Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Org Biomol Chem ; 13(22): 6380-98, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25974621

RESUMO

We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of ß-NAD(+) and AMP, and their biochemical evaluation against NAD(+)-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scientific and practical interest. Our study includes several pairs of ß-NAD(+) and AMP derivatives with the same substitution pattern at the adenine base. This has enabled the first direct comparison of co-substrate and inhibitor behaviour against bacterial DNA ligases. Our results suggest that an additional substituent in position 6 or 8 of the adenine base in ß-NAD(+) is detrimental for activity as either co-substrate or inhibitor. In contrast, substituents in position 2 are not only tolerated, but appear to give rise to a new mode of inhibition, which targets the conformational changes these DNA ligases undergo during catalysis. Using a molecular modelling approach, we highlight that these findings have important implications for our understanding of ligase mechanism and inhibition, and may provide a promising starting point for the rational design of a new class of inhibitors against NAD(+)-dependent DNA ligases.


Assuntos
Monofosfato de Adenosina/farmacologia , DNA Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia , NAD/farmacologia , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , DNA Ligases/isolamento & purificação , DNA Ligases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Modelos Moleculares , Conformação Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , NAD/síntese química , NAD/química , Relação Estrutura-Atividade
2.
Protein Expr Purif ; 109: 79-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25700573

RESUMO

The discovery of T4 DNA ligase in 1960s was pivotal in the spread of molecular biotechnology. The enzyme has become ubiquitous for recombinant DNA routinely practiced in biomedical research around the globe. Great efforts have been made to express and purify T4 DNA ligase to meet the world demand, yet over-expression of soluble T4 DNA ligase in E. coli has been difficult. Here we explore the use of adenylate kinase to enhance T4 DNA ligase expression and its downstream purification. E.coli adenylate kinase, which can be expressed in active form at high level, was fused to the N-terminus of T4 DNA ligase. The resulting His-tagged AK-T4 DNA ligase fusion protein was greatly over-expressed in E. coli, and readily purified to near homogeneity via two purification steps consisting of Blue Sepharose and Ni-NTA chromatography. The purified AK-T4 DNA ligase not only is fully active for DNA ligation, but also can use ADP in addition to ATP as energy source since adenylate kinase converts ADP to ATP and AMP. Thus adenylate kinase may be used as a solubility tag to facilitate recombinant protein expression as well as their downstream purification.


Assuntos
Adenilato Quinase/metabolismo , DNA Ligases/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Recombinantes de Fusão/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/isolamento & purificação , Cromatografia de Afinidade , Clonagem Molecular , DNA Ligases/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Ensaios Enzimáticos , Vetores Genéticos/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-19478428

RESUMO

DNA ligases join the breaks in double-stranded DNA by catalyzing the formation of a phosphodiester bond between adjacent 3'-hydroxyl and 5'-phosphate termini. They fall into two classes that require either ATP or NAD(+) as the source of an AMP group that is covalently attached to a strictly conserved lysine. Conformational flexibility is essential for the function of multi-domain DNA ligases because they must undergo large conformational changes involving domain rearrangements during the course of the reaction. In the absence of the nicked DNA substrate, both open and closed conformations have been observed for the ATP-dependent DNA ligases from Sulfolobus solfataricus and Pyrococcus furiosus. Here, the crystal structure of an ATP-dependent DNA ligase from Archaeoglobus fulgidus has been determined in the DNA-unbound unadenylated state. It resembles the closed conformation of P. furiosus DNA ligase but was even more closed, thus enhancing our understanding of the conformational variability of these enzymes.


Assuntos
Archaeoglobus fulgidus/metabolismo , DNA Ligases/isolamento & purificação , DNA Ligases/metabolismo , DNA Arqueal/química , Conformação Molecular , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/genética , Sítios de Ligação/genética , Sequência Conservada , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/genética , DNA Arqueal/metabolismo , Coleta de Dados , Escherichia coli/genética , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/química , Ligação Proteica/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Estatística como Assunto , Temperatura , Água/química
4.
J Biotechnol ; 128(3): 519-30, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17118474

RESUMO

The gene encoding Staphylothermus marinus DNA ligase (Sma DNA ligase) was cloned and sequenced. The gene contains an open reading frame consisting of 1836bp, which encodes for 611 amino acid residues. Upon alignment of the entire amino acid sequence, Sma DNA ligase showed a high degree of sequence homology with the hyperthemophilic archaeal DNA ligases, 67% identity with Aeropyrum pernix K1, and 40% identity with both Pyrococcus abyssi and Thermococcus kodakarensis. An extremely high sequence identity was observed in the six conserved motifs indicative of DNA ligase. The Sma DNA ligase gene was expressed under the control of the T7lac promoter on the pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RIL. The expressed enzyme was then purified by heat treatment followed by ion exchange and metal affinity column chromatography. The enzyme was activated by both Mg(2+) and Mn(2+), and its activity was inhibited by Ca(2+) and Zn(2+). Sma DNA ligase can utilize both ATP and ADP as cofactors. The half-life of the enzyme at 100 degrees C was determined to be approximately 2.8h. The enzyme catalyzed cohesive-end intramolecular and intermolecular joining and blunt-end intermolecular joining in the presence of tricine-NaOH buffer and Mn(2+), using either ATP or ADP.


Assuntos
Clonagem Molecular , DNA Ligases/genética , DNA Ligases/metabolismo , Desulfurococcaceae/enzimologia , Desulfurococcaceae/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , DNA Ligases/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA
5.
DNA Repair (Amst) ; 5(12): 1439-48, 2006 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16982218

RESUMO

DNA glycosylases/AP lyases initiate repair of oxidized bases in the genomes of all organisms by excising these lesions and then cleaving the DNA strand at the resulting abasic (AP) sites and generate 3' phospho alpha,beta-unsaturated aldehyde (3' PUA) or 3' phosphate (3' P) terminus. In Escherichia coli, the AP-endonucleases (APEs) hydrolyze both 3' blocking groups (3' PUA and 3' P) to generate the 3'-OH termini needed for repair synthesis. In mammalian cells, the previously characterized DNA glycosylases, NTH1 and OGG1, produce 3' PUA, which is removed by the only AP-endonuclease, APE1. However, APE1 is barely active in removing 3' phosphate generated by the recently discovered mammalian DNA glycosylases NEIL1 and NEIL2. We showed earlier that the 3' phosphate generated by NEIL1 is efficiently removed by polynucleotide kinase (PNK) and not APE1. Here we show that the NEIL2-initiated repair of 5-hydroxyuracil (5-OHU) similarly requires PNK. We have also observed stable interaction between NEIL2 and other BER proteins DNA polymerase beta (Pol beta), DNA ligase IIIalpha (Lig IIIalpha) and XRCC1. In spite of their limited sequence homology, NEIL1 and NEIL2 interact with the same domains of Pol beta and Lig IIIalpha. Surprisingly, while the catalytically dispensable C-terminal region of NEIL1 is the common interacting domain, the essential N-terminal segment of NEIL2 is involved in analogous interaction. The BER proteins including NEIL2, PNK, Pol beta, Lig IIIalpha and XRCC1 (but not APE1) could be isolated as a complex from human cells, competent for repair of 5-OHU in plasmid DNA.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA Glicosilases/isolamento & purificação , DNA Ligase Dependente de ATP , DNA Ligases/isolamento & purificação , DNA Ligases/metabolismo , DNA Polimerase beta/isolamento & purificação , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/isolamento & purificação , Humanos , Complexos Multiproteicos , Plasmídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Polinucleotídeo 5'-Hidroxiquinase/isolamento & purificação , Estrutura Terciária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Xenopus
6.
Virology ; 353(1): 133-43, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16844179

RESUMO

Mimivirus, a parasite of Acanthamoeba polyphaga, is the largest DNA virus known; it encodes a cornucopia of proteins with imputed functions in DNA replication, modification, and repair. Here we produced, purified, and characterized mimivirus DNA ligase (MimiLIG), an NAD+-dependent nick joining enzyme homologous to bacterial LigA and entomopoxvirus DNA ligase. MimiLIG is a 636-aa polypeptide composed of an N-terminal NAD+ specificity module (domain Ia), linked to nucleotidyltransferase, OB-fold, helix-hairpin-helix, and BRCT domains, but it lacks the tetracysteine Zn-binding module found in all bacterial LigA enzymes. MimiLIG requires conserved domain Ia residues Tyr36, Asp46, Tyr49, and Asp50 for its initial reaction with NAD+ to form the ligase-AMP intermediate, but not for the third step of phosphodiester formation at a preadenylylated nick. MimiLIG differs from bacterial LigA enzymes in that its activity is strongly dependent on the C-terminal BRCT domain, deletion of which reduced its specific activity in nick joining by 75-fold without affecting the ligase adenylylation step. The DeltaBRCT mutant of MimiLIG was impaired in sealing at a preadenylylated nick. We propose that eukaryal DNA viruses acquired the NAD+-dependent ligases by horizontal transfer from a bacterium and that MimiLIG predates entomopoxvirus ligase, which lacks both the tetracysteine and BRCT domains. We speculate that the dissemination of NAD+-dependent ligase from bacterium to eukaryotic virus might have occurred within an amoebal host.


Assuntos
Acanthamoeba/virologia , DNA Ligases/química , DNA Ligases/metabolismo , Entomopoxvirinae/química , Entomopoxvirinae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Cisteína/química , Cisteína/metabolismo , DNA Ligases/genética , DNA Ligases/isolamento & purificação , Entomopoxvirinae/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
7.
Mol Cancer Ther ; 4(10): 1541-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16227403

RESUMO

Incomplete DNA repair or misrepair can contribute to the cytotoxicity of DNA double-strand breaks. Consequently, interference with double-strand break repair, by pharmacologic or genetic means, is likely to sensitize tumor cells to ionizing radiation. The current studies were designed to inhibit the nonhomologous end joining repair pathway by interfering with the function of the XRCC4/ligase IV complex. A PCR-generated fragment of the XRCC4 gene, encompassing the homodimerization and ligase IV-binding domains, was inserted into a plasmid vector (pFLAG-CMV-2) expressing the FLAG peptide and the cassette encoding FLAG-tagged XRCC4 fragment was cloned into an adenoviral vector. Both the plasmid and the corresponding adenovirus elicited robust expression of a truncated XRCC4 protein designed to compete in a dominant-negative fashion with full-length XRCC4 for binding to ligase IV. Binding of the XRCC4 fragment to ligase IV in vivo was confirmed by immunoprecipitation. Clonogenic survival assays showed that the adenovirus expressing the truncated XRCC4 protein sensitizes MDA-MB-231 breast tumor cells to ionizing radiation, presumably through interference with the functional activity of ligase IV, leading to inhibition of the final ligation step in end joining. These studies support the potential clinical utility of combining radiation therapy with agents that inhibit DNA double-strand break repair.


Assuntos
Neoplasias da Mama/radioterapia , Proteínas de Ligação a DNA/fisiologia , Adenoviridae/genética , Sítios de Ligação , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP , DNA Ligases/isolamento & purificação , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Tolerância a Radiação/genética
8.
J Bacteriol ; 187(20): 6902-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16199559

RESUMO

Archaea encode a DNA ligase composed of a C-terminal catalytic domain typical of ATP-dependent ligases plus an N-terminal domain similar to that found in eukaryotic cellular and poxvirus DNA ligases. All archaeal DNA ligases characterized to date have ATP-dependent adenylyltransferase and nick-joining activities. However, recent reports of dual-specificity ATP/NAD+ ligases in two Thermococcus species and Pyrococcus abyssi and an ATP/ADP ligase in Aeropyrum pernix raise the prospect that certain archaeal enzymes might exemplify an undifferentiated ancestral stage in the evolution of ligase substrate specificity. Here we analyze the biochemical properties of Pyrococcus horikoshii DNA ligase. P. horikoshii ligase catalyzes auto-adenylylation and nick sealing in the presence of a divalent cation and ATP; it is unable to utilize NAD+ or ADP to promote ligation in lieu of ATP. P. horikoshii ligase is thermophilic in vitro, with optimal adenylyltransferase activity at 90 degrees C and nick-joining activity at 70 to 90 degrees C. P. horikoshii ligase resembles the ligases of Methanobacterium thermautotrophicum and Sulfolobus shibatae in its strict specificity for ATP.


Assuntos
DNA Ligases/genética , DNA Ligases/metabolismo , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Sequência de Bases , DNA Ligases/isolamento & purificação , DNA Arqueal/química , DNA Arqueal/metabolismo , Conformação de Ácido Nucleico , Nucleotidiltransferases/genética , Nucleotidiltransferases/isolamento & purificação , Nucleotidiltransferases/metabolismo , Especificidade por Substrato
9.
FEMS Microbiol Lett ; 237(1): 111-8, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15268945

RESUMO

The crystal structure of NAD+-dependent DNA ligase from Thermus filiformis (Tfi) revealed that the protein comprised four structural domains. In order to investigate the biochemical activities of these domains, seven deletion mutants were constructed from the Tfi DNA ligase. The mutants Tfi-M1 (residues 1-581), Tfi-M2 (residues 1-448), Tfi-M3 (residues 1-403) and Tfi-M4 (residues 1-314) showed the same adenylation activity as that of wild-type. This result indicates that only the adenylation domain (domain 1) is essential for the formation of enzyme-AMP complex. It was found that the zinc finger and helix-hairpin-helix (HhH) motif domain (domain 3) and the oligomer binding (OB)-fold domain (domain 2) are important for the formation of enzyme-DNA complex. The mutant Tfi-M1 alone showed the activities for in vitro nick-closing and in vivo complementation in Escherichia coli as those of wild-type. These results indicate that the BRCT domain (domain 4) of Tfi DNA ligase is not essential for the enzyme activity. The enzymatic properties of Tfi-M1 mutant (deleted the BRCT domain) were slightly different from those of wild-type and the nick-closing activity of Tfi-M1 mutant was approximately 50% compared with that of wild-type.


Assuntos
DNA Ligases/genética , Thermus/enzimologia , Monofosfato de Adenosina/metabolismo , Clonagem Molecular , Coenzimas/farmacologia , DNA Ligases/isolamento & purificação , DNA Ligases/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Teste de Complementação Genética , Sequências Hélice-Volta-Hélice/genética , Sequências Hélice-Volta-Hélice/fisiologia , Concentração de Íons de Hidrogênio , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Temperatura , Fatores de Tempo , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
10.
FEMS Microbiol Lett ; 236(2): 267-73, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15251207

RESUMO

A PCR protocol was used to identify and sequence a gene encoding a DNA ligase from Thermococcus fumicolans (Tfu). The recombinant enzyme, expressed in Escherichia coli BL21(DE3) pLysS, was purified to homogeneity and characterized. The optimum temperature and pH of Tfu DNA ligase were 65 degrees C and 7.0, respectively. The optimum concentration of MgCl2, which is indispensable for the enzyme activity, was 2 mM. We showed that Tfu DNA ligase displayed nick joining and blunt-end ligation activity using either ATP or NAD+, as a cofactor. In addition, our results would suggest that Tfu DNA ligase is likely to use the same catalytic residues with the two cofactors. The ability for DNA ligases, to use either ATP or NAD+, as a cofactor, appears to be specific of DNA ligases from Thermococcales, an order of hyperthermophilic microorganisms that belongs to the euryarchaeotal branch of the archaea domain.


Assuntos
DNA Ligases/genética , DNA Ligases/metabolismo , Thermococcus/enzimologia , Trifosfato de Adenosina/metabolismo , Clonagem Molecular , Coenzimas/farmacologia , DNA Ligases/química , DNA Ligases/isolamento & purificação , DNA Arqueal/química , DNA Arqueal/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Arqueais , Concentração de Íons de Hidrogênio , Cinética , Cloreto de Magnésio/farmacologia , Dados de Sequência Molecular , NAD/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Temperatura , Thermococcus/genética
11.
Biochemistry ; 43(3): 710-7, 2004 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-14730975

RESUMO

The gene from Neisseria meningitidis serogroup A, encoding a putative, secreted ATP-dependent DNA ligase was cloned and overexpressed, and the soluble protein was purified. Mass spectrometry indicated that the homogeneous protein was adenylated as isolated, and sedimentation velocity experiments suggested that the enzyme exists as a monomer in solution. The 31.5 kDa protein can catalyze the ATP-dependent ligation of a singly nicked DNA duplex but not blunt-end joining. The first step of the overall reaction, the ATP-dependent formation of an adenylated ligase, was studied by measuring the formation of the covalent intermediate and isotope exchange between [alpha-32P] ATP and PPi. Mg2+ was absolutely required for this reaction and was the best divalent cation to promote catalysis. Electrophoretic gel mobility shift assays revealed that the enzyme bound both unnicked and singly nicked double stranded DNA with equivalent affinity (Kd approximately 50 nM) but cannot bind single stranded DNA. Preadenylated DNA was synthesized by transferring the AMP group from the enzyme to the 5'-phosphate of a 3'-dideoxy nicked DNA. The rate of phosphodiester bond formation at the preadenylated nick was also Mg(2+)-dependent. Kinetic data showed that the overall rate of ligation, which occurred at 0.008 s(-1), is the result of three chemical steps with similar rate constants (approximately 0.025 s(-1)). The Km values for ATP and DNA substrates, in the overall ligation reaction, were 0.4 microM and 30 nM, respectively.


Assuntos
Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , DNA Ligases/química , DNA Ligases/metabolismo , Neisseria meningitidis/enzimologia , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Catálise , Fenômenos Químicos , Físico-Química , DNA Ligase Dependente de ATP , DNA Ligases/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histidina/genética , Cinética , Ligantes , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
Extremophiles ; 6(6): 469-77, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12486455

RESUMO

A gene encoding a putative ATP-dependent DNA ligase was identified in the genome of the hyperthermophilic archaeon Sulfolobus shibatae and expressed in Escherichia coli. The 601 amino acid recombinant polypeptide was a monomeric protein capable of strand joining on a singly nicked DNA substrate in the presence of ATP ( K(m)=34 micro mu) and a divalent cation (Mn(2+), Mg(2+), or Ca(2+)). dATP was partially active in supporting ligation catalyzed by the protein, but GTP, CTP, UTP, dGTP, dCTP, dTTP, and NAD(+) were inactive. The cloned Ssh ligase showed an unusual metal cofactor requirement; it was significantly more active in the presence of Mn(2+) than in the presence of Mg(2+) or Ca(2+). Unexpectedly, the native Ssh ligase preferred Mg(2+) and Ca(2+) rather than Mn(2+). Both native and recombinant enzymes displayed optimal nick-joining activity at 60-80 degrees C. Ssh ligase discriminated against substrates containing mismatches on the 3'-side of nick junction and was more tolerant of mismatches at the 5'-end than of those at the penultimate 5'-end. The enzyme showed little activity on a 1-nucleotide gapped substrate. This is the first biochemical study of a DNA ligase from the crenarchaeotal branch of the archaea domain.


Assuntos
Proteínas de Bactérias/isolamento & purificação , DNA Ligases/isolamento & purificação , Sulfolobus/enzimologia , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago M13/genética , Cátions Bivalentes/metabolismo , Clonagem Molecular , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Primers do DNA , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Escherichia coli , Genes Bacterianos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus/genética , Temperatura
13.
Plant Mol Biol ; 46(2): 161-70, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11442056

RESUMO

Here we report the purification and biochemical characterization of recombinant Arabidopsis thaliana DNA ligase I. We show that this ligase requires ATP as a source for adenylation. The calculated Km [ATP] for ligation is 3 microM. This enzyme is able to ligate nicks in oligo(dT)/poly(dA) and oligo(rA)/poly(dT) substrates, but not in oligo(dT)/poly(rA) substrates. Double-stranded DNAs with cohesive or blunt ends are also good substrates for the ligase. These biochemical features of the purified enzyme show the characteristics typical of a type I DNA ligase. Furthermore, this DNA ligase is able to perform the reverse reaction (relaxation of supercoiled DNA) in an AMP-dependent and PPi-stimulated manner.


Assuntos
Trifosfato de Adenosina/metabolismo , Arabidopsis/enzimologia , DNA Ligases/metabolismo , Sequência de Bases , DNA Ligases/isolamento & purificação , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Hidrólise , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
14.
J Biol Chem ; 276(39): 36100-9, 2001 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-11459847

RESUMO

We report the production, purification, and characterization of an NAD(+)-dependent DNA ligase encoded by the Amsacta moorei entomopoxvirus (AmEPV), the first example of an NAD(+) ligase from a source other than eubacteria. AmEPV ligase lacks the zinc-binding tetracysteine domain and the BRCT domain that are present in all eubacterial NAD(+) ligases. Nonetheless, the monomeric 532-amino acid AmEPV ligase catalyzed strand joining on a singly nicked DNA in the presence of a divalent cation and NAD(+). Neither ATP, dATP, nor any other nucleoside triphosphate could substitute for NAD(+). Structure probing by limited proteolysis showed that AmEPV ligase is punctuated by a surface-accessible loop between the nucleotidyltransferase domain, which is common to all ligases, and the N-terminal domain Ia, which is unique to the NAD(+) ligases. Deletion of domain Ia of AmEPV ligase abolished the sealing of 3'-OH/5'-PO(4) nicks and the reaction with NAD(+) to form ligase-adenylate, but had no effect on phosphodiester formation at a pre-adenylated nick. Alanine substitutions at residues within domain Ia either reduced (Tyr(39), Tyr(40), Asp(48), and Asp(52)) or abolished (Tyr(51)) sealing of a 5'-PO(4) nick and adenylyl transfer from NAD(+) without affecting ligation of DNA-adenylate. We conclude that: (i) NAD(+)-dependent ligases exist in the eukaryotic domain of the phylogenetic tree; and (ii) ligase structural domain Ia is a determinant of cofactor specificity and is likely to interact directly with the nicotinamide mononucleotide moiety of NAD(+).


Assuntos
DNA Ligases/biossíntese , DNA Ligases/genética , NAD/metabolismo , Poxviridae/genética , Alanina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Ácido Aspártico/química , Sequência de Bases , Catálise , Cisteína/química , DNA Ligases/isolamento & purificação , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Evolução Molecular , Deleção de Genes , Vetores Genéticos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Fatores de Tempo , Tirosina/química , Zinco/metabolismo , Dedos de Zinco
15.
Protein Expr Purif ; 21(3): 401-11, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11281714

RESUMO

The C-terminal regions of several DNA repair and cell cycle checkpoint proteins are homologous to the breast-cancer-associated BRCA-1 protein C-terminal region. These regions, known as BRCT domains, have been found to mediate important protein-protein interactions. We produced the BRCT domain of DNA ligase IIIalpha (L3[86]) for biophysical and structural characterization. A glutathione S-transferase (GST) fusion with the L3[86] domain (residues 837-922 of ligase IIIalpha) was expressed in Escherichia coli and purified by glutathione affinity chromatography. The GST fusion protein was removed by thrombin digestion and further purification steps. Using this method, (15)N-labeled and (13)C/(15)N-double-labeled L3[86] proteins were prepared to enable a full determination of structure and dynamics using heteronuclear NMR spectroscopy. To obtain evidence of binding activity to the distal BRCT of the repair protein XRCC1 (X1BRCTb), as well as to provide insight into the interaction between these two BRCT binding partners, the corresponding BRCT heterocomplexes were also prepared and studied. Changes in the secondary structures (amount of helix and sheet components) of the two constituents were not observed upon complex formation. However, the melting temperature of the complex was significantly higher relative to the values obtained for the L3[86] or X1BRCTb proteins alone. This increased thermostability imparted by the interaction between the two BRCT domains may explain why cells require XRCC1 to maintain ligase IIIalpha activity.


Assuntos
DNA Ligases/química , DNA Ligases/isolamento & purificação , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Cromatografia de Afinidade , Cromatografia em Gel , Dicroísmo Circular , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Difusão , Dimerização , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peso Molecular , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Trombina/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Proteínas de Xenopus
16.
Nucleic Acids Res ; 29(24): 4930-4, 2001 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11812821

RESUMO

Escherichia coli DNA ligase (LigA) is the prototype of the NAD(+)-dependent class of DNA ligases found in all bacteria. Here we report the characterization of E.coli LigB, a second NAD(+)-dependent DNA ligase identified by virtue of its sequence similarity to LigA. LigB differs from LigA in that it lacks the BRCA1 C-terminus domain (BRCT) and two of the four Zn-binding cysteines that are present in LigA and all other bacterial NAD(+) ligases. We found that recombinant LigB catalyzed strand joining on a singly-nicked DNA in the presence of a divalent cation and NAD(+), and that LigB reacted with NAD(+) to form a covalent ligase-adenylate intermediate. Alanine substitution for the motif I lysine ((126)KxDG) abolished nick joining and ligase-adenylate formation by LigB, thus confirming that the ligase and adenylyltransferase activities are intrinsic to the LigB protein.


Assuntos
DNA Ligases/metabolismo , Escherichia coli/enzimologia , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , DNA Ligases/genética , DNA Ligases/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Lisina/genética , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
17.
J Biol Chem ; 275(44): 34787-96, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-10945980

RESUMO

Repair of DNA double-strand breaks in mammalian cells occurs via a direct nonhomologous end-joining pathway. Although this pathway can be studied in vivo and in crude cell-free systems, a deeper understanding of the mechanism requires reconstitution with purified enzymes. We have expressed and purified a complex of two proteins that are critical for double-strand break repair, DNA ligase IV (DNL IV) and XRCC4. The complex is homogeneous, with a molecular mass of about 300,000 Da, suggestive of a mixed tetramer containing two copies of each polypeptide. The presence of multiple copies of DNL IV was confirmed in an experiment where different epitope-tagged forms of DNL IV were recovered simultaneously in the same complex. Cross-linking suggests that an XRCC4.XRCC4 dimer interface forms the core of the tetramer, and that the DNL IV polypeptides are in contact with XRCC4 but not with one another. Purified DNL IV.XRCC4 complex functioned synergistically with Ku protein, the DNA-dependent protein kinase catalytic subunit, and other repair factors in a cell-free end-joining assay. We suggest that a dyad-symmetric DNL IV.XRCC4 tetramer bridges the two ends of the broken DNA and catalyzes the coordinate ligation of the two DNA strands.


Assuntos
DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Animais , Sequência de Bases , Biopolímeros , Sistema Livre de Células , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/isolamento & purificação , Primers do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Células HeLa , Humanos , Peso Molecular , Testes de Precipitina , Spodoptera
18.
Mutat Res ; 408(3): 203-18, 1998 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-9806419

RESUMO

The molecular mechanism of arsenic toxicity is believed to be due to the ability of arsenite [As(III)] to bind protein thiols. Numerous studies have shown that arsenic is cytotoxic at micromolar concentrations. Micromolar As can also induce chromosomal damage and inhibit DNA repair. The mechanism of arsenic-induced genotoxicity is very important because arsenic is a human carcinogen, but not a mutagen, and there is a need to establish recommendations for safe levels of As in the environment. We have measured the dose-response for arsenic inhibition of several purified human DNA repair enzymes, including DNA polymerase beta, DNA ligase I and DNA ligase III and have found that most enzymes, even those with critical SH groups, are very insensitive to As. Many repair enzymes are activated by millimolar concentrations of As(III) and/or As(V). Only pyruvate dehydrogenase, one of eight purified enzymes examined so far, is inhibited by micromolar arsenic. In contrast to the purified enzymes, treatment of human cells in culture with micromolar arsenic produces a significant dose-dependent decrease in DNA ligase activity in nuclear extracts from the treated cells. However, the ligase activity in extracts from untreated cells is no more sensitive to arsenic than the purified enzymes. Our results show that direct enzyme inhibition is not a common toxic effect of As and that only a few sensitive enzymes are responsible for arsenic-induced cellular toxicity. Thus, arsenic-induced co-mutagenesis and inhibition of DNA repair is probably not the result of direct enzyme inhibition, but may be an indirect effect caused by As-induced changes in cellular redox levels or alterations in signal transduction pathways and consequent changes in gene expression.


Assuntos
Arsênio/toxicidade , DNA Ligases/antagonistas & inibidores , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Mutagênicos/toxicidade , Células Cultivadas , DNA Ligases/isolamento & purificação , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas/metabolismo , Escherichia coli , Humanos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores
19.
Nucleic Acids Res ; 26(20): 4618-25, 1998 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-9753729

RESUMO

A conserved catalytic core of the ATP-dependent DNA ligases is composed of an N-terminal domain (domain 1, containing nucleotidyl transferase motifs I, III, IIIa and IV) and a C-terminal domain (domain 2, containing motif VI) with an intervening cleft. Motif V links the two structural domains. Deletion analysis of the 298 amino acid Chlorella virus DNA ligase indicates that motif VI plays a critical role in the reaction of ligase with ATP to form ligase-adenylate, but is dispensable for the two subsequent steps in the ligation pathway; DNA-adenylate formation and strand closure. We find that formation of a phosphodiester at a pre-adenylated nick is subject to a rate limiting step that does not apply during the sealing of nicked DNA by ligase-adenylate. This step, presumably conformational, is accelerated or circumvented by deleting five amino acids of motif VI. The motif I lysine nucleophile (Lys27) is not required for strand closure by wild-type ligase, but this residue enhances the closure rate by a factor of 16 when motif VI is truncated. We find that a more extensively truncated ligase consisting of only N-terminal domain 1 and motif V is inert in ligase--adenylate formation, but competent to catalyze strand closure at a pre-adenylated nick. These results suggest that different enzymic catalysts facilitate the three steps of the DNA ligase reaction.


Assuntos
Trifosfato de Adenosina/metabolismo , Domínio Catalítico/genética , DNA Ligases/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Virais , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Chlorella/virologia , DNA/metabolismo , DNA Ligases/genética , DNA Ligases/isolamento & purificação , Reparo do DNA , Escherichia coli/genética , Cinética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência
20.
Biochem Biophys Res Commun ; 246(1): 137-41, 1998 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-9600082

RESUMO

DNA ligase IV in a complex with XRCC4 is responsible for DNA end-joining in repair of DNA double-strand breaks (DSB) and V(D)J recombination. We found that non-histone chromosomal high mobility group (HMG) proteins 1 and 2 enhanced the ligation of linearized pUC119 DNA with DNA ligase IV from rat liver nuclear extract. Intra-molecular and inter-molecular ligations of cohesive-ended and blunt-ended DNA were markedly stimulated by HMG1 and 2. Recombinant HMG2-domain A, B, and (A + B) polypeptides were similarly, but non-identically, effective for the stimulation of DSB ligation reaction. Ligation of single-strand breaks (nicks) was only slightly activated by the HMG proteins. The DNA end-binding Ku protein singly or in combination with the catalytic component of DNA-dependent protein kinase (DNA-PK) as the DNA-PK holoenzyme was ineffective for the ligation of linearized pUC119 DNA. Although the stimulatory effect of HMG1 and 2 on ligation of DSB in vitro was not specific to DNA ligase IV, these results suggest that HMG1 and 2 are involved in the final ligation step in DNA end-joining processes of DSB repair and V(D)J recombination.


Assuntos
Antígenos Nucleares , DNA Helicases , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/farmacologia , Animais , Núcleo Celular/metabolismo , Dano ao DNA , DNA Ligase Dependente de ATP , DNA Ligases/isolamento & purificação , DNA Ligases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Proteínas de Grupo de Alta Mobilidade/química , Humanos , Técnicas In Vitro , Autoantígeno Ku , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA