with potential applications in early diagnosis and drug discovery.


Assuntos
Endonucleases Flap , Técnicas de Amplificação de Ácido Nucleico , DNA/genética , DNA Ligases , Humanos
20.
Sci Rep ; 11(1): 18693, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548548

RESUMO

DNA ligases, the enzymes responsible for joining breaks in the phosphodiester backbone of DNA during replication and repair, vary considerably in size and structure. The smallest members of this enzyme class carry out their functions with pared-down protein scaffolds comprising only the core catalytic domains. Here we use sequence similarity network analysis of minimal DNA ligases from all biological super kingdoms, to investigate their evolutionary origins, with a particular focus on bacterial variants. This revealed that bacterial Lig C sequences cluster more closely with Eukaryote and Archaeal ligases, while bacterial Lig E sequences cluster most closely with viral sequences. Further refinement of the latter group delineates a cohesive cluster of canonical Lig E sequences that possess a leader peptide, an exclusively bacteriophage group of T7 DNA ligase homologs and a group with high similarity to the Chlorella virus DNA ligase which includes both bacterial and viral enzymes. The structure and function of the bacterially-encoded Chlorella virus homologs were further investigated by recombinantly producing and characterizing, the ATP-dependent DNA ligase from Burkholderia pseudomallei as well as determining its crystal structure in complex with DNA. This revealed that the enzyme has similar activity characteristics to other ATP-dependent DNA ligases, and significant structural similarity to the eukaryotic virus Chlorella virus including the positioning and DNA contacts of the binding latch region. Analysis of the genomic context of the B. pseudomallei ATP-dependent DNA ligase indicates it is part of a lysogenic bacteriophage present in the B. pseudomallei chromosome representing one likely entry point for the horizontal acquisition of ATP-dependent DNA ligases by bacteria.


Assuntos
Trifosfato de Adenosina/metabolismo , Bacteriófagos/enzimologia , Burkholderia pseudomallei/enzimologia , DNA Ligases/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , DNA Ligases/química , DNA Ligases/genética , Evolução Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA