Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 63(17): 9623-9649, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787097

RESUMO

The rise of multidrug resistant (MDR) Gram-negative (GN) pathogens and the decline of available antibiotics that can effectively treat these severe infections are a major threat to modern medicine. Developing novel antibiotics against MDR GN pathogens is particularly difficult as compounds have to permeate the GN double membrane, which has very different physicochemical properties, and have to circumvent a plethora of resistance mechanisms such as multiple efflux pumps and target modifications. The bacterial type II topoisomerases DNA gyrase (GyrA2B2) and Topoisomerase IV (ParC2E2) are highly conserved targets across all bacterial species and validated in the clinic by the fluoroquinolones. Dual inhibitors targeting the ATPase domains (GyrB/ParE) of type II topoisomerases can overcome target-based fluoroquinolone resistance. However, few ATPase inhibitors are active against GN pathogens. In this study, we demonstrated a successful strategy to convert a 2-carboxamide substituted azaindole chemical scaffold with only Gram-positive (GP) activity into a novel series with also potent activity against a range of MDR GN pathogens. By systematically fine-tuning the many physicochemical properties, we identified lead compounds such as 17r with a balanced profile showing potent GN activity, high aqueous solubility, and desirable PK features. Moreover, we showed the bactericidal efficacy of 17r using a neutropenic mouse thigh infection model.


Assuntos
Carbolinas/química , Carbolinas/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , DNA Girase/química , DNA Topoisomerase IV/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Escherichia coli/enzimologia , Camundongos , Modelos Moleculares , Conformação Proteica , Staphylococcus aureus/enzimologia
2.
J Med Chem ; 63(14): 7773-7816, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32634310

RESUMO

Since their discovery over 5 decades ago, quinolone antibiotics have found enormous success as broad spectrum agents that exert their activity through dual inhibition of bacterial DNA gyrase and topoisomerase IV. Increasing rates of resistance, driven largely by target-based mutations in the GyrA/ParC quinolone resistance determining region, have eroded the utility and threaten the future use of this vital class of antibiotics. Herein we describe the discovery and optimization of a series of 4-(aminomethyl)quinolin-2(1H)-ones, exemplified by 34, that inhibit bacterial DNA gyrase and topoisomerase IV and display potent activity against ciprofloxacin-resistant Gram-negative pathogens. X-ray crystallography reveals that 34 occupies the classical quinolone binding site in the topoisomerase IV-DNA cleavage complex but does not form significant contacts with residues in the quinolone resistance determining region.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , Fluoroquinolonas/síntese química , Fluoroquinolonas/metabolismo , Fluoroquinolonas/toxicidade , Bactérias Gram-Negativas/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/toxicidade
3.
Molecules ; 25(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549386

RESUMO

To develop new antimicrobial agents, a series of novel thiourea derivatives incorporated with different moieties 2-13 was designed and synthesized and their biological activities were evaluated. Compounds 7a, 7b and 8 exhibited excellent antimicrobial activity against all Gram-positive and Gram-negative bacteria, and the fungal Aspergillus flavus with minimum inhibitory concentration (MIC) values ranged from 0.95 ± 0.22 to 3.25 ± 1.00 µg/mL. Furthermore, cytotoxicity studies against MCF-7 cells revealed that compounds 7a and 7b were the most potent with IC50 values of 10.17 ± 0.65 and 11.59 ± 0.59 µM, respectively. On the other hand, the tested compounds were less toxic against normal kidney epithelial cell lines (Vero cells). The in vitro enzyme inhibition assay of 8 displayed excellent inhibitory activity against Escherichia coli DNA B gyrase and moderate one against E. coli Topoisomerase IV (IC50 = 0.33 ± 1.25 and 19.72 ± 1.00 µM, respectively) in comparison with novobiocin (IC50 values 0.28 ± 1.45 and 10.65 ± 1.02 µM, respectively). Finally, the molecular docking was done to position compound 8 into the E. coli DNA B and Topoisomerase IV active pockets to explore the probable binding conformation. In summary, compound 8 may serve as a potential dual E. coli DNA B and Topoisomerase IV inhibitor.


Assuntos
DNA Topoisomerase IV/antagonistas & inibidores , Tioureia/farmacologia , Inibidores da Topoisomerase II/química , Antibacterianos/farmacologia , DNA Girase/química , DNA Topoisomerase IV/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Imidazóis/química , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiadiazóis/química , Tiadiazóis/farmacologia , Tioureia/análogos & derivados , Tioureia/química , Triazinas/química , Triazinas/farmacologia
4.
Nat Commun ; 9(1): 2579, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968711

RESUMO

Type II topoisomerases alter DNA topology to control DNA supercoiling and chromosome segregation and are targets of clinically important anti-infective and anticancer therapeutics. They act as ATP-operated clamps to trap a DNA helix and transport it through a transient break in a second DNA. Here, we present the first X-ray crystal structure solved at 2.83 Å of a closed clamp complete with trapped T-segment DNA obtained by co-crystallizing the ATPase domain of S. pneumoniae topoisomerase IV with a nonhydrolyzable ATP analogue and 14-mer duplex DNA. The ATPase dimer forms a 22 Å protein hole occupied by the kinked DNA bound asymmetrically through positively charged residues lining the hole, and whose mutagenesis impacts the DNA decatenation, DNA relaxation and DNA-dependent ATPase activities of topo IV. These results and a side-bound DNA-ParE structure help explain how the T-segment DNA is captured and transported by a type II topoisomerase, and reveal a new enzyme-DNA interface for drug discovery.


Assuntos
DNA Topoisomerase IV/metabolismo , DNA Bacteriano/metabolismo , DNA/metabolismo , Domínios Proteicos/fisiologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , DNA/química , DNA Topoisomerase IV/química , DNA Topoisomerase IV/genética , DNA Bacteriano/química , Mutagênese Sítio-Dirigida
5.
Biochem Biophys Res Commun ; 467(4): 961-6, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26471301

RESUMO

Bacterial topoisomerase IV (ParE) is essential for DNA replication and serves as an attractive target for antibacterial drug development. The X-ray structure of the N-terminal 24 kDa ParE, responsible for ATP binding has been solved. Due to the accessibility of structural information of ParE, many potent ParE inhibitors have been discovered. In this study, a pyridylurea lead molecule against ParE of Escherichia coli (eParE) was characterized with a series of biochemical and biophysical techniques. More importantly, solution NMR analysis of compound binding to eParE provides better understanding of the molecular interactions between the inhibitor and eParE.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/farmacologia , Escherichia coli/enzimologia , Trifosfato de Adenosina/antagonistas & inibidores , Sequência de Aminoácidos , Antibacterianos/farmacologia , Ligação Competitiva , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , Desenho de Fármacos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular
6.
Biochemistry ; 54(5): 1278-86, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25586498

RESUMO

CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.


Assuntos
Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , DNA Topoisomerases Tipo II/química , Fluoroquinolonas/química , Inibidores da Topoisomerase II/química , Bacillus anthracis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Humanos , Mutação , Inibidores da Topoisomerase II/farmacologia
7.
ACS Chem Biol ; 8(12): 2660-8, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24047414

RESUMO

Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. On the basis of our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.


Assuntos
Antibacterianos/química , Antígenos de Neoplasias/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinazolinonas/química , Quinolonas/química , Antibacterianos/farmacologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Bacillus anthracis/química , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Cátions Bivalentes , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerase IV/química , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Cinética , Magnésio/química , Magnésio/metabolismo , Mutação , Quinazolinonas/farmacologia , Quinolonas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Água/química
8.
Nucleic Acids Res ; 41(21): 9911-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23965305

RESUMO

Type II topoisomerases regulate DNA supercoiling and chromosome segregation. They act as ATP-operated clamps that capture a DNA duplex and pass it through a transient DNA break in a second DNA segment via the sequential opening and closure of ATPase-, G-DNA- and C-gates. Here, we present the first 'open clamp' structures of a 3-gate topoisomerase II-DNA complex, the seminal complex engaged in DNA recognition and capture. A high-resolution structure was solved for a (full-length ParE-ParC55)2 dimer of Streptococcus pneumoniae topoisomerase IV bound to two DNA molecules: a closed DNA gate in a B-A-B form double-helical conformation and a second B-form duplex associated with closed C-gate helices at a novel site neighbouring the catalytically important ß-pinwheel DNA-binding domain. The protein N gate is present in an 'arms-wide-open' state with the undimerized N-terminal ParE ATPase domains connected to TOPRIM domains via a flexible joint and folded back allowing ready access both for gate and transported DNA segments and cleavage-stabilizing antibacterial drugs. The structure shows the molecular conformations of all three gates at 3.7 Å, the highest resolution achieved for the full complex to date, and illuminates the mechanism of DNA capture and transport by a type II topoisomerase.


Assuntos
DNA Topoisomerase IV/química , DNA/química , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Sítios de Ligação , Transporte Biológico , DNA/metabolismo , DNA Topoisomerase IV/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Streptococcus pneumoniae/enzimologia
9.
Nucleic Acids Res ; 41(10): 5444-56, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580548

RESUMO

Type IIA topoisomerases control DNA supercoiling and separate newly replicated chromosomes using a complex DNA strand cleavage and passage mechanism. Structural and biochemical studies have shown that these enzymes sharply bend DNA by as much as 150°; an invariant isoleucine, which has been seen structurally to intercalate between two base pairs outside of the DNA cleavage site, has been suggested to promote deformation. To test this assumption, we examined the role of isoleucine on DNA binding, bending and catalytic activity for a bacterial type IIA topoisomerase, Escherichia coli topoisomerase IV (topo IV), using a combination of site-directed mutagenesis and biochemical assays. Our data show that alteration of the isoleucine (Ile172) did not affect the basal ATPase activity of topo IV or its affinity for DNA. However, the amino acid was important for DNA bending, DNA cleavage and supercoil relaxation. Moreover, an ability to bend DNA correlated with efficacy with which nucleic acid substrates stimulate ATP hydrolysis. These data show that DNA binding and bending by topo IV can be uncoupled, and indicate that the stabilization of a highly curved DNA geometry is critical to the type IIA topoisomerase catalytic cycle.


Assuntos
DNA Topoisomerase IV/química , DNA/metabolismo , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , DNA/química , Clivagem do DNA , DNA Topoisomerase IV/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/enzimologia , Isoleucina/química , Conformação de Ácido Nucleico
10.
Nucleic Acids Res ; 40(21): 10904-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22989710

RESUMO

Topoisomerases (topos) maintain DNA topology and influence DNA transaction processes by catalysing relaxation, supercoiling and decatenation reactions. In the cellular milieu, division of labour between different topos ensures topological homeostasis and control of central processes. In Escherichia coli, DNA gyrase is the principal enzyme that carries out negative supercoiling, while topo IV catalyses decatenation, relaxation and unknotting. DNA gyrase apparently has the daunting task of undertaking both the enzyme functions in mycobacteria, where topo IV is absent. We have shown previously that mycobacterial DNA gyrase is an efficient decatenase. Here, we demonstrate that the strong decatenation property of the enzyme is due to its ability to capture two DNA segments in trans. Topo IV, a strong dedicated decatenase of E. coli, also captures two distinct DNA molecules in a similar manner. In contrast, E. coli DNA gyrase, which is a poor decatenase, does not appear to be able to hold two different DNA molecules in a stable complex. The binding of a second DNA molecule to GyrB/ParE is inhibited by ATP and the non-hydrolysable analogue, AMPPNP, and by the substitution of a prominent positively charged residue in the GyrB N-terminal cavity, suggesting that this binding represents a potential T-segment positioned in the cavity. Thus, after the GyrA/ParC mediated initial DNA capture, GyrB/ParE would bind efficiently to a second DNA in trans to form a T-segment prior to nucleotide binding and closure of the gate during decatenation.


Assuntos
DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , DNA/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Arginina/química , DNA Topoisomerase IV/química , DNA Catenado/metabolismo , Escherichia coli/enzimologia , Mycobacterium smegmatis/enzimologia , Ligação Proteica
11.
Eur J Med Chem ; 54: 591-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22749642

RESUMO

Toxin-antitoxin (TA) proteic systems encode a toxin and an antitoxin that regulate the growth and death of bacterial cells under various stress conditions. The ParE protein is a toxin that inhibits DNA gyrase activity and thereby blocks DNA replication. Based on the Escherichia coli ParE structure, a series of linear peptides were designed and synthesized by solid-phase methodology. The ability of the peptides to inhibit the activity of bacterial topoisomerases was investigated. Four peptides (ParELC3, ParELC8, ParELC10 and ParELC12), showed complete inhibition of DNA gyrase supercoiling activity with an IC(100) between 20 and 40 µmol L(-1). In contrast to wild-type ParE, the peptide analogues were able to inhibit the DNA relaxation of topoisomerase IV, another type IIA bacterial topoisomerase, with lower IC(100) values. Interestingly only ParELC12 displayed inhibition of the relaxation activity of human topoisomerase II. Our findings reveal new inhibitors of bacterial topoisomerases and are a good starting point for the development of a new class of antibacterial agents that targets the DNA topoisomerases.


Assuntos
Toxinas Bacterianas/química , DNA Topoisomerase IV/química , Desenho de Fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/farmacologia , Sequência de Aminoácidos , Técnicas de Química Sintética , Escherichia coli/enzimologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Inibidores da Topoisomerase/química
12.
PLoS One ; 3(9): e3201, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18787651

RESUMO

BACKGROUND: Streptococcus pneumoniae is the major cause of community-acquired pneumonia and is also associated with bronchitis, meningitis, otitis and sinusitis. The emergence and increasing prevalence of resistance to penicillin and other antibiotics has led to interest in other anti-pneumonococcal drugs such as quinolones that target the enzymes DNA gyrase and topoisomerase IV. During crystallization and in the avenues to finding a method to determine phases for the structure of the ParC55 breakage-reunion domain of topoisomerase IV from Streptococcus pneumoniae, obstacles were faced at each stage of the process. These problems included: majority of the crystals being twinned, either non-diffracting or exhibiting a high mosaic spread. The crystals, which were grown under conditions that favoured diffraction, were difficult to flash-freeze without loosing diffraction. The initial structure solution by molecular replacement failed and the approach proved to be unviable due to the complexity of the problem. In the end the successful structure solution required an in-depth data analysis and a very detailed molecular replacement search. METHODOLOGY/PRINCIPAL FINDINGS: Crystal anti-twinning agents have been tested and two different methods of flash freezing have been compared. The fragility of the crystals did not allow the usual method of transferring the crystals into the heavy atom solution. Consequently, it was necessary to co-crystallize in the presence of the heavy atom compound. The multiple isomorphous replacement approach was unsuccessful because the 7 cysteine mutants which were engineered could not be successfully derivatized. Ultimately, molecular replacement was used to solve the structure by sorting through a large number of solutions in space group P1 using CNS. CONCLUSIONS/SIGNIFICANCE: The main objective of this paper is to describe the obstacles which were faced and overcome in order to acquire data sets on such difficult crystals and determine phases for successful structure solution.


Assuntos
Cristalografia por Raios X/métodos , DNA Topoisomerase IV/química , Streptococcus pneumoniae/enzimologia , Bioquímica/métodos , Cristalização , Cisteína/química , Detergentes/farmacologia , Dimerização , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína
13.
EMBO J ; 27(16): 2230-8, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18650930

RESUMO

The R1 plasmid employs ATP-driven polymerisation of the actin-like protein ParM to move newly replicated DNA to opposite poles of a bacterial cell. This process is essential for ensuring accurate segregation of the low-copy number plasmid and is the best characterised example of DNA partitioning in prokaryotes. In vivo, ParM only forms long filaments when capped at both ends by attachment to a centromere-like region parC, through a small DNA-binding protein ParR. Here, we present biochemical and electron microscopy data leading to a model for the mechanism by which ParR-parC complexes bind and stabilise elongating ParM filaments. We propose that the open ring formed by oligomeric ParR dimers with parC DNA wrapped around acts as a rigid clamp, which holds the end of elongating ParM filaments while allowing entry of new ATP-bound monomers. We propose a processive mechanism by which cycles of ATP hydrolysis in polymerising ParM drives movement of ParR-bound parC DNA. Importantly, our model predicts that each pair of plasmids will be driven apart in the cell by just a single double helical ParM filament.


Assuntos
Actinas/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Plasmídeos/metabolismo , Actinas/química , Actinas/ultraestrutura , DNA Topoisomerase IV/química , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/ultraestrutura , DNA Bacteriano/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares , Peptídeos/química , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Secundária de Proteína
14.
Structure ; 16(3): 360-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18334211

RESUMO

DNA topoisomerases resolve DNA topological problems created during transcription, replication, and recombination. These ubiquitous enzymes are essential for cell viability and are highly potent targets for the development of antibacterial and antitumoral drugs. Type II enzymes catalyze the transfer of a DNA duplex through another one in an ATP-dependent mechanism. Because of its small size and sensitivity to antitumoral drugs, the archaeal DNA topoisomerase VI, a type II enzyme, is an excellent model for gaining further understanding of the organization and mechanism of these enzymes. We present the crystal structure of intact DNA topoisomerase VI bound to radicicol, an inhibitor of human topo II, and compare it to the conformation of the apo-protein as determined by small-angle X-ray scattering in solution. This structure, combined with a wealth of experimental data gathered on these enzymes, allows us to propose a structural model for the two-gate DNA transfer mechanism.


Assuntos
DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Catálise , Cristalografia por Raios X , DNA Topoisomerase IV/química , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Sulfolobus/enzimologia
15.
J Biol Chem ; 281(28): 18927-32, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16684778

RESUMO

Escherichia coli topoisomerase IV (topo IV) is an essential enzyme that unlinks the daughter chromosomes for proper segregation at cell division. In vitro, topo IV readily distinguishes between the two possible chiralities of crossing segments in a DNA substrate. The enzyme relaxes positive supercoils and left-handed braids 20 times faster, and with greater processivity, than negative supercoils and right-handed braids. Here, we used chemical cross-linking of topo IV to demonstrate that enzyme bound to positively supercoiled DNA is in a different conformation from that bound to other forms of DNA. Using three different reagents, we observed novel cross-linked species of topo IV when positively supercoiled DNA was in the reaction. We show that the ParE subunits are in close enough proximity to be cross-linked only when the enzyme is bound to positively supercoiled DNA. We suggest that the altered conformation reflects efficient binding by topo IV of the two DNA segments that participate in the strand passage reaction.


Assuntos
DNA Topoisomerase IV/química , DNA Super-Helicoidal/química , Escherichia coli/enzimologia , Trifosfato de Adenosina/química , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , DNA Topoisomerase IV/genética , Modelos Genéticos , Conformação Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
16.
J Biol Chem ; 281(6): 3738-42, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16332690

RESUMO

DNA gyrase is the only topoisomerase that can introduce negative supercoils into DNA. It is thought that the binding of conventional type II topoisomerases, including topoisomerase IV, to DNA takes place at the catalytic domain across the DNA gate, whereas DNA gyrase binds to DNA not only at the amino-terminal catalytic domain but also at the carboxyl-terminal domain (CTD) of the GyrA subunit. The binding of the GyrA CTD to DNA allows gyrase to wrap DNA around itself and catalyze the supercoiling reaction. Recent structural studies, however, have revealed striking similarities between the GyrA CTD and the ParC CTD, as well as the ability of the ParC CTD to bind and bend DNA. Thus, the molecular basis of gyrase-mediated wrapping of DNA needs to be reexamined. Here, we have conducted a mutational analysis to determine the role of the "GyrA-box," a 7-amino acid-long motif unique to the GyrA CTD, in determining the DNA binding mode of gyrase. Either a deletion of the entire GyrA-box or substitution of the GyrA-box with 7 Ala residues abolishes the ability of gyrase to wrap DNA around itself and catalyze the supercoiling reaction. However, these mutations do not affect the relaxation and decatenation activities of gyrase. Thus, the presence of a GyrA-box allows gyrase to wrap DNA and catalyze the supercoiling reaction. The consequence of the loss of the GyrA-box during evolution of bacterial type II topoisomerases is discussed.


Assuntos
DNA Girase/química , DNA/química , Conformação de Ácido Nucleico , Trifosfato de Adenosina/química , Alanina/química , Motivos de Aminoácidos , Catálise , Domínio Catalítico , DNA Topoisomerase IV/química , DNA Bacteriano , DNA Super-Helicoidal/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Mutação , Filogenia , Ligação Proteica , Tripsina/farmacologia
17.
Mol Cell Biol ; 25(13): 5579-89, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15964813

RESUMO

CUL7, a recently identified member of the cullin family of E3 ubiquitin ligases, forms a unique SCF-like complex and is required for mouse embryonic development. To further investigate CUL7 function, we sought to identify CUL7 binding proteins. The p53-associated, parkin-like cytoplasmic protein (PARC), a homolog of CUL7, was identified as a CUL7-interacting protein by mass spectrometry. The heterodimerization of PARC and CUL7, as well as homodimerization of PARC and CUL7, was confirmed in vivo. To determine the biological role of PARC by itself and in conjunction with CUL7, a targeted deletion of Parc was created in the mouse. In contrast to the neonatal lethality of the Cul7 knockout mice, Parc knockout mice were born at the expected Mendelian ratios and exhibited no apparent phenotype. Additionally, Parc deletion did not appear to affect the stability or function of p53. These results suggest that PARC and CUL7 form an endogenous complex and that PARC and CUL7 functions are at least partially nonoverlapping. In addition, although PARC and p53 form a complex, the absence of effect of Parc deletion on p53 stability, localization, and function suggests that p53 binding to PARC may serve to control PARC function.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , DNA Topoisomerase IV/química , DNA Topoisomerase IV/metabolismo , Desenvolvimento Embrionário , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Western Blotting , Proteínas de Transporte/genética , Células Cultivadas , DNA Topoisomerase IV/genética , Dimerização , Embrião de Mamíferos , Fibroblastos/citologia , Fibroblastos/metabolismo , Deleção de Genes , Camundongos , Camundongos Knockout , Testes de Precipitina , Ligação Proteica , Proteína Supressora de Tumor p53/metabolismo
18.
Biophys J ; 89(1): 384-92, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15863484

RESUMO

Escherichia coli topoisomerase IV (Topo IV) is an essential ATP-dependent enzyme that unlinks sister chromosomes during replication and efficiently removes positive but not negative supercoils. In this article, we investigate the binding properties of Topo IV onto DNA in the absence of ATP using a single molecule micromanipulation setup. We find that the enzyme binds cooperatively (Hill coefficient alpha approximately 4) with supercoiled DNA, suggesting that the Topo IV subunits assemble upon binding onto DNA. It interacts preferentially with (+) rather than (-) supercoiled DNA (Kd+=0.15 nM, Kd-=0.23 nM) and more than two orders-of-magnitude more weakly with relaxed DNA (Kd0 approximately 36 nM). Like gyrase but unlike the eukaryotic Topo II, Topo IV bends DNA with a radius 0= 6.4 nm and locally changes its twist and/or its writhe by 0.16 turn per bound complex. We estimate its free energy of binding and study the dynamics of interaction of Topo IV with DNA at the binding threshold. We find that the protein/DNA complex alternates between two states: a weakly bound state where it stays with probability p = 0.89 and a strongly bound state (with probability p = 0.11). The methodology introduced here to characterize the Topo IV/DNA complex is very general and could be used to study other DNA/protein complexes.


Assuntos
DNA Topoisomerase IV/química , DNA/química , Escherichia coli/enzimologia , Trifosfato de Adenosina/química , Biofísica/métodos , Replicação do DNA , DNA Super-Helicoidal/química , Digoxigenina/química , Cinética , Modelos Estatísticos , Conformação de Ácido Nucleico , Conformação Proteica , Termodinâmica , Fatores de Tempo
19.
J Bacteriol ; 187(4): 1536-40, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15687222

RESUMO

In Streptococcus pneumoniae, an H103Y substitution in the ATP binding site of the ParE subunit of topoisomerase IV was shown to confer quinolone resistance and hypersensitivity to novobiocin when associated with an S84F change in the A subunit of DNA gyrase. We reconstituted in vitro the wild-type topoisomerase IV and its ParE mutant. The ParE mutant enzyme showed a decreased activity for decatenation at subsaturating ATP levels and was more sensitive to inhibition by novobiocin but was as sensitive to quinolones. These results show that the ParE alteration H103Y alone is not responsible for quinolone resistance and agree with the assumption that it facilitates the open conformation of the ATP binding site that would lead to novobiocin hypersensitivity and to a higher requirement of ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Topoisomerase IV/metabolismo , Novobiocina/farmacologia , Quinolonas/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Substituição de Aminoácidos , Antibacterianos/farmacologia , Sítios de Ligação , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/química , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/isolamento & purificação , Farmacorresistência Bacteriana/genética , Mutação , Estrutura Terciária de Proteína , Streptococcus pneumoniae/genética
20.
Antimicrob Agents Chemother ; 48(5): 1856-64, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15105144

RESUMO

Topoisomerase IV and DNA gyrase are related bacterial type II topoisomerases that utilize the free energy from ATP hydrolysis to catalyze topological changes in the bacterial genome. The essential function of DNA gyrase is the introduction of negative DNA supercoils into the genome, whereas the essential function of topoisomerase IV is to decatenate daughter chromosomes following replication. Here, we report the crystal structures of a 43-kDa N-terminal fragment of Escherichia coli topoisomerase IV ParE subunit complexed with adenylyl-imidodiphosphate at 2.0-A resolution and a 24-kDa N-terminal fragment of the ParE subunit complexed with novobiocin at 2.1-A resolution. The solved ParE structures are strikingly similar to the known gyrase B (GyrB) subunit structures. We also identified single-position equivalent amino acid residues in ParE (M74) and in GyrB (I78) that, when exchanged, increased the potency of novobiocin against topoisomerase IV by nearly 20-fold (to 12 nM). The corresponding exchange in gyrase (I78 M) yielded a 20-fold decrease in the potency of novobiocin (to 1.0 micro M). These data offer an explanation for the observation that novobiocin is significantly less potent against topoisomerase IV than against DNA gyrase. Additionally, the enzyme kinetic parameters were affected. In gyrase, the ATP K(m) increased approximately 5-fold and the V(max) decreased approximately 30%. In contrast, the topoisomerase IV ATP K(m) decreased by a factor of 6, and the V(max) increased approximately 2-fold from the wild-type values. These data demonstrate that the ParE M74 and GyrB I78 side chains impart opposite effects on the enzyme's substrate affinity and catalytic efficiency.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química , Escherichia coli/enzimologia , Novobiocina/farmacologia , Inibidores da Topoisomerase II , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA