Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.041
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696845

RESUMO

The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.


Assuntos
Antineoplásicos , DNA Topoisomerases Tipo I , Cloridrato de Fingolimode , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase I , Humanos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/síntese química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo I/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Células MCF-7
2.
J Med Chem ; 67(9): 7006-7032, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668707

RESUMO

G-quadruplexes are noncanonical four-stranded DNA secondary structures. MYC is a master oncogene and the G-quadruplex formed in the MYC promoter functions as a transcriptional silencer and can be stabilized by small molecules. We have previously revealed a novel mechanism of action for indenoisoquinoline anticancer drugs, dual-downregulation of MYC and inhibition of topoisomerase I. Herein, we report the design and synthesis of novel 7-aza-8,9-methylenedioxyindenoisoquinolines based on desirable substituents and π-π stacking interactions. These compounds stabilize the MYC promoter G-quadruplex, significantly lower MYC levels in cancer cells, and inhibit topoisomerase I. MYC targeting was demonstrated by differential activities in Raji vs CA-46 cells and cytotoxicity in MYC-dependent cell lines. Cytotoxicities in the NCI-60 panel of human cancer cell lines were investigated. Favorable pharmacokinetics were established, and in vivo anticancer activities were demonstrated in xenograft mouse models. Furthermore, favorable brain penetration, brain pharmacokinetics, and anticancer activity in an orthotopic glioblastoma mouse model were demonstrated.


Assuntos
Antineoplásicos , Desenho de Fármacos , Quadruplex G , Isoquinolinas , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc , Inibidores da Topoisomerase I , Quadruplex G/efeitos dos fármacos , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Isoquinolinas/farmacologia , Isoquinolinas/química , Isoquinolinas/farmacocinética , Isoquinolinas/síntese química , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/farmacocinética , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/uso terapêutico , Relação Estrutura-Atividade , DNA Topoisomerases Tipo I/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518997

RESUMO

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Assuntos
Antineoplásicos , Cumarínicos , Compostos Heterocíclicos de 4 ou mais Anéis , Isoquinolinas , Inibidores da Topoisomerase I , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Desenho de Fármacos , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia
4.
J Med Chem ; 67(5): 3244-3273, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38421819

RESUMO

Camptothecin (CPT) is a potent anti-cancer agent targeting topoisomerase I (TOP1). However, CPT has poor pharmacokinetic properties, causes toxicities, and leads to drug resistance, which limit its clinical use. In this paper, to review the current state of CPT research. We first briefly explain CPT's TOP1 inhibition mechanism and the key hurdles in CPT drug development. Then we examine strategies to overcome CPT's limitations through structural modifications and advanced delivery systems. Though modifications alone seem insufficient to fully enhance CPT's therapeutic potential, structure-activity relationship analysis provides insights to guide optimization of CPT analogs. In comparison, advanced delivery systems integrating controlled release, imaging capabilities, and combination therapies via stimulus-responsive linkers and targeting moieties show great promise for improving CPT's pharmacological profile. Looking forward, multifaceted approaches combining selective CPT derivatives with advanced delivery systems, informed by emerging biological insights, hold promise for fully unleashing CPT's anti-cancer potential.


Assuntos
Antineoplásicos Fitogênicos , Camptotecina , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , DNA Topoisomerases Tipo I/metabolismo
5.
Nucleic Acids Res ; 52(5): 2142-2156, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340342

RESUMO

Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.


Assuntos
DNA Topoisomerases Tipo I , Quadruplex G , Transcrição Gênica , Humanos , DNA/química , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Ligantes , Inibidores da Topoisomerase I/farmacologia
6.
Angew Chem Int Ed Engl ; 63(17): e202317187, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231130

RESUMO

DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.


Assuntos
Antineoplásicos , Produtos Biológicos , Humanos , Camundongos , Animais , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Produtos Biológicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Biologia Computacional , Solo , Tiazóis , Linhagem Celular Tumoral
7.
Eur J Med Chem ; 265: 116049, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185054

RESUMO

Camptothecin is a pentacyclic natural alkaloid that inhibits the hTop1 enzyme involved in DNA transcription and cancer cell growth. Camptothecin structure pitfalls prompted us to design new congeners using a structure simplification strategy to reduce the ring extension number from pentacyclic to tetracyclic while maintaining potential stacking of the new compounds with the DNA base pairs at the Top1-mediated cleavage complex and aqueous solubility, as well as minimizing compound-liver toxicity. The principal axis of this study was the verification of hTop1 inhibiting activity as a possible mechanism of action and the elaboration of new simplified inhibitors with improved pharmacodynamic and pharmacokinetic profiling using three structure panels (A-C) of (isoquinolinoimidazoquinazoline), (imidazoquinazoline), and (imidazoisoquinoline), respectively. DNA relaxation assay identified five compounds as hTop1 inhibitors belonging to the imidazoisoquinolines 3a,b, the imidazoquinazolines 12, and the isoquinolinoimidazoquinazolines 7a,b. In an MTT cytotoxicity assay against different cancer cell lines, compound 12 was the most potent against HOS bone cancer cells (IC50 = 1.47 µM). At the same time, the other inhibitors had no detectable activity against any cancer cell type. Compound (12) demonstrated great penetrating power in the HOS cancer cells' 3D-multicellular tumor spheroid model. Bioinformatics research of the hTop1 gene revealed that the TP53 cell proliferative gene is in the network of hTop1. The finding is confirmed empirically using the gene expression assay that proved the increase in p53 expression. The impact of structure simplification on compound 12 profile, characterized by the absence of acute oral liver toxicity when compared to Doxorubicin as a standard inhibitor, the lethal dose measured on Swiss Albino female mice and reported at LD50 = 250 mg/kg, and therapeutic significance in reducing colon adenocarcinoma tumor volume by 75.36 % after five weeks of treatment with compound 12. The molecular docking solutions of the active CPT-based derivative 12 and the inactive congener 14 into the active site of hTop1 and the activity cliffing of such MMP directed us to recommend the addition of HBD and HBA variables to compound 12 imidazoquinazoline core scaffold to enhance the potency via hydrogen bond formation with the major groove amino acids (Asp533, Lys532) as well as maintaining the hydrogen bond with the minor groove amino acid Arg364.


Assuntos
Adenocarcinoma , Neoplasias Ósseas , Neoplasias do Colo , Animais , Camundongos , Humanos , Camptotecina/farmacologia , Inibidores da Topoisomerase I/farmacologia , Quinazolinas/farmacologia , Simulação de Acoplamento Molecular , Neoplasias do Colo/tratamento farmacológico , Inibidores da Topoisomerase , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo
8.
Bioorg Chem ; 143: 107015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086241

RESUMO

Conventional topoisomerase (Topo) inhibitors typically usually exert their cytotoxicity by damaging the DNAs, which exhibit high toxicity and tend to result in secondary carcinogenesis risk. Molecules that have potent topoisomerase inhibitory activity but involve less DNA damage provide more desirable scaffolds for developing novel chemotherapeutic agents. In this work, we broke the rigid pentacyclic system of luotonin A and synthesized thirty-three compounds as potential Topo inhibitors based on the devised molecular motif. Further investigation disclose that two compounds with the highest antiproliferation activity against cancer cells, 5aA and 5dD, had a distinct Topo I inhibitory mechanism different from those of the classic Topo I inhibitors CPT or luteolin, and were able to obviate the obvious cellular DNA damage typically associated with clinically available Topo inhibitors. The animal model experiments demonstrated that even in mice treated with a high dosage of 50 mg/kg 5aA, there were no obvious signs of toxicity or loss of body weight. The tumor growth inhibition (TGI) rate was 54.3 % when 20 mg/kg 5aA was given to the T24 xenograft mouse model, and 5aA targeted the cancer tissue precisely without causing damage to the liver and other major organs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Quinonas , Pirróis , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase II/farmacologia , DNA Topoisomerases Tipo II , Linhagem Celular Tumoral
9.
Bioorg Med Chem ; 96: 117530, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956506

RESUMO

A number of NO-releasing quinoline derivatives have been designed and synthesized by introducing NO donor to quinoline carboxylic acid fragment. The anti-proliferation of all target compounds was evaluated against human cancer cell lines (HCT-116, MCF-7, and A549), MCF-7/ADR and normal cell (MCF-10A). Most compounds showed cytotoxic activity on cancer cells and drug-resistant cells with IC50 values in the range of 0.62-5.51 µM. Importantly, these compounds showed low toxicity to normal cells (4.21-34.08 µM). Further mechanism studies showed that the most potent compound 9 could release high concentration of NO and inhibit the activity of topoisomerase I. In addition, 9 regulated apoptosis-related proteins, generated ROS and blocked MCF-7 cells in G2/M phase to induce cell apoptosis. Furthermore, the P-gp-mediated transport was also influenced by 9. And 9 could significantly inhibit the growth of tumor in vivo without observable organ-related toxicities. Overall, as a novel NO-releasing quinoline derivative, 9 was worthy for further in-depth study.


Assuntos
Antineoplásicos , Neoplasias da Mama , Quinolinas , Humanos , Feminino , DNA Topoisomerases Tipo I/metabolismo , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Quinolinas/farmacologia , Células MCF-7 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Relação Estrutura-Atividade
10.
Cancer Res ; 83(24): 4015-4029, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37987734

RESUMO

MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers. SIGNIFICANCE: CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors.


Assuntos
Neoplasias da Mama , Estruturas R-Loop , Humanos , Feminino , Mutações Sintéticas Letais , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Inibidores da Topoisomerase I/farmacologia , Linhagem Celular Tumoral
11.
J Biol Chem ; 299(12): 105385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890780

RESUMO

Cancer is a genetic disease requiring multiple mutations for its development. However, many carcinogens are DNA-unreactive and nonmutagenic and consequently described as nongenotoxic. One of such carcinogens is nickel, a global environmental pollutant abundantly emitted by burning of coal. We investigated activation of DNA damage responses by Ni and identified this metal as a replication stressor. Genotoxic stress markers indicated the accumulation of ssDNA and stalled replication forks, and Ni-treated cells were dependent on ATR for suppression of DNA damage and long-term survival. Replication stress by Ni resulted from destabilization of RRM1 and RRM2 subunits of ribonucleotide reductase and the resulting deficiency in dNTPs. Ni also increased DNA incorporation of rNMPs (detected by a specific fluorescent assay) and strongly enhanced their genotoxicity as a result of repressed repair of TOP1-DNA protein crosslinks (TOP1-DPC). The DPC-trap assay found severely impaired SUMOylation and K48-polyubiquitination of DNA-crosslinked TOP1 due to downregulation of specific enzymes. Our findings identified Ni as the human carcinogen inducing genome instability via DNA-embedded ribonucleotides and accumulation of TOP1-DPC which are carcinogenic abnormalities with poor detectability by the standard mutagenicity tests. The discovered mechanisms for Ni could also play a role in genotoxicity of other protein-reactive carcinogens.


Assuntos
Carcinógenos , Replicação do DNA , Níquel , Nucleotídeos , Humanos , Carcinógenos/toxicidade , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Níquel/toxicidade , Saccharomyces cerevisiae/metabolismo , Nucleotídeos/biossíntese
12.
Sci Adv ; 9(41): eadg5109, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831776

RESUMO

Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.


Assuntos
Neoplasias Pancreáticas , Fatores de Transcrição , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , DNA Topoisomerases Tipo I/metabolismo , Neoplasias Pancreáticas
13.
J Inorg Biochem ; 249: 112369, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776829

RESUMO

Quinalizarin, an analogue of anthracycline anticancer agents, is an anticancer agent itself. A CuII complex was prepared and characterized by elemental analysis, UV-Vis & IR spectroscopy, mass spectrometry, EPR and DFT. The intention behind the preparation of the complex was to increase cellular uptake, compare its binding with DNA against that of quinalizarin, modulation of semiquinone formation, realization of human DNA topoisomerase I & human DNA topoisomerase II inhibition and observation of anticancer activity. While the first two attributes of complex formation lead to increased efficacy, decrease in semiquinone generation could results in a compromise with efficacy. Inhibition of human DNA topoisomerase makes up this envisaged compromise in free radical activity since the complex shows remarkable ability to disrupt activities of human DNA topoisomerase I and II. The complex unlike quinalizarin, does not catalyze flow of electrons from NADH to O2 to the extent known for quinalizarin. Hence, decrease in semiquinone or superoxide radical anion could make modified quinalizarin [as CuII complex] less efficient in free radical pathway. However, it would be less cardiotoxic and that would be advantageous to qualify it as a better anticancer agent. Although binding to calf thymus DNA was comparable to quinalizarin, it was weaker than anthracyclines. Low cost of quinalizarin could justify consideration as a substitute for anthracyclines but the study revealed IC50 of quinalizarin/CuII-quinalizarin was much higher than anthracyclines or their complexes. Even then, there is a possibility that CuII-quinalizarin could be an improved and less costly form of quinalizarin as anticancer agent.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , DNA Topoisomerases Tipo I/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antibióticos Antineoplásicos , Inibidores da Topoisomerase II/farmacologia , Superóxidos/metabolismo , Antraciclinas , Radicais Livres/metabolismo , Cobre/química , Complexos de Coordenação/química
14.
Nucleic Acids Res ; 51(18): e97, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670571

RESUMO

Topoisomerases (TOP1, TOP2α, and ß) are nuclear enzymes crucial for virtually all aspects of DNA metabolisms. They also are the targets of important anti-tumor chemotherapeutics that act by trapping the otherwise reversible topoisomerase-DNA covalent complex intermediates (TOPccs) that are formed during their catalytic reactions, resulting in long-lived topoisomerase DNA-protein crosslinks (TOP-DPCs) that interfere with DNA transactions. The Poly(ADP-ribose) polymerase (PARP) family protein PARP1 is activated by DNA damage to recruit DNA repair proteins, and PARP inhibitors are another class of commonly used chemotherapeutics, which bind and trap PARP molecules on DNA. To date, the trapping of TOPccs and PARP by their respective inhibitors can only be measured by immune-biochemical methods in cells. Here, we developed an imaging-based approach enabling real-time monitoring of drug-induced trapping of TOPccs and PARP1 in live cells at the single-molecule level. Capitalizing on this approach, we calculated the fraction of self-fluorescence tag-labeled topoisomerases and PARP single-molecules that are trapped by their respective inhibitors in real time. This novel technique should help elucidate the molecular processes that repair TOPcc and PARP trapping and facilitate the development of novel topoisomerase and PARP inhibitor-based therapies.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Dano ao DNA , Reparo do DNA , Isomerases/genética , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(34): e2218483120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579177

RESUMO

We designed and carried out a high-throughput screen for compounds that trap topoisomerase III beta (TOP3B poisons) by developing a Comparative Cellular Cytotoxicity Screen. We found a bisacridine compound NSC690634 and a thiacyanine compound NSC96932 that preferentially sensitize cell lines expressing TOP3B, indicating that they target TOP3B. These compounds trap TOP3B cleavage complex (TOP3Bcc) in cells and in vitro and predominately act on RNA, leading to high levels of RNA-TOP3Bccs. NSC690634 also leads to enhanced R-loops in a TOP3B-dependent manner. Preliminary structural activity studies show that the lengths of linkers between the two aromatic moieties in each compound are critical; altering the linker length completely abolishes the trapping of TOP3Bccs. Both of our lead compounds share a similar structural motif, which can serve as a base for further modification. They may also serve in anticancer, antiviral, and/or basic research applications.


Assuntos
DNA Topoisomerases Tipo I , Inibidores da Topoisomerase I , Linhagem Celular , DNA Topoisomerases Tipo I/metabolismo , RNA , Inibidores da Topoisomerase I/química
16.
J Biol Chem ; 299(8): 104988, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392847

RESUMO

Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.


Assuntos
Proteínas de Ligação a DNA , Magnésio , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Magnésio/metabolismo , Nucleosídeos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Dano ao DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , Camptotecina/farmacologia , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA , Reparo do DNA
17.
J Inorg Biochem ; 247: 112308, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37441923

RESUMO

Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rutênio , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação/química , DNA/química , DNA Topoisomerases Tipo I/metabolismo , Ferro/química , Rutênio/química , Uracila
18.
Bioorg Chem ; 139: 106734, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473480

RESUMO

DNA topoisomerase I (TOP1) catalytic inhibitors are a promising class of antitumor agents. Oleanolic acid derivatives are potential TOP1 catalytic inhibitors. However, their inhibitory activity still needs to be enhanced, and the stability and hotspot residue sites of their interaction with TOP1 remain to be elucidated. Herein, a novel oleanolic acid derivative, OA4 (N-(3-(methyl(3-(orotic amido)propyl)amino)propyl)oleanolamide), was identified by rational design. Subsequently, molecular dynamics simulations were performed to explore the stability and conformational dynamics of the TOP1-OA4 complex. The molecular mechanics/generalized Born surface area method calculated the binding free energy and predicted Arg488, Ile535, and His632 to be hotspot residues. Biological experiments verified that OA4 is a nonintercalative TOP1 catalytic inhibitor. OA4 exhibits better proliferation inhibitory activity against tumor cells than normal cells. Furthermore, OA4 can induce apoptosis and effectively suppress the proliferation and migration of cancer cells. This work provides new insights for the development of novel TOP1 catalytic inhibitors.


Assuntos
Antineoplásicos , Ácido Oleanólico , Inibidores da Topoisomerase I/química , Simulação de Dinâmica Molecular , DNA Topoisomerases Tipo I/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
19.
Bioorg Chem ; 139: 106652, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390632

RESUMO

Primary liver cancer is one of the most common malignant cancers of the digestive system that lacks effective chemotherapeutic drugs in clinical settings. Camptothecin (CPT) and its derivatives have been approved for cancer treatment; however, their application is limited by their systemic toxicity. For lead optimization in new drug discovery stages, fluorination is an effective and robust approach to increase the bioavailability and optimize the pharmacokinetics of candidate compounds, thereby improving their efficacy. To obtain new and highly active CPT derivatives, we designed, synthesized, and evaluated two new fluorinated CPT derivatives, 9-fluorocamptothecin (A1) and 7-ethyl-9-fluorocamptothecin (A2), in this study. In vitro, A1 and A2 exhibited more robust anti-tumor activity than topotecan (TPT) in various cancer cells, particularly hepatocellular carcinoma (HCC) cells. In vivo, A1 and A2 exhibited greater anti-tumor activity than TPT in both AKT/Met induced primary HCC mouse models and implanted HepG2 cell xenografts. Acute toxicity tests revealed that A1 and A2 were not lethal and did not cause significant body weight loss at high doses. Moreover, A1 and A2 exhibited no significant toxicity in the mouse liver, heart, lung, spleen, kidney, and hematopoietic systems at therapeutic doses. Mechanistically, A1 and A2 blocked HCC cell proliferation by inhibiting the enzymatic activity of Topo I, subsequently inducing DNA damage, cell cycle arrest, and apoptosis. In summary, our results indicate that fluorination improves the anti-tumor activity of CPT while decreasing its toxicity and highlight the application potential of fluorination products A1 and A2 in clinical settings.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , DNA Topoisomerases Tipo I/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Topotecan/farmacologia , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Oncotarget ; 14: 637-649, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37343056

RESUMO

Diphenyl ditelluride (DPDT) is an organotellurium (OT) compound with pharmacological properties, including antioxidant, antigenotoxic and antimutagenic activities when applied at low concentrations. However, DPDT as well as other OT compounds also show cytotoxicity against mammalian cells when treatments occur at higher drug concentrations. Considering that the underlying mechanisms of toxicity of DPDT against tumor cells have been poorly explored, the objective of our study was to investigate the effects of DPDT against both human cancer and non-tumorigenic cells. As a model, we used the colonic HCT116 cancer cells and the MRC5 fibroblasts. Our results showed that DPDT preferentially targets HCT116 cancer cells when compared to MRC5 cells with IC50 values of 2.4 and 10.1 µM, respectively. This effect was accompanied by the induction of apoptosis and a pronounced G2/M cell cycle arrest in HCT116 cells. Furthermore, DPDT induces DNA strand breaks at concentrations below 5 µM in HCT116 cells and promotes the occurrence of DNA double strand breaks mostly during S-phase as measured by γ-H2AX/EdU double staining. Finally, DPDT forms covalent complexes with DNA topoisomerase I, as observed by the TARDIS assay, with a more prominent effect observed in HCT116 than in MRC5 cells. Taken together, our results show that DPDT preferentially targets HCT116 colon cancer cells likely through DNA topoisomerase I poisoning. This makes DPDT an interesting molecule for further development as an anti-proliferative compound in the context of cancer.


Assuntos
Neoplasias do Colo , DNA Topoisomerases Tipo I , Animais , Humanos , Células HCT116 , DNA Topoisomerases Tipo I/metabolismo , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , DNA , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA